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abstract

PURPOSE To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of
ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic
variants (PVs) because these risks have not been extensively characterized.

METHODSWe analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis
was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of
cancers. Themodels allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for
the family-specific ascertainment schemes.

RESULTSWe found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82
to 8.85; P = 6.53 10276), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.13 1023), pancreatic cancer
(RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 3 1023), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18;
P = 2.6 3 1022). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer
RRs declined with age (P for trend = 2.0 3 1023). After adjusting for family ascertainment, breast cancer risk
estimates on the basis of multiple case families were similar to the estimates from families ascertained through
population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age
80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian
cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI,
0.2% to 5%) for male breast cancer.

CONCLUSION These results confirm PALB2 as amajor breast cancer susceptibility gene and establish substantial
associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings
will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk man-
agement of PALB2 PV carriers.
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INTRODUCTION

Germline pathogenic variants (PVs) in PALB21 were first
associated with an increased risk of breast cancer (BC)
more than a decade ago.2-4 This was confirmed by multiple
studies that culminated into a large international study by
the PALB2 Interest Group (PALB2-IG), which estimated the
absolute risk of BC to be 14% by 50 years of age and 44%
by 80 years of age on the basis of data from 154 families.5

PALB2 is now included on BC gene panels,6 and clinical
testing for germline PALB2 PVs in the context of female BC
is standard of care,7 although gaps in our understanding of
risk for other cancers remain.

Beyond BC, germline PVs in PALB2 have been associated
with pancreatic cancer (PaC)8,9 and gastric cancer.10-12

Possible associations with ovarian (OC)13 and colorectal
cancer (CRC)14 have been suggested, but the statistical
evidence is weak. Guidelines for the management of
PALB2-associated BC risk exist,7,15 but risk estimates for
other cancers are based on small numbers and have large
imprecision. Here, we use cancer family history data from
524 families comprising 17,906 individuals to refine age-
specific cancer risks for BC and, for the first time to our
knowledge, to estimate risks of OC, PaC, male breast
cancer (MBC), prostate cancer (PrC), and CRC.

METHODS

Families

Data on 764 families were obtained through study groups
that participated in PALB2-IG. Families included at least 1
member with a PALB2 PV, and those with a known PV in
BRCA1/BRCA2 were excluded. Variants were considered
pathogenic only if they were predicted to lead to a truncated
protein, and PALB2 missense variants were excluded.
Studies were grouped using two types of ascertainment
schemes: through cancer family clinics or families par-
ticipating in research studies on the basis of havingmultiple
affected members and through BC or OC series unselected
for cancer family history. Participants provided informed
consent in accordance with institutional review board
policies and local practices at each participating center.
The Data Supplement lists families by study group and
details of study-specific ascertainment criteria.

Statistical Analysis

Complex segregation analysis was used to estimate cancer-
specific relative risks (RRs) by fitting genetic models to the
cancer inheritance patterns and observed genotypes in
families. We estimated RRs for BC, OC, MBC, PaC, PrC,
CRC, and all other cancers combined. Pedigree likelihoods
were constructed and maximized using the pedigree
analysis software Mendel version 3.3.16

For the main analysis, family members were followed from
birth until age at diagnosis of first cancer (excluding
nonmelanoma skin cancer) because cancer incidence can

change after first cancer diagnosis. Otherwise, they were
followed until age at death, age at last follow-up, age at risk-
reducing mastectomy (RRM) in the BC analyses, risk-
reducing salpingo-oophorectomy (RRBSO) in the OC
analyses (if RRM/RRBSO occurred at least 1 year before
cancer diagnosis), or age 80 years, whichever occurred
first. Individuals diagnosed with BC, OC, MBC, PaC, PrC, or
CRC were assumed to be affected by that cancer type at the
age of diagnosis. Individuals with another subsequent
cancer diagnosis were censored at the cancer diagnosis at
their youngest age and for the purpose of the analysis, were
considered to be affected with other cancer (Data Sup-
plement). Noninformative families, in which no additional
information beyond the data relevant to the ascertainment
was available, were excluded from the analysis.

Two types of genetic susceptibility models were fitted:
a single gene model that assumed that all familial aggre-
gation of cancer is due to PALB2 and a mixed single-gene/
polygenic model that also allowed for a residual familial
component because of other unobserved genetic effects in
addition to PALB2. We fitted these models using country-
and cohort-specific population age-specific incidences and
constrained the overall cancer age-specific incidences over
all assumed genetic effects in the model to agree with the
population age-specific incidences17 (Data Supplement).

Because family ascertainment criteria varied across stud-
ies, we adjusted for ascertainment for each family sepa-
rately using an ascertainment-free approach in which
likelihoods are computed conditional on any data that may
be relevant to the ascertainment, which ensures consistent
estimates18-20 (Data Supplement). Nested models were
compared using the likelihood ratio test (LRT), and non-
nested models were compared using the Akaike in-
formation criterion (AIC). Equivalence of RR estimates
between multiple-case and population-based families was
assessed using the LRT. All statistical tests were two sided.
To adjust for the testing of associations with 7 cancer types,
we calculated the Benjamini-Hochberg (BH)–adjusted
P value for a false discovery rate of .05.21 We also derived
the posterior distribution for the effect estimate (relative
risks) for nominally significant associations to estimate the
probability that the true effect is greater than an RR of 1.5.

RESULTS

Families

A total of 764 families with at least one member with
a PALB2 PV were identified through the PALB2-IG (Data
Supplement). After adjustment for ascertainment and ex-
cluding the noninformative families, 524 families from 44
study centers in 21 countries were included in the analysis.
Of these, 363 were multiple-case families, and 161 were
from population-based studies of individuals with BC or OC.
The eligible families included 8,830 females (852 with
PALB2 PVs) and 9,076 males (124 with PALB2 PVs; Data
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Supplement). One hundred sixty-one different PVs were
identified, the most frequent being c.3113G.A (61 fami-
lies). Twenty-three deletions or duplications of whole exons
were observed, all of which were clustered in the PALB2
WD40 domain (Data Supplement).

Risk Models

The genetic models that included a residual (polygenic)
familial component for BC or OC provided a better fit to the
data than the single gene (AIC for single gene model,
10,687.50 v 10,662.08 for the BC polygenic model and
10,681.93 for the OC polygenic model). Therefore, the
results presented herein are based on the models that
assumed a single gene plus residual familial component for
BC or OC.

BC Risk

The estimated BC RR was 7.18 (95% CI, 5.82 to 8.85;
P = 6.5 3 10276; BH-adjusted P = 4.6 3 10275) when it
was assumed to be constant with age (Table 1). When
separate RRs were estimated for each decade of age, there
was a suggestion that the RRs decreased with age; how-
ever, this model did not fit significantly better than the
model with a constant RR (LRT, df = 5; P = .20; Table 1).
We also fitted a model where the logRR was assumed to be
a linear function of age from 20 to 79 years (AIC,
10,654.54; Table 1). This model gave a better fit than the
model with a constant logRR (P = 2.03 1023) or the model
where logRR was assumed to be a linear function up to age
50 years and constant thereafter, which allowed for
a threshold effect (AIC, 10,656.38). Under the linear
trend model, the BC logRR estimate decreased with age
(P = 2.03 1023) from 13.10 at age 25 years to 4.69 at age
75 years. The absolute risk of developing BC was 16.9%
(95% CI, 13.3% to 21.3%) to age 50 years and 52.8%
(95% CI, 43.7% to 62.7%) to age 80 years, assuming that
all women had the calendar period incidences experienced
by a woman born during 1950-1959 (Fig 1A; Table 2).

We investigated whether BC risks varied by birth cohort.
Compared with women born before 1940, the estimated
RR was 2.09 (95% CI, 1.38 to 3.15) for women born during
1940-1969 and 4.02 (95% CI, 2.54 to 6.38) for women
born after 1969. Under this model, the absolute risk of
developing BC was estimated to be 6.9% (95% CI, 4.6% to
10.2%) to age 50 years and 29.5% (95% CI, 21.0% to
40.4%) to age 80 years for those born in 1930-1939 and
17.4% (95% CI, 12.9% to 23.1%) to age 50 years and
57.7% (95% CI, 45.0% to 71.2%) to age 80 years for those
born in 1950-1959. The risk to age 50 years was 34.3%
(95% CI, 25.7% to 44.9%) for those born after 1969
(Fig 1B).

OC Risk

The estimated OC RR was 2.91 (95% CI, 1.40 to 6.04;
P = 4.1 3 1023; BH-adjusted P = .014) when the RR was
assumed to be constant with age (Table 1). There was

a suggestion of a higher OC RR in ages 60-79 years (RR,
4.63; 95% CI, 1.82 to 11.77) compared with ages 30-
59 years (RR, 1.93; 95% CI, 0.62 to 6.03), but this model
did not fit significantly better than the model with a constant
RR (LRT, df = 1; P = 0.24). The absolute risk of developing
OC for women born during 1950-1959 was 0.6% (95% CI,
0.3% to 1.3%) to age 50 years and 4.8% (95% CI, 2.4% to
9.7%) to age 80 years (Fig 2; Table 2).

PaC Risk

The RR of PaC was estimated to be 2.37 (95% CI, 1.24 to
4.50; P = .0087; BH-adjusted P = .020; Table 1). The
number of individuals with PaC was too small to obtain age-
specific RR estimates with any precision. Under this model,
the absolute risk of developing PaC to age 80 years for
a person born during 1950-1959 was 2.2% (95% CI, 1.2%
to 4.2%) for females and 2.8% (95% CI, 1.5% to 5.3%) for
males (Fig 2; Table 2).

MBC Risk

The estimated MBC RR was 7.34 (95% CI, 1.28 to 42.18;
P = .026; BH-adjusted P = .036; Table 1), and the cor-
responding absolute risk of developingMBC to age 80 years
for men born during 1950-1959 was 0.9% (95% CI, 0.2%
to 4.9%; Fig 2; Table 2).

PrC, CRC, and Other Cancer Risk

The PrC RR was estimated to be 0.42 (95% CI, 0.21 to
0.84; P = .014; BH-adjusted P = .025). There was no
significant association with CRC (RR, 0.97; 95% CI, 0.51 to
1.87; P = .93; BH-adjusted P = .93; Table 1). The results
remained similar when separate CRC RRs were estimated
for males and females (LRT, P = .74). The estimated RR of
all other cancers was 0.76 (95% CI, 0.58 to 0.99; P = .039;
BH-adjusted P = .046).

Predicted Risks by Family History

The most parsimonious models included a residual familial
component for BC or OC. As a result, the predicted absolute
risks of developing BC or OC differed by cancer family
history. For example, the predicted absolute risk of de-
veloping BC by age 80 years varies from 52% (95% CI,
42% to 62%) for a female with an unaffected mother at age
50 years and unaffected maternal grandmother at age
70 years to 76% (95% CI, 69% to 83%) for a female with
two affected first-degree relatives (Table 3). Similarly, the
predicted risk of developing OC by age 80 years varies from
5% (95% CI, 2% to 10%) for a female with no family history
of OC in first- and second-degree relatives to 16% (95% CI,
8% to 28%) for a female whose mother and sister de-
veloped OC at age 50 years (Table 3).

DISCUSSION

Robust quantification of cancer risks is critical for the
optimum clinical management of persons with germline
PVs in PALB2. Using the largest worldwide collection of
people with PALB2 PVs (976 from 524 families) to our
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knowledge, we have firmly established the place of PALB2
as an important nonsyndromic BC gene after BRCA1 and
BRCA2. We also found significantly increased risks of OC,
PaC, and MBC, and for the first time to our knowledge, we
provide risk estimates for these. The posterior probabilities
for the RR parameter estimates being . 1.5 were 0.96
for MBC, 0.89 for OC, and 0.87 for PaC (Data Supplement).
No increased risks for PrC, CRC, or other cancers were
identified.

Previously published studies provided BC odds ratio (OR)
or hazard ratio estimates for women with PALB2 PVs that
ranged from 3.40 to 12.67 (Data Supplement). This vari-
ation is likely due to differences in study designs and
chance caused by small sample sizes. Here, by using
a modified segregation analysis approach that adjusts
appropriately for ascertainment, the estimated BC RR was
found to vary from 13.1 at young ages to 4.69 for older ages,
all in the range of other reported estimates. The absolute
risk of developing BC to age 80 years was 53% (95% CI,
44% to 63%; Fig 1A; Table 1). Both the RR and the present
absolute risk estimates were somewhat higher than those
reported in the previous PALB2-IG study in 154 families,5

which shared 77 families with the current study. When risks
were estimated separately for multiple-case families and
population-based families, the BC risk estimates were
slightly higher for multiple-case families but not significantly
different after adjusting for ascertainment (P = .41; Data
Supplement).

There has been conflicting evidence for the role of PALB2
in OC predisposition; 2 observational studies that impli-
cated an association with PALB2 lacked unaffected or
matched controls.22,23 Other studies reported RRs of 0.96-
5.53, but none were significant.5,13,24,25 Here, we show that
PALB2 PVs are associated with a moderate risk of OC (RR,
2.91; P = 4.1 3 1023) and that the estimated absolute risk
of developing OC to age 80 years was approximately 5%.

Models that allow for a residual familial component in
addition to the PALB2-attributable risk provided a better
fit to the data for both BC and OC. This is consistent
with previous analyses of BC and OC risks for both PALB2
and BRCA1/BRCA2 and strongly suggests other genetic
or environmental factors shared in families that modify
these risks for PALB2.5,26-29 The combined effects of
common genetic variants identified through genome-wide

TABLE 1. Estimated Cancer RRs for PALB2 Pathogenic Variant Carriers Under Different Models and Best Fit Models
Cancer Model Considered Age (years) PALB2 RR (95% CI) P Best Fit Model

Female breast Age-constant model 20-79 7.18 (5.82 to 8.85) 6.5 3 10276

Age-specific model, separate parameters for each decade of age 20-29 9.96 (3.30 to 30.10) .2*

30-39 11.25 (7.42 to 17.05)

40-49 7.29 (5.18 to 10.26)

50-59 7.44 (5.43 to 10.20)

60-69 6.56 (4.52 to 9.53)

70-79 4.84 (2.80 to 8.36)

Age-trend modela,b 25 13.10 (8.68 to 19.75) 2 3 1023** Yes

35 10.67 (7.84 to 14.51)

45 8.69 (6.89 to 10.94)

55 7.07 (5.72 to 8.75)

65 5.76 (4.43 to 7.50)

75 4.69 (3.28 to 6.70)

Ovarian Age-constant model 30-79 2.91 (1.40 to 6.04) 4.1 3 1023 Yes

Age-specific model 30-59 1.93 (0.62 to 6.03) .24**

60-79 4.63 (1.82 to 11.77)

Pancreatic Age-constant model 30-79 2.37 (1.24 to 4.50) .0087 Yes

Male breast Age-constant model 30-79 7.34 (1.28 to 42.18) .026 Yes

Prostate Age-constant model 30-79 0.42 (0.21 to 0.84) .0140 Yes

Colorectal Age-constant model 30-79 0.97 (0.51 to 1.87) .93 Yes

Other Age-constant model 20-79 0.76 (0.58 to 0.99) .039 Yes

Abbreviation: RR, relative risk.
alogRR = a + b(age 2 20), where a = 2.68 (95% CI, 0.24 to 2.21) and b = 20.021 (95% CI, 20.033 to 20.0077).
bCohort effect: before 1940, RR = 1; 1940-1969, RR = 2.09 (95% CI, 1.38 to 3.15); after 1969, RR = 4.02 (95% CI, 2.54 to 6.38).
*Likelihood ratio test comparing against the model with a constant relative risk, df = 5.
**Likelihood ratio test comparing against the model with a constant relative risk, df = 1.
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association studies, summarized as a polygenic risk score
(PRS), have been shown to modify BC and OC risks women
with BRCA1/BRCA2 PVs,30 which explains part of this
residual familial component. It is likely that a PRS will also
modify the risk associated with PALB2 PVs, thus further
improving risk prediction.

We included cohort- and country-specific cancer pop-
ulation incidences in our models to reflect the baseline
cancer incidence changes over time and across countries.
Despite this, the BC RR estimates varied by both birth
cohort and age, with higher RRs observed for more recent
birth cohorts and younger ages, consistent with previous
findings.5,31,32 The higher RR of BC for women born more
recently might reflect under-reporting of cancers in earlier
decades; changes in lifestyle, reproductive, or other envi-
ronmental factors; or more intensive cancer surveillance in
recent decades. No evidence for variation in OC risks by
age or birth cohort was observed, but the number of in-
dividuals with OC (n = 104) limited statistical power.

The absolute risks presented here were obtained by ap-
plying estimated RRs to United Kingdom population cancer
incidences, so they would be applicable to women from
populations with similar age-specific cancer incidences. If
the RRs are assumed to be constant across populations,
then the estimated absolute risk will be lower for pop-
ulations with lower cancer incidences.

Previous observational studies of PALB2 in familial PaC
reported conflicting results.8,9,33-36 The current analysis
confirms the association with PaC and is the first in our

knowledge to quantify it, with an RR estimate of 2.30
(albeit with wide confidence limits), which translates to
an absolute risk of 2%-3% by age 80 years (Fig 2;
Table 2). Previous studies observed a higher prevalence
of PALB2 PVs in MBC,5,37-39 and the results presented
here confirm an increased MBC risk (RR, 7.34; 95% CI,
1.28 to 42.18).

No previous study that we know of has demonstrated
statistically significant associations of PALB2 with PrC
risk,25,40-42 and our analysis points to a weak association
with decreased risk. Because families were primarily
ascertained through female individuals with BC and OC,
this result might reflect under-reporting of PrC in these
families, and the same phenomenon could explain the
slightly decreased risk for all other cancers. Studies have
observed germline PALB2 PVs in patients with CRC who
underwent gene panel testing,14,43 and while a case-control
analysis found a higher frequency of PALB2 PVs in cases
with CRC (OR estimate, 3.4), the evidence of association
was weak (P = .034), and the results were not replicated in
cases with early-onset CRC.44 Here, we did not find evi-
dence of an association with CRC.

The current study has several limitations. Retrospective
kin-cohort studies are susceptible to possible biases related
to self-reported family histories of cancer. Under-reporting
of cancer in families is a common problem,45 which might
partly explain the results for cancers beyond breast, ovary,
and pancreas. Of the individuals with cancer in the data set,
age at diagnosis was missing for 5.5% and could not be
inferred by other available information. We assumed that
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these individuals developed the cancer at the average age
at diagnosis of the corresponding cancer in the data set. To
examine the effect of this assumption, we performed

a sensitivity analysis that censored those individuals at age
0 (ie, effectively ignoring these diagnoses from the analy-
sis). The results remained similar for all cancers except

TABLE 2. Estimated Age-Specific Cancer Incidences and Absolute Risks for Persons With PALB2 Pathogenic Variants
Estimated Incidence (per 1,000 person-years) for Persons With PALB2 Pathogenic Variants (95% CI)a

Age (years) Female Breast Cancer Ovarian Cancer Male Breast Cancer Female Pancreatic Cancer Male Pancreatic Cancer

30 2 (1 to 3) 0.09 (0.04 to 0.2) 0.002 (0.0004 to 0.01) 0.006 (0.003 to 0.01) 0.007 (0.004 to 0.01)

40 9 (7 to 11) 0.3 (0.1 to 0.6) 0.02 (0.004 to 0.1) 0.03 (0.01 to 0.05) 0.04 (0.02 to 0.09)

50 18 (14 to 22) 0.7 (0.3 to 1) 0.07 (0.01 to 0.4) 0.1 (0.06 to 0.2) 0.2 (0.1 to 0.4)

60 20 (16 to 25) 1 (0.6 to 3) 0.2 (0.03 to 1) 0.4 (0.2 to 0.8) 0.6 (0.3 to 1)

70 19 (14 to 25) 2 (0.8 to 4) 0.4 (0.07 to 2) 1 (0.5 to 2) 1 (0.6 to 2)

79 17 (11 to 25) 2 (1 to 4) 0.6 (0.1 to 3) 2 (0.8 to 3) 2 (1 to 4)

Estimated Absolute Risk (%) for Persons With PALB2 Pathogenic Variants (95% CI)a

30 0.7 (0.5 to 1) 0.02 (0.02 to 0.02) 0.0001 (0.0001 to 0.0001) 0.0009 (0.0009 to 0.0009) 0.002 (0.002 to 0.002)

40 5 (4 to 7) 0.2 (0.1 to 0.4) 0.009 (0.002 to 0.05) 0.01 (0.008 to 0.03) 0.02 (0.01 to 0.04)

50 17 (13 to 21) 0.6 (0.3 to 1) 0.05 (0.008 to 0.3) 0.07 (0.04 to 0.1) 0.1 (0.06 to 0.2)

60 31 (26 to 38) 2 (0.8 to 3) 0.2 (0.03 to 0.9) 0.3 (0.2 to 0.6) 0.5 (0.2 to 0.9)

70 44 (37 to 52) 3 (1 to 6) 0.4 (0.07 to 2) 1 (0.5 to 2) 1 (0.7 to 3)

80 53 (44 to 63) 5 (2 to 10) 0.9 (0.2 to 5) 2 (1 to 4) 3 (2 to 5)

aAssuming population calendar and cohort-specific incidences for an individual born between 1950 and 1959. Mortality is not accounted for in absolute
risk estimates.
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FIG 2. Estimated abso-
lute risk of developing
ovarian, pancreatic, and
male breast cancer for
individuals with PALB2
pathogenic variants PVs
and in the general pop-
ulation by age (assuming
that population incidences
are applicable to individuals
born between 1950 and
1959). The dotted curves
and shaded area show the
95% CI.
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PaC, where the estimated RR was attenuated to 1.84 (95%
CI, 0.87 to 3.91) as a result of excluding 10 of the 99
individuals with PaC (Data Supplement). The risk of
a second primary BC in women previously diagnosed with
PALB2-associated BC could not be determined from the
available data, although it remains an important issue to
assess in future studies.

PALB2 interacts closely with BRCA1 and BRCA2 in the
homologous recombination (HR) DNA repair pathway
where the sequence of recruitment to DNA is BRCA1,
PALB2, and then BRCA2.46 This suggests that PALB2 and
BRCA2 might have similar cancer risks because BRCA2
needs PALB2 to be recruited in HR repair. Our results show
a similar BC birth cohort effect to that previously observed
in women with BRCA1/BRCA2 PVs,32 and the BC-specific
age incidences follow a similar pattern to that seen in
BRCA247 (Table 2), where incidences increase with age
and reach a constant level from age 50 years onward. The
observed associations with MBC and PaC and the mod-
erate risk of OC are also reminiscent of the pattern seen in
BRCA2, which presumably reflects tissue-specific differ-
ences in DNA repair mechanisms and highlights the

importance of conducting such studies for each
susceptibility gene.

The cumulative risk estimates for BC in women with PALB2
PVs overlap with BRCA1/BRCA2, for whom RRM is typi-
cally offered as an option, and here we provide critical data
that allow refinement of RRM guidelines for PALB2. Risk
estimates for OC are somewhat lower than for BRCA1/
BRCA2, and here the family history of OC would be an
important factor when considering RRBSO. Given the
similarity in the cancer spectrum and underlying biology,
we expect that cancer drugs effective in persons with
BRCA1 or BRCA2 PVs may also be effective for those with
PALB2 PVs,48,49 and clinical trials currently are addressing
this (eg, ClinicalTrials.gov identifier: NCT03344965).

To our knowledge, this is the largest study of PALB2-
associated cancer risks to date, and has allowed us to
refine BC risk estimates and, for the first time, to provide
estimates for OC, PaC, and MBC risk. This advance in
knowledge warrants the inclusion of PALB2 in cancer gene
panels and will facilitate better cancer risk management of
women and men with germline PVs in this gene.

TABLE 3. Cumulative Risk of Developing Breast Cancer and Ovarian Cancer for Women With PALB2 Pathogenic Variants by Family History
Cumulative Risk of Developing Cancer for Women With PALB2 Pathogenic Variants, % (95% CI)

Cancer Type
and Age
(years)

Without Considering
Family History

Mother Unaffected at Age 50 Years,
Maternal Grandmother Unaffected at

Age 70 Years
Mother Affected at

Age 35 Years
Mother and Sister

Affected at Age 50 Years

Mother and Maternal
Grandmother Affected at Age

50 Years

Breast

30 0.7 (0.5 to 1) 0.7 (0.5 to 1) 1 (1 to 2) 2 (1 to 2) 1 (1 to 2)

35 2 (2 to 3) 2 (1 to 3) 4 (3 to 6) 5 (4 to 6) 4 (3 to 5)

40 5 (4 to 7) 5 (4 to 7) 9 (7 to 12) 11 (9 to 13) 9 (7 to 12)

45 10 (8 to 13) 10 (7 to 12) 18 (14 to 22) 20 (17 to 24) 17 (14 to 21)

50 17 (13 to 21) 16 (13 to 20) 28 (23 to 34) 31 (27 to 36) 27 (23 to 32)

55 24 (20 to 30) 23 (19 to 28) 38 (32 to 45) 43 (38 to 48) 38 (32 to 43)

60 31 (26 to 38) 30 (25 to 36) 47 (40 to 55) 52 (47 to 58) 47 (41 to 53)

65 38 (32 to 46) 37 (30 to 44) 56 (48 to 63) 61 (55 to 67) 55 (49 to 62)

70 44 (37 to 52) 43 (35 to 51) 62 (54 to 71) 68 (61 to 74) 62 (55 to 69)

75 49 (41 to 59) 47 (39 to 57) 67 (58 to 76) 72 (66 to 79) 67 (59 to 74)

80 53 (44 to 63) 52 (42 to 62) 71 (62 to 80) 76 (69 to 83) 71 (63 to 79)

Ovarian

35 0.1 (0.1 to 0.1) 0.1 (0.1 to 0.1) 0.2 (0.1 to 0.3) 0.3 (0.2 to 0.5) 0.2 (0.1 to 0.3)

40 0.2 (0.1 to 0.4) 0.2 (0.1 to 0.4) 0.4 (0.2 to 0.7) 0.7 (0.4 to 1) 0.5 (0.3 to 0.8)

45 0.4 (0.2 to 0.7) 0.4 (0.2 to 0.7) 0.8 (0.4 to 1) 1 (0.7 to 2) 0.9 (0.5 to 2)

50 0.7 (0.3 to 1) 0.6 (0.3 to 1) 1 (0.7 to 3) 2 (1 to 4) 2 (0.8 to 3)

55 1 (0.5 to 2) 1 (0.5 to 2) 2 (1 to 4) 4 (2 to 7) 3 (1 to 5)

60 2 (0.8 to 3) 2 (0.8 to 3) 3 (2 to 6) 5 (3 to 10) 4 (2 to 7)

65 2 (1 to 5) 2 (1 to 4) 4 (2 to 9) 8 (4 to 14) 5 (3 to 10)

70 3 (1 to 6) 3 (1 to 6) 6 (3 to 12) 10 (5 to 19) 7 (4 to 14)

75 4 (2 to 8) 4 (2 to 8) 8 (4 to 15) 13 (7 to 24) 9 (5 to 17)

80 5 (2 to 10) 5 (2 to 10) 9 (5 to 18) 16 (8 to 28) 11 (6 to 21)
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