

Australian Government Cancer Australia

Risk factors for breast cancer: A review of the evidence

2018

Risk factors for breast cancer: A review of the evidence was prepared and produced by:

Cancer Australia Locked Bag 3 Strawberry Hills NSW 2012 Australia Tel: +61 2 9357 9400 Fax: +61 2 9357 9477 canceraustralia.gov.au

© Cancer Australia 2018.

ISBN Print: 978-1-74127-336-6 ISBN Online: 978-1-74127-337-3

Recommended citation

Cancer Australia, 2018. Risk factors for breast cancer: A review of the evidence, Cancer Australia, Surry Hills, NSW.

Risk factors for breast cancer: A review of the evidence can be downloaded from the Cancer Australia website: canceraustralia.gov.au

Copyright statements

Internet sites

This work is copyright. You may download, display, print and reproduce the whole or part of this work in unaltered form for your own personal use or, if you are part of an organisation, for internal use within your organisation, but only if you or your organisation do not use the reproduction for any commercial purpose and retain this copyright notice and all disclaimer notices as part of that reproduction. Apart from rights to use as permitted by the *Copyright Act 1968* or allowed by this copyright notice, all other rights are reserved and you are not allowed to reproduce the whole or any part of this work in any way (electronic or otherwise) without first being given the specific written permission from Cancer Australia to do so. Requests and inquiries concerning reproduction and rights are to be sent to the Publications and Copyright contact officer, Cancer Australia, Locked Bag 3, Strawberry Hills, NSW 2012.

Disclaimer

Cancer Australia does not accept any liability for any injury, loss or damage incurred by use of or reliance on the information. Cancer Australia develops material based on the best available evidence, however it cannot guarantee and assumes no legal liability or responsibility for the currency or completeness of the information.

Table of contents

1	Intro	duction		1
	1.1	Conte	ext	1
	1.2	What	is a risk factor?	1
	1.3	Appro	ach	2
2	Meth	ods		4
	2.1	Overv	iew	4
	2.2	Searc	h strategy	4
	2.3	Study	selection	6
	2.4	Data extraction and synthesis		
		2.4.1	Assessment of evidence base	8
		2.4.2	Selection of best estimate of risk	10
3	Brea	st cance	r aetiology	
	3.1	Introd	uction	
	3.2	Under 3.2.1	lying biological mechanisms in breast cancer development Genomic changes	
		3.2.2	Epigenetic changes	
		3.2.3	Hormonal influences	
		3.2.4	Metabolic changes	
		3.2.5	The immune system	13
		3.2.6	Stem and progenitor cells	
		3.2.7	The tumour microenvironment and interactions with stroma	13
	3.3	Windo	ows of susceptibility	14
4	Brea	st cance	r risk factors	15
	4.1	Gene	ral factors	15
		4.1.1	Age	
		4.1.2	Geographic location and residence	
		4.1.3	Remoteness and urbanisation	18
		4.1.4	Socioeconomic status	19
	4.2	Persor	nal characteristics	21
		4.2.1	Birthweight	21
		4.2.2	Height	22
		4.2.3	Having been breastfed	
		4.2.4	Mammographic breast density	
		4.2.5	Breast size	27
	4.3	Family	¹ history & genetics	28
		4.3.1	Family history of breast cancer	
		4.3.2	Family history of other cancers	30
		4.3.3	ATM gene mutation	33

	4.3.4	BRCA1 gene mutation	35
	4.3.5	BRCA2 gene mutation	37
	4.3.6	CDH1 gene mutation	39
	4.3.7	CHEK2 gene mutation	41
	4.3.8	PALB2 gene mutation	43
	4.3.9	PTEN gene mutation	45
	4.3.10	Single nucleotide polymorphisms	47
	4.3.11	STK11 gene mutation	50
	4.3.12	TP53 gene mutation	52
4.4	Breast	pathology	54
	4.4.1	Previous benign breast disease	54
	4.4.2	LCIS	55
	4.4.3	DCIS	59
	4.4.4	Previous primary invasive breast cancer	60
4.5	Endoge	enous hormones	63
	4.5.1	Age at menarche	63
	4.5.2	Parity	64
	4.5.3	Age at first birth	65
	4.5.4	Breastfeeding	67
	4.5.5	Age at menopause	68
	4.5.6	Circulating hormones—steroids	69
	4.5.7	PCOS	72
4.6	Exoger	nous hormones	74
	4.6.1	Hormonal contraception—combined	74
	4.6.2	Hormonal contraception—progestogen only	76
	4.6.3	Menopausal hormone therapy—combined	77
	4.6.4	Menopausal hormone therapy—oestrogen only	80
	4.6.5	Hormonal infertility treatment	82
	4.6.6	DES in utero	
	4.6.7	DES maternal exposure	86
4.7	Lifestyle	e factors	
	4.7.1	Adiposity	88
	4.7.2	Adiposity—weight gain	
	4.7.3	Adiposity—weight loss	92
	4.7.4	Alcohol consumption	
	4.7.5	Bras	
	4.7.6	Coffee, tea, caffeine	
	4.7.7	Diet—calcium	
	4.7.8	Diet—dairy	
	4.7.9	Diet—dietary fibre	
	4.7.10	Diet—fruit	
	4.7.11	Diet—vegetables	
	4.7.12	Diet—foods high in carotenoids	
	4.7.13	Diet—Mediterranean diet	
	4.7.14	Diet—phytoestrogens	

Appe	ndix A	Acknow	ledgements	
5	Summ	nary		
		4.10./	Rudiouctive treatment for thyroid cancer	1/8
		4.10.6 ∡ 1∩ 7	Radioactive treatment for thyroid cancer	1/6 ا 179
		4.10.5 1 10 4	Ionising radiation - radiatherapy	1/3 172
		4.10.4	Sun exposure	/ 172
		4.10.3	Occupation as a flight attendant (cosmic radiation)	I/O
		4.10.2	Electromagnetic field radiation—radiofrequency	
		4.10.1	Electromagnetic field radiation—low frequency	
	4.10	Radiat	ion exposure	
		4.9.12	Personal use hair dyes/relaxers	164
		4.9.11	Occupation as a hairdresser	
		4.9.10	Polychlorinated biphenyls	
		4.9.9	Phthalates	
		4.9.8	Parabens	
		4.9.7	Outdoor air pollution	158
		4.9.6	Land contamination	
		4.9.5	Ethylene oxide	155
		4.9.4	Dioxin	
		4.9.3	Deodorant/antiperspirant	
		4.9.2	DDT exposure	
		4.9.1	Bisphenol A (BPA)	
	4.9	Chemi	cal exposures	
		4.8.10	Type 2 diabetes	
		4.8.9	Trauma to the breast	
		4.8.8	Stress	
		4.8.7	Silicone breast implants	
		4.8.6	Previous cancer other than breast cancer	
		485	Pregnancy termination	139
		4.0.J	Hysterectomy	ا در ۱۵۵ ۱۹۶
		4.0.∠ ∕\ & ?		۱۵4 ۱۹۷
		4.8.1	Aspirin	133 124
	4.8	Medico	al factors	
		4./.24	shiri work disrupting circadian myinm	
		4.7.23	Physical activity	
		4.7.22	lobacco smoking	
		4.7.21	Environmental tobacco smoke	
		4.7.20	Diet—red meat	
		4.7.19	Diet—processed meat	
		4.7.18	Diet—fat	118
		4.7.17	Diet—sugar	117
		4.7.16	Diet—total energy	115
		4.7.15	Diet—glycaemic index	114

Appendix B	IARC and WCRF/AICR classifications	194
Appendix C	IARC and WCRF/AICR categories of evidence and criteria for grading carcinogenicity	196
Appendix D	Data tables	200
Glossaries		512
Abbreviatior	15	519
References		529

Figures

Figure 4.1	Age-specific incidence of breast cancer in Australia, by age group, 201716
Figure 4.2	Age-standardised breast cancer incidence rates in selected countries
Figure 4.3	Age-standardised breast cancer incidence rates in Australia by remoteness of area, 2008–2012
Figure 4.4	Age-standardised breast cancer incidence rates in Australia, by socioeconomic status, 2008–2012

Tables

Table 1.1	Criteria for classifying the strength of the evidence in terms of likelihood of association between an exposure (factor) and the risk of breast cancer	9
Table 5.1	Evidence classifications	180
Table 5.2	Summary of risk estimates for factors where the body of evidence has be classified as either 'Convincing' or 'Probable'	een 183
Table C.1	International Agency for Research on Cancer (2015): Categories of evidence of carcinogenicity	196
Table C.2	World Cancer Research Fund/American Institute for Cancer Research (2018): Criteria for grading evidence for cancer prevention	198
Table D.1	Birthweight and risk of breast cancer	200
Table D.2	Height and risk of breast cancer	203
Table D.3	Having been breastfed and risk of breast cancer	206
Table D.4	Mammographic breast density and risk of breast cancer	209
Table D.5	Breast size and risk of breast cancer	212
Table D.6	Family history of breast cancer and risk of breast cancer	213
Table D.7	Family history of other cancers and risk of breast cancer	217
Table D.8	ATM and risk of breast cancer	220
Table D.9	BRCA1 and risk of breast cancer	223
Table D.10	BRCA2 and risk of breast cancer	227
Table D.11	CDH1 and risk of breast cancer	230
Table D.12	CHEK2 and risk of breast cancer	233
Table D.13	PALB2 and risk of breast cancer	238
Table D.14	PTEN and risk of breast cancer	242
Table D.15	Single nucleotide polymorphisms and susceptibility loci studies and risk of breast cancer	244
Table D.16	STK11 and risk of breast cancer	249
Table D.17	TP53 and risk of breast cancer	251
Table D.18	Previous benign breast disease and risk of breast cancer	255
Table D.19	LCIS and risk of breast cancer	260
Table D.20	DCIS and risk of breast cancer	271
Table D.21	Previous primary invasive breast cancer and risk of secondary breast cancer	281
Table D.22	Age at menarche and risk of breast cancer	286
Table D.23	Parity and risk of breast cancer	288
Table D.24	Age at first birth and risk of breast cancer	291
Table D.25	Breastfeeding and risk of breast cancer	294
Table D.26	Age at menopause and risk of breast cancer	297

Table D.27	PCOS and risk of breast cancer	299
Table D.28	Hormonal contraception—combined and risk of breast cancer	301
Table D.29	Hormonal contraception—progestogen only and risk of breast cancer	305
Table D.30	Menopausal hormone therapy—combined and risk of breast cancer	309
Table D.31	Menopausal hormone therapy—oestrogen only and risk of breast cancer	315
Table D.32	Hormonal infertility treatment and risk of breast cancer	319
Table D.33	DES in utero and risk of breast cancer	324
Table D.34	DES maternal exposure and risk of breast cancer	326
Table D.35	Adiposity and risk of breast cancer	327
Table D.36	Adiposity—weight gain and risk of breast cancer	332
Table D.37	Adiposity—weight loss and risk of breast cancer	334
Table D.38	Alcohol consumption and risk of breast cancer	336
Table D.39	Bras and risk of breast cancer	340
Table D.40	Coffee, tea, caffeine and risk of breast cancer	342
Table D.41	Diet—calcium and risk of breast cancer	346
Table D.42	Diet–dairy and risk of breast cancer	348
Table D.43	Diet—dietary fibre and risk of breast cancer	351
Table D.44	Diet—fruit and risk of breast cancer	353
Table D.45	Diet—vegetables and risk of breast cancer	361
Table D.46	Diet—foods high in carotenoids and risk of breast cancer	370
Table D.47	Diet—Mediterranean diet and risk of breast cancer	376
Table D.48	Diet—phytoestrogens and risk of breast cancer	381
Table D.49	Diet—glycaemic index and risk of breast cancer	384
Table D.50	Diet—total energy and risk of breast cancer	389
Table D.51	Diet—sugar and risk of breast cancer	391
Table D.52	Diet—fat and risk of breast cancer	393
Table D.53	Diet—processed meat and risk of breast cancer	395
Table D.54	Diet—red meat and risk of breast cancer	398
Table D.55	Environmental tobacco smoke and risk of breast cancer	401
Table D.56	Tobacco smoking and risk of breast cancer	405
Table D.57	Physical activity and risk of breast cancer	409
Table D.58	Shift work disrupting circadian rhythm and risk of breast cancer	415
Table D.59	Aspirin and risk of breast cancer	420
Table D.60	Cardiac glycosides and risk of breast cancer	426
Table D.61	HPV and risk of breast cancer	428
Table D.62	Hysterectomy and risk of breast cancer	431
Table D.63	Pregnancy termination and risk of breast cancer	433

Table D.64	Previous cancer other than breast cancer and risk of breast cancer	435
Table D.65	Silicone breast implants and risk of breast cancer	446
Table D.66	Stress and risk of breast cancer	447
Table D.67	Trauma to the breast and risk of breast cancer	451
Table D.68	Type 2 diabetes and risk of breast cancer	453
Table D.69	Bisphenol A and risk of breast cancer	456
Table D.70	DDT exposure and risk of breast cancer	458
Table D.71	Deodorant/antiperspirant and risk of breast cancer	460
Table D.72	Dioxin and risk of breast cancer	462
Table D.73	Ethylene oxide and risk of breast cancer	466
Table D.74	Land contamination and risk of breast cancer	467
Table D.75	Outdoor air pollution and risk of breast cancer	472
Table D.76	Polychlorinated biphenyls risk of breast cancer	483
Table D.77	Occupation as a hairdresser and risk of breast cancer	485
Table D.78	Personal use hair dyes/relaxers and risk of breast cancer	487
Table D.79	Electromagnetic field radiation—low frequency and risk of breast cancer	490
Table D.80	Electromagnetic field radiation—radiofrequency and risk of breast cancer	494
Table D.81	Occupation as a flight attendant (cosmic radiation) and risk of breast cancer	495
Table D.82	Sun exposure and risk of breast cancer	499
Table D.83	Diagnostic ionising radiation and risk of breast cancer	503
Table D.84	Therapeutic exposure to ionising radiation and risk of breast cancer	505
Table D.85	Radioactive treatment for thyroid cancer and risk of breast cancer	510

1 Introduction

1.1 Context

In Australia, breast cancer is the most commonly diagnosed cancer, excluding common types of non-melanoma skin cancer. In 2018, an estimated 18,087 women and 148 men will be diagnosed with breast cancer in Australia.¹ The age-standardised incidence rate has increased from 81 women per 100,000 in 1982 to 123 women per 100,000 in 2013. The incidence rate in women increases with age up to 65–69 years, before decreasing.¹

Breast cancer is the second most common cause of cancer death in women in Australia. It is estimated that 3,128 women will die from breast cancer in 2018¹ compared with 28 men.¹ The age-standardised mortality rate in Australia decreased from 30 women per 100,000 in 1968 to 20 women per 100,000 in 2014.¹

Survival from breast cancer in Australia has increased over time. From 2010 to 2014, the fiveyear relative survival rate from breast cancer was 91% for women and 85% for men.¹ The risk of developing breast cancer increases with age. For Australian women, in 2017 the risk of developing breast cancer by age 85 years is approximately one in eight.¹

There is a large community interest in recognising the risks for breast cancer and ways in which risk can be decreased. An evidence-based review of risks for breast cancer is also needed to address potential myths and misconceptions that perpetuate in the community.

This report is intended primarily for researchers and health professionals seeking a more indepth understanding of the nature and extent of the evidence base supporting various factors as being associated or not associated with the risk of breast cancer among women. This information aims to improve understanding of the current state of the evidence relating to risk and protective factors for breast cancer in women.

1.2 What is a risk factor?

The World Health Organization (WHO) defines a risk factor as 'any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury'. Strictly speaking, risk factors for cancer are factors associated with an increased likelihood of developing cancer. Protective factors are the opposite: they are associated with decreased likelihood of developing cancer.² In this and many similar reports, the collective term 'risk factors' may incorporate protective factors when appropriate. Some risk factors may be regarded as causes of disease, while others may be correlates but not causal.²

Studies looking at large numbers of women have shown that there are some characteristics, or risk factors, that are more common among groups of women who have developed breast cancer, compared with groups of women who have not. These epidemiological studies have established a number of risk factors that are associated with an increased likelihood of a woman developing breast cancer.³⁻⁵ Greater understanding of breast cancer risk factors may help to identify women who may benefit most from tailored surveillance.⁴ Some risk factors for breast cancer cannot be modified or avoided, such as increasing age or

inheriting certain gene mutations, but other risk factors, such as alcohol consumption, can be modified.

There is a multiplicity of risk factors for breast cancer and they are often interrelated through complex pathways and mechanisms.⁵ In general, risk factors do not occur in isolation and the chain of events leading to disease includes both proximal and distal factors.⁶ Proximal risk factors act directly or almost directly to cause or precipitate the disease. Distal risk factors are further back in the causal chain and act more remotely or indirectly via intermediary causes.⁶ The factors that lead to developing disease are likely to have their roots in a complex chain of events and exposures, with potentially complex interactions, such as an amplifying effect of distal risk factors on proximal risk factors.⁶

Web-like conceptual frameworks and models have been developed to indicate the interrelations between breast cancer risk factors and the multiple potential mechanisms involved.⁴ The possible role of the timing of exposures across the lifespan has also been noted.⁷ These models indicate the biological complexity of the pathways along which breast cancer risk factors may be acting. They highlight the difficulty of distinguishing truly causal effects from non-causal associations and the challenges of designing, conducting, and interpreting studies directed at determining risk factors for the various forms of this disease.⁸

1.3 Approach

This report outlines the evidence for factors associated with female breast cancer. While acknowledging the complexities and potential interrelations between risk factors, this report only considers risk factors individually. The risk estimates presented are for differences in single risk factors, with all other factors assumed to be equal.

This report provides an overview of current epidemiological knowledge about the evidence for the association of a broad range of exposures or factors and risk of breast cancer. It focuses on providing the best available, up-to-date evidence indicating whether factors of interest are or are not associated with risk of breast cancer. The evidence in this report relates to breast cancer in women only.

Input and advice from a multidisciplinary Expert Reference Group comprising epidemiological experts, health professionals, risk communication experts, and consumers, in consultation with Cancer Australia, has guided the underlying evidence review, this report and its translation into web material.

This review followed a systematic process to identify the evidence available for each factor. In doing so, higher levels of evidence from the most recent meta-analyses and large cohort studies were sourced. Lower quality evidence (for example, from individual case-control studies) was sourced when higher quality evidence was not available. This evidence is classified (rated or graded) so that communication about the strength of the evidence for each factor can be consistent.

A 'best estimate' of the magnitude of risk is reported for those factors for which there is sufficiently strong evidence—classified as either 'convincing' or 'probable'—that they are associated with an increased or decreased risk of breast cancer. For other factors, the evidence is classified as either 'suggestive', 'inconclusive' or 'evidence of no association'. Those that have been rated as 'suggestive' may be associated with risk of breast cancer,

whereas factors for which the evidence base is 'inconclusive' have a limited basis from which to determine likelihood of an association. Where there is 'evidence of no association', such factors are unlikely to be associated with risk of breast cancer.

Readers should note that strength of evidence does not reflect the effect size of a factor or the direction of effect, and these elements should be considered as separate entities. For example, a factor can be of a convincing strength of evidence yet be associated with only a small increased risk of breast cancer.

2 Methods

2.1 Overview

This review aimed to determine whether there is sufficient evidence to support an association between various exposures, or factors of interest, and the risk of breast cancer; and to identify the magnitude of breast cancer risk—increased or decreased—for each factor where there is sufficiently strong evidence of an association.

Various international agencies including the World Cancer Research Fund /American Institute for Cancer Research (WCRF/AICR) and the International Agency for Research on Cancer (IARC), provide reports and monographs indicating the strength of the evidence for various factors of interest and risk of cancers (Appendix C). This review builds on the existing high level evidence reviews conducted by these authoritative bodies, where available.

This review did not explicitly consider the quality of individual studies or meta-analyses, although studies were selected according to the established hierarchy of evidence for aetiology studies, such that study type was a proxy for study quality. Further, other elements of the evidence, including consistency across studies, were considered in determining the strength of the evidence.

An explicit process of classification of the evidence was undertaken to inform the reader about the likelihood of each factor of interest being either associated or not associated with risk of breast cancer.

2.2 Search strategy

Reviews of aetiology include 'population', 'exposure of interest' (independent variable), and 'outcome' (dependent variable).⁹

Population

- Healthy females of all ages independent of their exposure to any risk factors, for prospective cohort studies
- Women diagnosed with primary breast cancer of any age, and unaffected study participants, for retrospective cohort and case–control studies
- Women at risk of developing primary breast cancer, for randomised controlled trials
- Women generalisable to the Australian female population

Exposures

• A large range of exposures—behavioural factors, occupational factors, environmental factors, infectious agents, genetic predispositions, medical conditions and treatments, and reproductive and hormonal factors—were considered for evidence review. The factors were identified and selected through an initial scoping of the literature and relevant, prominent national and international websites. A selection of factors known to

be of particular interest to the community and media (for example, those about which Cancer Australia regularly receives queries) were included. This list is not exhaustive since the media features many factors for which there is very little or no good quality evidence. The Expert Reference Group made the final selection of factors for inclusion.

• Approximately 100 individual exposures or factors of interest were identified for review.

Outcome

- Primary invasive breast cancer
- Primary invasive premenopausal breast cancer
- Primary invasive postmenopausal breast cancer
- Breast cancer histological or molecular sub-types

Search dates

If the WCRF/AICR had included the factor of interest in its most recently published systematic literature review¹⁰ and breast cancer report¹¹ as part of the WCRF/AICR Continuous Update Project (CUP) then, for this review, evidence was searched from the cut-off date (30 April 2015) of the CUP systematic literature review. If the WCRF/AICR hadn't reviewed the factor then, for this review, the IARC monographs were searched for any evidence and considerations relating to the human epidemiological evidence in breast cancer. Where evidence was identified, relevant information was extracted and evidence was only searched from IARC's most recent search date for that factor and breast cancer. For all other factors of interest, the search date of 1 January 2008 onwards was used. This approximated the cut-off date in the previous Cancer Australia review of the evidence on breast cancer risk factors published in 2009.¹²

Earlier search dates were only used if there was a very limited amount of evidence (or no evidence) published since 2007 for a factor of interest. Occasionally, despite this review's emphasis on using the most recent data, pre–2007 studies were included as background or to provide a fuller picture of the body of evidence. This pertains particularly to the more established risk factors mediated through hormonal pathways—for example, findings from the Collaborative Group on Hormonal Factors for Breast Cancer (CGHFBC; https://www.ceu.ox.ac.uk/research/hormonal-factors-in-breast-cancer)—which has conducted multiple pooled analyses from large numbers of epidemiologic studies.

For this review, the search for primary studies focused only on the time since the last search date of the most recently published systematic review. For example, if a systematic review had searched primary studies until 30 September 2012 then primary studies published since 30 September 2012 were sourced.

Search terms

The PubMed database was initially searched to identify optimal search terms. Those used by the most recent WCRF CUP systematic literature review (CUP Breast SLR)¹⁰ were used for the relevant factors.

Bibliographic searches were performed on the Cochrane Library, Medline, Embase, and PsycINFO for articles appearing between 1 January 2008 and 30 October 2017 using MeSH terms and free text words:

Breast Neoplasms [MeSH Terms] #2 Breast AND (cancer* OR neoplasm* OR tumour* OR tumor* OR carcinoma* OR adenocarcinoma*) #3 mammary AND (cancer* OR neoplasm* OR tumour* OR tumor* OR carcinoma* OR adenocarcinoma*)

and relevant exposure search terms.

Each factor of interest was searched again using the simple search string '[factor]' AND 'breast cancer' AND 'risk OR incidence', on both PubMed and the IARC website (http://monographs.iarc.fr).

Snowballing

In addition, a citation search of key studies was conducted to identify any more recent primary research studies or any other key studies that may have been missed in the PubMed search.

2.3 Study selection

Inclusion criteria

Studies were included in this review if they had:

- published quantitative risk estimates and 95% confidence intervals (or some other measure of variability) of the association between each factor of interest and breast cancer. Odds ratios, hazard ratios, standardised incidence ratios, and risk ratios were all interpreted as relative risk
- results from an epidemiologic study of one of the following types, in order of the generally accepted hierarchy of evidence for aetiologic studies:
 - o meta-analysis
 - o pooled analysis
 - randomised controlled trial (RCT)
 - o prospective cohort study
 - nested case-control study
 - o retrospective cohort study
 - population-based case-control study (preferably with more than 1,000 cases)
 - non-population-based case-control study (only if no higher level evidence identified)
- human subjects
- articles published in English
- a publication date from 2007 onwards (unless no recent studies were identified or an earlier study was considered a key study)
- relevance to the Australian population.

Exclusion criteria

Studies were excluded from this review if they:

- were cross-sectional studies
- reported only on breast cancer mortality
- reported only on breast cancer in men
- reported only on breast cancer clinical outcomes
- did not have full text available (with certain exceptions for conference abstracts where these were considered to substantially inform the body of evidence)
- were not conducted in humans
- were not on the topic of breast cancer
- were not published in the English language
- did not provide quantitative risk estimates or only provided unadjusted risk estimates.

In cases where this review retrieved many systematic reviews with meta-analyses addressing the same factor of interest, only the reviews that were most up-to-date, of the highest methodological quality, and included the largest number of primary studies (preferably RCTs or cohort studies) were selected. Additional meta-analyses were included if they presented further information about a specific epidemiological element, such as different subexposures or a dose-response analysis. If there was significant overlap in included studies, then these additional meta-analyses were excluded. Overlap in studies contained within the various meta-analyses was not systematically explored for all factors.

2.4 Data extraction and synthesis

After the search and study selection process, applicable full-text papers were retrieved for data extraction and analysis.

Risk estimates were retrieved from the original article, along with 95% confidence levels. Odds ratio (OR) is a good approximation of the relative risk when the outcome occurs relatively infrequently (<10%). OR, rate ratios, standardised incidence ratios (SIR), hazard ratios (HR) and risk ratios were all interpreted as relative risk (RR) given that all measures of relative risk are very similar when the risks are relatively small. Where explicit adjustments were made, the type of statistic used and the variables of adjustment were noted.

Often, factors such as age, menopausal status, breast cancer subtype (for example, receptor status, ductal versus lobular, in situ versus invasive, and so on), and racial/ethnic identity are reported as main factors of analysis, along with effects of particular exposures. This review reports significant main effects and interactions between exposures and these other variables are noted.

Within the data extraction table for each factor of interest, the studies are ordered according to the NHMRC hierarchy of study design and, within each design, in reverse chronological order.

2.4.1 Assessment of evidence base

In this report, the methods used for assessing the body of evidence for each factor align with those the WCRF/AICR uses. This system was selected because it uses explicit criteria that are straightforward to apply and it enables integration of the judgements by the WCRF/AICR.¹³ The clearly defined classification criteria (Appendix C, Table C.2) provide a systematic way to judge the strength of evidence relating to association with breast cancer risk.

The WCRF/AICR criteria require a range of factors to be considered, including quality of the studies, for example, whether the possibility of confounding, measurement errors and selection bias has been minimised. They also include the number of different study types and cohorts, whether there is any unexplained heterogeneity between results from different studies or populations, whether there is a dose-response relationship, and whether there is evidence of plausible biological mechanisms at typical levels of exposure. This review considered these elements of the evidence.

The WCRF/AICR labels the various categories of evidence as:

- Strong—Convincing
- Strong—Probable
- Limited—Suggestive
- Limited—No conclusion
- Strong—Substantial effect on risk unlikely.

This review, guided by the Expert Reference Group (ERG), considered the WCRF/AICR nomenclature for describing the evidence, and changed 'No conclusion' to 'Inconclusive'. In addition, the WCRF/AICR uses the collective terms 'strong' and 'limited' to make evidence-based recommendations about lifestyle behaviours. Only evidence judged to be 'strong' is usually used as the basis for health recommendations. The collective terms 'strong' and 'limited' were considered to be less applicable and useful for the purposes of this review, since the term 'strong' could be misinterpreted as relating to the strength (magnitude) of the risk and 'limited' evidence base, according to the WCRF/AICR, could be due to a limited quantity of evidence but it could also be due to inconsistency in direction of effect, because of methodological flaws, the level or quality of the evidence; or any combination of these reasons. Thus, the terms 'strong' and 'limited' are not applied in this review.

Further, the WCRF/AICR¹¹ seldom classifies any factors into the 'Substantial effect on risk unlikely' category, but the evidence for several factors within this review is considered to meet the criteria for this classification, and this classification can be used to usefully communicate the likelihood that a factor is not associated with risk of breast cancer. The ERG recommended clarification of the term to reflect the focus of this review on the human epidemiological evidence. As such, the category 'Substantial effect on risk unlikely' was defined as 'Evidence of no association' for this review.

The categories of evidence used within this review are:

- Convincing
- Probable
- Suggestive

- Inconclusive
- Evidence of no association.

Table 1.1 shows the system used in this review to classify the strength of the evidence for an association of a factor with an increase or decrease in the risk of breast cancer, noting that the criteria align with those of the WCRF/AICR.¹¹

Cancer Australia, in consultation with four epidemiological experts of the Expert Reference Group, used a consensus–gaining method to determine final evidence classifications.

Classification	Generally required criteria
Convincing	 There is compelling and consistent evidence that the factor is associated with riski of breast cancer. This classification includes factors that are causally associated with breast cancer as well as others that may be markers of underlying causes. Evidence from more than one study type and at least two independent cohort studies No substantial unexplained heterogeneity within or between study types or in different populations regarding presence or absence of association, or direction of effect Good quality studies to confidently exclude the possibility that the observed association results from random or systematic error, including confounding, measurement error, and selection bias Presence of a plausible biological gradient ('dose-response') in the association. (Gradient need not be linear or in same direction across different levels of exposure, so long as this can be explained plausibly.) Strong and plausible experimental evidence, either from human studies or relevant animal models, that typical human exposures can lead to relevant cancer outcomes
Probable	 The factor is likely to be associated with risk¹ of breast cancer but the evidence is not as strong as for Convincing. Evidence from at least two independent cohort studies/at least five case-control studies No substantial unexplained heterogeneity between or within study types in the presence or absence of an association, or direction of effect Good quality studies to confidently exclude the possibility that the observed association results from random or systematic error, including confounding, measurement error, and selection bias Evidence for biological plausibility
Suggestive	 The evidence is suggestive of an association between the factor and risk¹ of breast cancer but there is not sufficiently strong evidence to be more certain. Evidence from at least two independent cohort studies/at least five case-control studies Direction of effect is generally consistent, although some unexplained heterogeneity may be present Evidence for biological plausibility

Table 1.1Criteria for classifying the strength of the evidence in terms of likelihood of association
between an exposure (factor) and the risk of breast cancer

Inconclusive	 The evidence is too limited to determine the likelihood of an association with risk of breast cancer. This category represents an entry level, and is intended to allow any exposure for which there are sufficient concerns to warrant consideration, but where insufficient evidence exists to permit a grading. The evidence might be limited in terms of the number of studies available, by inconsistency of direction of effect, by poor quality of studies (for example, lack of adjustment for known confounders), or by any combination of these factors.
Evidence of no association	 There is consistent evidence from good quality studies to show that the factor neither increases nor decreases the risk of breast cancer. Evidence from more than one study type Evidence from at least two independent cohort studies Summary estimate close to 1.0 for comparison of high versus low exposure categories No substantial unexplained heterogeneity within or between study types or in different populations Good quality studies to exclude, with confidence, the possibility that the absence of an observed association results from random or systematic error, including inadequate power, imprecision or error in exposure measurement, inadequate range of exposure, confounding, and selection bias Absence of a demonstrable biological gradient ('dose-response') Absence of strong and plausible experimental evidence, either from human studies or relevant animal models, that typical human exposures lead to relevant cancer outcomes

2.4.2 Selection of best estimate of risk

A best estimate of risk was selected for all factors where the evidence for an association with breast cancer was classified as either 'convincing' or 'probable'. This estimate was selected as being representative of the data from the range of available studies, predominantly selected from a large pooled analysis or the most recent quality meta-analysis of a large number of (preferably) cohort studies. Consideration was given to the types of studies, the populations from which the estimates were derived, the precision of the estimates, and their relevance to exposure levels experienced among Australian women. Best estimates of risk were selected using a consensus-gaining method by Cancer Australia, in consultation with four epidemiological experts of the Expert Reference Group.

A comparative risk estimate, mostly relative risk, of appropriate exposures is provided in this report, together with the 95% confidence intervals. The source of the risk estimate is noted. The risk estimate may be presented for a continuous, binary or integer exposure, as relevant and as recorded in the published studies.

3 Breast cancer aetiology

3.1 Introduction

Breast cancer develops when cells grow and divide abnormally as a result of changes in the genes that control the way cells function, especially how they grow and divide.¹⁴ It is likely that development of breast cancer is a multistep process involving several biological mechanisms that initiate then promote cancer.^{8, 15} This process may occur spontaneously due to errors in normal processes (such as DNA replication), or through the effects of environmental exposures (such as environmental chemicals and radiation). It may also be potentiated and potentially sustained by physiologic conditions such as obesity.⁸

In cancer development, changes or aberrations in the genome may confer selective advantage on clones of cells, enabling them to outgrow and eventually dominate their local tissue environment.¹⁵ Multistep tumour progression may be a succession of clonal expansions, each of which is triggered by the chance acquisition of an enabling genomic change.¹⁵ In addition, the surrounding stroma, the immune system, and the hormonal and metabolic milieu play a role in dictating whether particular clones thrive or not. Functional capabilities acquired by cancer cells, which have been described as 'hallmarks of cancer', allow them to survive, proliferate and disseminate, enabling tumours to grow and metastasise.¹⁵

The aetiology of breast cancer and the biological mechanisms involved in the development of cancer are areas of ongoing and emerging research. Underlying biological mechanisms identified to date that are likely involved in the development of breast cancer include those that are further described below.

3.2 Underlying biological mechanisms in breast cancer development

3.2.1 Genomic changes

Changes or aberrations in the genome, such as DNA mutations, can contribute to the development of cancer. There are different genetic changes or 'drivers' of cancer, such as changes in oncogenes (cancer–causing genes), tumour suppressor genes (genes that usually protect cells from abnormal proliferation), or DNA repair genes. These changes can be inherited or can arise during a person's lifetime due to errors as cells divide or damage to DNA caused by certain environmental exposures.

Accumulated genomic mutations and expansion of rapidly proliferating abnormal cells can result in the progression of an increase in the number of normal looking cells (hyperplasia), to cells that look abnormal under the microscope but are not cancer (dysplasia), to an increase in cancer cells that have not spread (carcinoma in situ), and eventually to invasive cancer.⁴

Uncontrolled growth of cells can occur through cellular mechanisms such as overproduction of growth stimulating factors, reduced inhibitors of cell proliferation, loss of balance between

cell proliferation and programmed cell death (apoptosis), or defective DNA repair mechanisms.⁵ The longer a person lives, the more mutations occur in cells and the more likely it is that cells may progress to carcinoma.

3.2.2 Epigenetic changes

Epigenetic changes involve changes in gene expression—what genes, and by how much genes are turned on in a cell to make RNA and proteins—that are due to mechanisms other than changes in the underlying DNA sequence. Epigenetic changes can be transmitted across cell generations or inherited.

Epigenetic alterations involve changes in DNA methylation (addition of methyl groups to DNA along the chromosome), modifications in histones (the proteins that bind to DNA that help give chromosomes their shape and regulate the activity of genes), and expression of small regulatory non-coding RNAs (microRNAs).^{5, 7, 8} These epigenetic mechanisms may be associated with breast cancer by directly affecting the expression of genes and interaction to regulate gene expression.^{5, 7}

Environmental chemicals may alter the regulation of genes involved in cell proliferation and cell death signalling pathways in the breast through epigenetic processes, including DNA methylation, histone modification, and expression of small regulatory microRNAs.⁷

3.2.3 Hormonal influences

Many of the established hormonal and reproductive factors associated with breast cancer risk suggest that lifetime exposures to endogenous oestrogen and progesterone play a role in the development of breast cancer.^{4, 5} In normal cells, their growth–promoting effects are highly regulated, but in cancer cells they can be subverted to promote uncontrolled cell growth.⁵

Oestrogen, which is critical for normal breast development, appears to play a major role in breast carcinogenesis. Longer exposure to endogenous oestrogen and exposure to exogenous oestrogen can be associated with increased risk of breast cancer. The mitogenic actions of oestrogen cause increased cell proliferation which may increase susceptibility to breast cancer in several ways: by selectively promoting the growth of altered preneoplastic and neoplastic cells; by increasing the potential for DNA changes through shortening the cell cycle and decreasing the time available for DNA repair; and by increasing the target population of cells for transformation into cancer cells.⁸

There is limited understanding of the way endogenous progesterone acts in the normal human breast and in the development of breast cancer. Much of the evidence is from studies in mice and in vitro human cell line studies.¹⁶ Progesterone appears to stimulate cyclic proliferation of the mature breast epithelium through local effects on nearby cells and also activates stem cells in the breast.¹⁷ The repeated activation of progesterone signalling during the luteal phase of the menstrual cycle may be tumour promoting.¹⁶ However, the effects of progesterone may be context–specific and depend on other factors, such as dose and duration, oestrogen levels and age, since not all progesterone signalling is tumour promoting; progesterone can also be anti-proliferative.^{16, 18}

3.2.4 Metabolic changes

Development of cancer is linked to changes in the metabolism of cells. Changes in energy metabolism are needed in order to fuel cell growth and division. In cancer cells, energy metabolism may be reprogrammed to meet high energy and anabolic requirements. These metabolic changes may confer a selective advantage to the cells.¹⁵ Effects on metabolism of some major oncogenes or tumour suppressor genes have been identified. This has suggested that metabolic dysregulation may be a key mechanism in development of cancer.¹⁹

3.2.5 The immune system

Inflammation can promote tumour proliferation and metastasis.⁵ Cancer often originates in tissue that is chronically inflamed due to infections or other causes. Tumour–induced inflammation can also contribute to progression.²⁰

Inflammation can contribute to cellular processes involved in cancer development by supplying factors that sustain proliferation and invasiveness.¹⁵ Inflammatory cells may also release chemicals, such as reactive oxygen species, that are mutagenic for nearby cells and may accelerate their transformation into cancer cells.¹⁵

Immunosurveillance can have a tumour–antagonising effect by detecting and eliminating cancer cells by mechanisms of adaptive and innate immunity.^{8, 15} Cells and tissues are monitored by the immune system and this immune surveillance can recognise and eliminate incipient cancer cells and thus very early tumours.¹⁵ However, cancer cells may escape detection and elimination by the body's immune cells. The effectiveness of the immune system in detecting and eliminating cancer cells may be modulated by factors such as environmental exposures.⁸

3.2.6 Stem and progenitor cells

Stem cells have the capacity to self-renew and to differentiate into the different lineages required for a particular tissue.²¹ In the breast, stem cells generate new differentiated epithelial cells that enable the breast to develop during puberty and pregnancy, as well as regenerate after changes during the menstrual cycle and involution after lactation. The breast maintains stem and progenitor cell populations to sustain multiple pregnancies.⁵

As stem and progenitor cells are long lived and resistant to cell death, they may accumulate larger numbers of mutations and be more likely to develop into cancerous cells or tumours over time. Therefore, it has been suggested that breast cancers may be fuelled by the stem cell subpopulation, with properties of self-renewal, tumourigenicity and the capacity to differentiate into many cell types.^{5, 15}

3.2.7 The tumour microenvironment and interactions with stroma

The microenvironment, or close surroundings, of a tumour comprises several distinct cell types, including immune cells, together with supporting stroma.¹⁵ There are interactions and bidirectional signalling between cancer and stromal cells. The microenvironment and

changes in the microenvironment can affect how cancer cells grow and spread and cancer cells, in turn, can affect their microenvironment.

Interactions with breast stroma may be involved in the development of breast cancer.⁸ The stroma maintains the structural and functional integrity of breast tissue and accounts for the majority of the breast volume, although most breast cancers originate from the epithelium. Interactions between the cells in the epithelium and between epithelial and stromal cells, such as immune cells, fibroblasts and adipocytes, are critical for normal breast development.²² Changes in the stromal and hormonal environments of the breast are part of the age- and event-related changes in the breast throughout a woman's lifetime.⁸ Changes in interactions between neighbouring cells and their microenvironment may promote a malignant phenotype, and may be especially relevant to breast cancer.^{7,8}

3.3 Windows of susceptibility

The breast undergoes substantial changes throughout life, from gestation to puberty, pregnancy, lactation and menopause.⁸ There is rapid growth in ducts and lobules during puberty, pregnancy and lactation, and a decrease in the number of ducts and lobules followed by involution after lactation and after menopause. Oestrogen and progesterone play a major role in the different stages of mammary gland development. Other hormones and growth factors are also involved.⁵

During periods of rapid cell proliferation or maturation—such as in the early stages of development in the prenatal, early childhood and adolescent periods—specific mechanisms that increase the likelihood of breast cancer developing may be more likely to come into play and breast cells may be more susceptible to the carcinogenic effects of hormones, chemicals and radiation during these critical windows.^{7,8}

The time from menarche to first pregnancy may be a particularly vulnerable window of susceptibility for breast tissue.²³ A window of susceptibility to oestrogen at a young age which increases later breast cancer risk has been suggested due to the association of young age at menarche with increased risk of breast cancer, and to the age-dependency of the reduction in breast cancer risk associated with full term pregnancy.²⁴ The susceptibility of young breast tissue may be due to rapid cell proliferation at puberty and the risk of accumulating deleterious mutations, with risk accumulating most rapidly until the terminal differentiation that accompanies first pregnancy.^{23, 24}

Windows of susceptibility to risk factors may present windows of opportunity for breast cancer prevention by nutritional or lifestyle interventions for modifiable risk factors.²⁵ The important role of early life exposures on breast cancer risk suggests that breast cancer prevention through modifiable risk factors is best initiated then sustained from an early age.²³

4 Breast cancer risk factors

4.1 General factors

4.1.1 Age

Evidence summary

Evidence classification: Convincing.

Other than gender (that is, being female) age is the most significant factor for developing breast cancer. The risk of breast cancer increases with age up to 75 years, although the rate of increase decreases in mid–life, around menopause, reflecting the hormonal influence on breast cancer.

Using incidence rates in Australia, women aged 50 years are at 10 times increased risk of breast cancer compared with women aged 30 years.²⁷

If all women less than 65 years of age are compared with women aged 65 years or older, the relative risk of breast cancer associated with age has been estimated as 5.8, in the United States.²⁶

Incidence

In Australia, the breast cancer age-specific incidence rate increases steeply from age 30–34 (25.6 per 100,000 in 2014) to age 50–54 (255.9 per 100,000 in 2014), then increases more slowly to a peak around 70–74 years (412.4 per 100,000 in 2014), before decreasing (317.6 per 100,000 for 85+ years in 2014) (Figure 4.1; data taken from AIHW).²⁷ This equates to a risk of diagnosis before age 75 as 1 in 10 and before age 85 as 1 in 8. These results represent an increased incidence of breast cancer in Australia since 1984: from 1 in 16 before age 75 and 1 in 11 before age 85. This increased incidence is partly due to the ageing population.

Over 75% of all breast cancers in Australia are diagnosed in women when they are aged 50 years or over.²⁷ The average age of the first diagnosis of breast cancer in women is 61.²⁷

Based on data from the United States, a 30-year-old woman has a 1 in 250 chance of being diagnosed with breast cancer in the next 10 years, whereas a 70-year-old woman has a 1 in 27 chance.⁴ If all women less than 65 years of age are compared with women aged 65 years or older, the relative risk of breast cancer associated with age is 5.8.^{26, 28}

Figure 4.1 Age-specific incidence of breast cancer in Australia, by age group, 2017

Source: Australian Institute of Health and Welfare. Australian Cancer Incidence and Mortality (ACIM) books 2017 [Available from: https://www.aihw.gov.au/reports/cancer/acim-books/contents/acim-books.] Last updated 11 Dec 2017.²⁷

4.1.2 Geographic location and residence

International geographic differences

Internationally, breast cancer incidence rates vary (Figure 4.2).²⁹ Rates need to be interpreted with care, as they are influenced by competing risks for death and depend on the presence and quality of local registries.³⁰

The highest breast cancer incidence rates³⁰ reported are from countries in northern and western Europe such as the Netherlands: 105.9 per 100,000 and France: 99.1 per 100,000), Australia (94.5 per 100,000), UK (93.6 per 100,000), New Zealand (92.6 per 100,000), USA (84.9 per 100,000) and Canada (83.8 per 100,000).^{29, 31} The lowest rates reported are from other countries including eastern Asia (such as Japan: 57.6 per 100,000) and South America (such as Chile: 40.9 per 100,000).²⁹ Breast cancer incidence rates are also increasing in developing countries.³¹

There are also differences between countries in the median age at diagnosis of breast cancer.³¹ The peak age at breast cancer diagnosis reported in Asian countries is 40–50 years, in western countries is 60–70 years and in African countries (where data are available) is approximately 45 years.³¹

Figure 4.2 Age-standardised breast cancer incidence rates in selected countries

Source: Cancer Australia. National cancer control indicators. Cancer incidence 2018. [Available at: https://ncci.canceraustralia.gov.au/diagnosis/cancer-incidence/cancer-incidence].²⁹ Data sourced from International Agency for Research on Cancer GLOBOCAN 2018 database.

Higher incidence of breast cancer in some countries has been attributed to changing reproductive patterns, such as earlier age at menarche, later age at first childbirth, lower parity and shorter duration of breastfeeding, as well as lifestyle factors, such as overweight and obesity for postmenopausal breast cancer.³¹ Younger age at diagnosis of breast cancer may be related to factors such as differences in patterns of risk factors and relative incidence of breast cancer subtypes and differences in population structure between low-, middle- and high-income countries.³¹

Within country differences

Differences in breast cancer incidence associated with a woman's country of birth have been reported in a New South Wales (NSW) study.³² The highest rates of breast cancer in NSW were in women born in the Western world, typically English speaking areas.³² The breast cancer incidence rates averaged for 2004–2008 were: women born in Australia (81.9 per 100,000), New Zealand (91.4 per 100,000) and western Europe (84.4 per 100,000), compared with women born in southeast Asia (62.7 per 100,000), East Asia (57.2 per 100,000), and high– income Asia Pacific countries (49.8 per 100,000).³²

Breast cancer incidence differs between Indigenous and non–Indigenous women in Australia.³³ The age–standardised breast cancer incidence rate is lower for Aboriginal and Torres Strait Islander women at 94.2 per 100,000 (2010–2014) compared with 109.7 per 100,000 in 2010–2014 for non–Indigenous women.²⁹ Internationally, there are lower breast cancer incidence rates for Indigenous compared with non–Indigenous populations, except for Indigenous women in Alaska and New Zealand who have higher rates than their non– Indigenous counterparts.^{33, 34} There is evidence to suggest that lifestyle factors have contributed to an increase in breast cancer incidence among some population subgroups worldwide. For example, a study of the prevalence of modifiable cancer-related risk factors in the United States indicated that a larger proportion of breast cancer risk was attributable to the lifestyle-related risk factors examined in the study among African-American women (16%) compared with white women (8%).³⁵ Similarly, changes in lifestyle, including adoption of a western diet, less physical activity and more overweight and obesity associated with acculturation among Asian women is suggested to have contributed to the increased incidence of breast cancer observed in this population group, in the United States.⁸

Potential pathways for differences in Indigenous compared with non–Indigenous rates of breast cancer include differences in reproductive patterns, different age structure and lower screening participation.^{33, 36} Indigenous women are more likely to have their first child at a younger age and have more children than non–Indigenous women. Overall breastfeeding duration may be longer due to multiparity.³⁶ Further, the Indigenous population has a younger age structure and most breast cancer is diagnosed in women above the age of 50 years.³⁶ Indigenous women in Australia have lower participation in breast screening; 37.3% of Indigenous women aged 50–74 years participated in BreastScreen Australia compared with 53.2% of non–Indigenous women (age–standardised) in 2014–15.³⁷

4.1.3 Remoteness and urbanisation

A systematic review and meta–analysis of studies, including studies conducted in the United States, Canada, the United Kingdom, Australia, Italy and Switzerland, indicated that residing in urban versus rural areas was associated with a 9% higher breast cancer incidence (pooled relative rate for urban versus rural 1.09, 95% Cl 1.01–1.19).³⁸

Additional Australian data show that breast cancer incidence is higher for women living in major cities (age-standardised rate 118.8 per 100,000 in 2008–2012) than for women living in very remote areas (age-standardised rate 98.9 per 100,000 in 2008–2012) (Figure 4.3).²⁹

Potential pathways or mechanisms linking remoteness or urbanisation with breast cancer risk include availability of and access to screening and clinical services for early detection of disease, differences in reproductive factors (such as early menarche, lower parity and later age at first birth), and, possibly, differences in lifestyle factors.³⁸⁻⁴¹

Source: Cancer Australia. National cancer control indicators. Cancer incidence. 2018 [Available from: https://ncci.canceraustralia.gov.au/diagnosis/cancer-incidence/cancer-incidence.]²⁹

4.1.4 Socioeconomic status

Evidence from national databases in Australia and from systematic reviews in Australia and in other westernised countries have shown that women who reside in areas of higher socioeconomic status (SES) have an increased risk of breast cancer compared with those that reside in more disadvantaged areas.^{38, 39} This relationship appears to be independent of ethnicity.

In Australia, age-standardised breast cancer incidence was 108.3 per 100,000 for women in the most disadvantaged quintile (SES 1), compared with 129.9 per 100,000 in the least disadvantaged quintile (SES 5), in 2008–2012 (Figure 4.4).²⁹

A systematic review and meta-analysis of studies conducted in the United States, Canada, the United Kingdom, Australia, Italy and Switzerland indicated that residing in higher socioeconomic areas, characterised by higher income, was associated with higher breast cancer incidence.³⁸ Higher income was associated with a 17% increase in breast cancer incidence, and higher composite SES was associated with a 25% increase in breast cancer incidence.³⁸

In the United States, 1988–1992 SEER data showed that breast cancer incidence in the most advantaged quintile was 47% higher than the most disadvantaged quintile, independent of ethnicity.⁴⁰ There has also been a noted increase in breast cancer incidence among women residing in high SES areas compared with lower SES areas across all racial/ethnic groups.⁴¹

Note: SES 1=most disadvantaged, SES 5=least disadvantaged.

Source: Cancer Australia. National cancer control indicators. Cancer incidence. 2018 [Available from: https://ncci.canceraustralia.gov.au/diagnosis/cancer-incidence/cancer-incidence.]²⁹

Similar pathways may be involved in the association between breast cancer risk and socioeconomic status as for remoteness and urbanisation. These pathways include the physical attributes of an area that may promote or hinder breast cancer risk factors, such as physical activity, and availability of resources relevant for screening and diagnosis, such as access to mammography and clinics.³⁸ In Australia, there are also inter–relationships between SES, remoteness and Indigenous status.³⁹

4.2 Personal characteristics

4.2.1 Birthweight

Evidence summary

Evidence classification—premenopausal breast cancer: Probable.

Birthweight is probably associated with an increased risk of premenopausal breast cancer. This was the judgement by the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR).¹¹ Findings from more recent large prospective studies generally support an association. The increased risk of premenopausal breast cancer has been estimated as 1.05 (95% CI 1.02–1.09) per 500 gram increase in birthweight.^{10, 11}

Evidence classification—postmenopausal breast cancer: Inconclusive.

The evidence for an association between birthweight and risk of breast cancer is inconclusive. The WCRF/AICR¹¹ judged the evidence as 'Limited-no conclusion' for any association between birthweight and risk of postmenopausal breast cancer, due to inconsistent findings across cohort studies. Recent evidence from two large cohort studies did not find an association between birthweight and risk of postmenopausal breast cancer.

Background

Birthweight is determined by genetic and environmental influences. Potential biological pathways linking birthweight with breast cancer have been proposed, including the influence of oestrogens and other endocrine factors, such as insulin–like growth factor 1 (IGF1) *in utero* on foetal growth and very early mammary gland development, thought to play a role in the initiation and promotion of breast cancer.^{11, 42} WCRF/AICR¹¹ indicated birthweight is a marker for prenatal growth, reflecting a combination of factors including foetal nutrition. Birthweight is also a predictor of later growth and maturation—for example, age at menarche—which are themselves determinants of breast cancer risk.

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Continuous Update Project ¹¹ considered there was 'Strong-probable' evidence that 'factors that lead to greater birthweight, or its consequences' increase the risk of premenopausal breast cancer. The judgment was based on evidence from 25 studies, one of which was a large pooled analysis of individual level data from 13 studies (including eight cohort studies).⁴³ Sixteen studies contributed to a dose-response analysis for premenopausal breast and the summary estimate per 500 gram increase in birthweight was 1.05 (95% CI 1.02–1.09), with no evidence of significant heterogeneity.¹⁰ Some of the studies contributing to the doseresponse meta-analysis had not adjusted for age, alcohol intake, reproductive factors and/or adult body mass index.

The WCRF/AICR considered that the evidence for an association between birthweight and postmenopausal breast cancer was limited, and no conclusion was made—that is, the judgment was 'Limited-no conclusion'. Fourteen studies contributed to a dose-response

analysis for postmenopausal breast cancer and the summary estimate per 500 gram increase in birthweight was 1.00 (95% CI 0.98–1.02) with no evidence of significant heterogeneity.¹⁰

Recent evidence

Findings from the French Teachers Cohort of 67,634 women (497 premenopausal and 3,138 postmenopausal breast cancer cases) were consistent with the findings of the WCRF/AICR.¹¹ A significant positive association was observed between higher birthweight and premenopausal breast cancer but not postmenopausal breast cancer (RR for \geq 4 kg compared with <2.5 kg 1.99, 95% Cl 1.05–3.76; and 1.03, 95% Cl 0.82–1.29, respectively).⁴⁴

Xue et al.⁴⁵ reported on findings from 1,133,893 person-years of follow-up of participants in the Nurses' Health Study II. They reported a lower incidence of premenopausal breast cancer associated with lower birthweight (HR 0.74, 95% CI 0.58–0.94 for <2.5 kg versus ≥3.9 kg). This trend did not change appreciably after additional adjustment for body fatness later in life.

Conversely, a cohort study from Norway⁴⁶ did not find any association between birthweight and either premenopausal or postmenopausal breast cancer.

Table D.1 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.2.2 Height

Evidence summary

Evidence classification: Convincing.

There is convincing evidence that adult-attained height is associated with an increased risk of breast cancer.

The increased risk of breast cancer has been estimated as 1.17 (95% CI 1.15–1.19) per 10 cm increase in height,⁴⁷ and 1.06 (95% CI 1.02–1.11) for premenopausal breast cancer and 1.09 (95% CI 1.07–1.11) for postmenopausal breast cancer, per 5 cm increase in height.^{10, 11}

Background

Adult attained height is unlikely to directly influence breast cancer risk.⁴⁸ However, it is a marker of shared mechanisms that determine both height and cancer risk, such as growth processes that are determined by both genetic and environmental, including nutritional, components.⁴⁹

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Continuous Update Project¹¹ considered the 'developmental factors leading to greater linear growth (marked by adult attained height' to be a convincing cause of premenopausal and postmenopausal breast cancer—that is, the judgement was 'Strongconvincing'. The evaluation was based on evidence from 29 studies reporting on premenopausal and 41 studies reporting on postmenopausal breast cancer. Dose-response analyses provided summary estimates per 5 cm increase in attained adult height of 1.06 (95% Cl 1.02–1.11; 26 studies, significant heterogeneity) for premenopausal breast cancer and 1.09 (95% Cl 1.07–1.11; 33 studies, significant heterogeneity) for postmenopausal breast cancer.¹⁰ The increased risk was similar across geographic regions and when restricted to studies that adjusted simultaneously for age, alcohol and reproductive factors.

Recent evidence

A systematic review and meta-analysis of a large number of prospective studies reported a summary estimate per 10 cm increase in adult attained height of 1.17 (95% CI 1.15–1.19) with evidence of significant heterogeneity.⁴⁷ The summary estimate was similar for premenopausal and postmenopausal breast cancer. It was similarly increased for oestrogen receptor positive (ER+) (RR 1.18, 95% CI 1.13–1.23), progesterone receptor positive (PR+) (RR 1.16, 95% CI 1.10–1.22), and progesterone receptor negative (PR–) (RR 1.11, 95% CI 1.02–1.20) but not oestrogen receptor negative (ER–) disease.

The California Teachers Study involving 109,862 women (3,844 breast cancer cases) in the United States⁵⁰ reported a significant association between taller height and risk of premenopausal and postmenopausal ER+ breast cancer. Among non-menopausal hormone therapy (MHT) users, the increased risk of postmenopausal breast cancer among women who had attained a height of 65–66 inches compared with those that attained a height of less than 65 inches was HR 1.20 (95% Cl 1.06–1.35).

Conversely, a cohort study of 38,610 Japanese women did not find an association with risk of breast cancer for the highest versus lowest quartile of height, and the positive trend with increasing height was not statistically significant.⁵¹

Table D.2 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.2.3 Having been breastfed

Evidence summary

Evidence classification: Inconclusive.

The evidence of any association between having been breastfed as an infant and risk of breast cancer is inconclusive. Evidence from the highest-quality studies indicates no association between having been breastfed as an infant and risk of breast cancer.

Background

Being breastfed in infancy, which has established benefits for infant nutrition and health, is an early–life exposure that has been hypothesised to be associated with the risk of breast cancer as an adult. Potential mechanisms have been suggested for an increased and a decreased risk of breast cancer associated with having been breastfed as an infant. Having

been breastfed may increase breast cancer risk through the possible presence in breast milk of environmental toxicants such as organochlorines, the transmission of a tumour virus, or the consumption of growth factors in breast milk.⁵² Potential mechanisms hypothesised for association of having been breastfed with decreased breast cancer risk include antiapoptotic milk proteins, progesterone and gonadotropin-releasing hormones, or reduced cytochrome P4501A activity.⁵²

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Continuous Update Project¹¹ judged the evidence for any association between having been breastfed ('being breastfed') and breast cancer risk as 'Limited-no conclusion'. The evidence had been previously considered too limited to draw conclusions in the 2007 WCRF/AICR Second Expert Report, and the evidence was not updated as part of the Continuous Update Projectfor the Third Expert Report, 2018.¹¹

Recent evidence

A meta-analysis by Wise & Titus⁵² included three cohort studies, 10 case-control studies, one cross-sectional study and one case series study. The meta-analysis indicated that having been breastfed compared with never having been breastfed had a weak association with decreased risk of breast cancer (RR 0.94, 95% CI 0.89-0.99). There was a decreased risk of premenopausal breast cancer (RR 0.88, 95% CI 0.78-0.98) and no association with postmenopausal breast cancer risk (RR 0.98, 95% CI 0.91-1.05).⁵² The two largest cohort studies in the meta-analysis by Wise & Titus showed no association between having been breastfed and breast cancer risk,⁵³ among neither premenopausal or postmenopausal women.⁵⁴ The largest case-control study in the meta-analysis that included over 4,500 cases also indicated no association between ever being breastfed and breast cancer risk in either premenopausal or postmenopausal women.⁵⁵

Table D.3 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.2.4 Mammographic breast density

Evidence summary

Evidence classification: Convincing.

There is convincing evidence that higher mammographic breast density is associated with an increased risk of breast cancer. The evidence is consistent across meta-analyses. Breast density is indicated to be an independent risk factor and a biomarker of breast cancer.

The increased risk, expressed as odds ratio per standard deviation (SD) of normally transformed density, has been estimated in a large meta–analysis predominantly of nested case–control studies to be 1.53 (95% Cl 1.44–1.64) for percent dense area.⁵⁶ Thus, women with moderately dense breasts on mammography (85th percentile) are 1.53 times more likely to develop breast cancer than women with average breast density. The opposite also

applies—women with moderately non-dense breasts on mammography (15th percentile) are 0.65 times less likely to develop breast cancer than women with average breast density.

Background

Mammographic breast density refers to the appearance of the breast on mammographic screening. It reflects the proportional amounts of fat (dark in appearance) and stromal and epithelial tissues ('glandular tissue'; white in appearance) in the breast.⁵⁷

There is no gold standard for mammographic density measurement,⁵⁸ and current methods rely on semi–quantitative reviews by trained experts. The most commonly used tool is the Breast Imaging Reporting and Data System (BI–RADS), which classifies mammographic breast density into four categories:⁵⁹

- 1. Almost entirely fat—less than 25% glandular tissue
- 2. Scattered fibroglandular densities—approximately 25–50% glandular tissue
- 3. Heterogeneously dense—approximately 51–75% glandular tissue
- 4. Extremely dense—greater than 75% glandular tissue.

The distribution of BI–RADS density categories for US women of all ages is reported to be approximately 10%, 40%, 40% and 10%, respectively.^{60, 61} However, as women get older the proportion of women with dense breasts, in BI-RADS categories 3 and 4, decreases.⁶² Further, Moshina et al.⁶¹ reported the distribution among Norwegian women attending breast cancer screening and aged 50–69 years as 38%, 35%, 24% and 5% respectively, and this distribution was indicated to correspond well with other European data. Similarly, Wanders et al.⁶³ has indicated the distribution of mammographic density to be 21.6%:41.5:28.9% and 8%, respectively, among women aged 50–75 years. There are currently no data on the distribution of breast density of women in Australia. ⁶⁴

Breast density has a strong genetic component (heritability accounts for approximately 60% of the variation in breast density), but is also influenced by lifestyle factors.^{65, 66} Mammographic density declines with increasing age, and is associated with several other independent risk factors for breast cancer. Mammographic density is lower in parous compared with nulliparous women.⁶⁷ and decreases with increasing body mass index (BMI).^{68, 69} The findings from the meta-analysis by Pettersson et al.⁵⁶ showed clearly the importance of BMI as a confounder between breast density and breast cancer risk, especially among postmenopausal women. Use of combined menopausal hormonal therapy (MHT) is associated with increased mammographic density.⁷⁰ In assessing the evidence for an association, therefore, it is important to consider the potentially confounding influence of age, parity, BMI and MHT use.

The pathways linking breast density with breast cancer risk are not fully understood. Higher mammographic density reflects a higher proportion of glandular tissue in the breast (percent dense area (PDA)), and thus a larger number of stromal and epithelial cells at risk of carcinogenesis.⁶⁶ Absolute dense area (ADA) and, conversely, absolute non-dense area, have also been linked to risk of breast cancer.

Recent evidence

A collaborative analysis on the association between mammographic density and breast cancer risk included data from 13 case–control studies—12 of which were nested in large cohort studies—conducted between 1980 and 2011.⁵⁶ The pooled odds ratio (OR) for one standard deviation (SD) increase in normally transformed mammographic density was: 1.52 (95% CI 1.39–1.66) for PDA and 1.37 (95% CI 1.29–1.47) for ADA for premenopausal breast cancer; and 1.53 (95% CI 1.44–1.64) for PDA and 1.38 (95% CI 1.31–1.34) for ADA for postmenopausal breast cancer. Estimates were adjusted for age, BMI and parity, and in the analysis for postmenopausal breast cancer, the summary estimate did not change after additional adjustment for MHT use.

Therefore, for the odds ratio per SD of 1.53: women with moderately dense breasts (1 SD above the mean; 85th percentile of density) have 1.53 times increased risk of breast cancer and women with the most dense breasts (2 SD above the mean; 95th percentile of density) have 2.34 times increased risk of breast cancer compared with mean breast density. Conversely women with moderately non-dense breasts (1 SD below the mean; 15th percentile of density) have 0.65 times decreased risk and women with the least dense breasts (2 SD below the mean; 5th percentile of density) have 0.43 times decreased risk of breast cancer compared with mean breast dense breasts (2 SD below the mean; 5th percentile of density) have 0.43 times decreased risk of breast cancer compared with median breast density.

An odds ratio per standard deviation of 1.53 for normally transformed PDA can also be interpreted as a relative risk for each BI-RADS category. Assuming a distribution of women in BI-RADS categories 1–4 of 10%:40%:40%:10%, respectively: women with extremely dense breasts (BI-RADS 4) are estimated to have 2.14 times increased risk of breast cancer and women with heterogeneously dense breasts (BI-RADS 3) are estimated to have 1.28 times increased risk of breast cancer compared with women with median breast density (personal communication; J.G. Dowty via email). Conversely women with scattered fibroglandular densities (BI-RADS 2) are estimated to have 0.80 times and women with fatty breasts (BI-RADS 1) are estimated to have 0.48 times decreased risk of breast cancer compared with women with median breast density.

A 2006 systematic review with meta–analysis examining the association between mammographic density and breast cancer risk included 42 studies conducted between 1978 and 2005. This review included 17 prospective studies, 17 case–control studies and nine studies in 'symptomatic populations'.⁷¹ Risks were presented with women with the least dense breasts (<5% PDA) as the referent category giving higher estimates of risk compared to estimates in which women with average breast density are the referent category. Compared with PDA <5%, the summary RRs for risk of incident breast cancer associated with PDA of 5–24%, 25–49%, 50–74% and 75% or greater were 1.79 (95% Cl 1.48–2.16), 2.11 (95% Cl 1.70–2.63), 2.92 (95% Cl 2.49–3.42)and 4.64 (95% Cl 3.64–5.91), respectively. These pooled risk estimates were comparable to those from three studies reported using the BI–RADs classification system: Compared with level 1 (fatty parenchyma), the pooled risk estimates were 2.04 (95% Cl 1.56–2.67), 2.81 (95% Cl 2.13–3.71) and 4.08 (95% Cl 2.96–5.63) for levels 2 (scattered), 3 (heterogeneous) and 4 (extremely dense tissue) respectively.⁷¹

A meta-analysis of studies conducted in Asian populations (one cohort and five casecontrol studies) reported a pooled estimate for risk of postmenopausal breast cancer associated with a 25% increase in PDA of 1.73 (95% CI 1.20–2.47).⁷² Risk of premenopausal breast cancer was similarly significantly increased. No information on adjustment for potentially confounding factors was reported.
An analysis of data from a Swedish randomised controlled trial of mammographic screening provides additional prospective data on the association between mammographic breast density and breast cancer risk in women aged 45–59 years.⁷³ Compared with women with non–dense mammographic breast tissue, women with dense breast tissue had a higher risk of breast cancer (RR 1.57, 95% CI 1.23–2.01), consistent with the findings of Pettersson et al.⁵⁶ for PDA. The analyses were adjusted for age and BMI, and stratification by age group showed a stronger association among women aged 40–49 compared with women aged 50–59 years.

A recent retrospective study in Norway⁶¹ reported an adjusted odds ratio of a screen– detected breast cancer as 1.37 (95% Cl 1.19–1.59) for screening examinations of women with dense (≥7.5%) versus non–dense breasts (<7.5%). Compared with women with non–dense breasts, women with dense breasts had 2.93 times higher (95% Cl 2.16–3.97) odds of an interval breast cancer. This study was limited in that women included in the non–dense group differed in some factors other than breast density from those in the dense group. Hence the differences may not have been solely due to mammographic density.

Table D.4 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.2.5 Breast size

Evidence summary

Evidence classification: Inconclusive.

The evidence on any association between breast size and risk of breast cancer is inconclusive. Findings across studies are inconsistent and the studies are limited in quality. There is some evidence that surgical breast reduction is associated with a decreased risk of breast cancer.⁷⁴

Background

Investigation of breast size and breast cancer risk is difficult due to lack of consistency in the appropriate measure of breast size. The measures used have included self-reporting, cup size, mammographic assessment and three-dimensional imaging. Confounding variables, such as body mass index (BMI) and reproductive factors, must be controlled for in analyses.⁷⁴

The potential mechanism for any association between breast size and breast cancer risk may relate to the larger number of epithelial cells from which cancer may develop in larger breasts. Larger breasts may also affect breast cancer risk via increased amounts of fat tissue, which contributes to higher local oestrogen levels and may act as a slow-releasing source of fat-soluble carcinogens.⁷⁴

Recent evidence

A systematic review by Jansen et al.⁷⁴ included 16 studies (four cohort studies, 10 casecontrol and two other studies) examining any association between breast size and risk of breast cancer. The overall results were conflicting, and meta-analysis was not performed due to the high heterogeneity between studies. Studies were limited by their small sample size, retrospective designs and unreliable size measures, which included measurement of breast size by self–reported bra cup size, at different stages of life, by calculation from mammograms, and from chest circumference.

A population-based case-control study by Chen et al.⁷⁵ investigated bra wearing, including bra cup size, and breast cancer risk in postmenopausal women. There was no association between bra cup size and breast cancer risk in analyses adjusted for age, reference year and country.

The systematic review by Jansen et al.⁷⁴ also reported indirect evidence of a relationship between breast size and breast cancer risk, from studies of surgical breast reduction. Breast reduction surgery, including cosmetic breast reduction, was associated with decreased risk of breast cancer in seven of eight studies (six cohort and two case-control studies); no metaanalysis was performed.

Table D.5 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.3 Family history & genetics

4.3.1 Family history of breast cancer

Evidence summary

Evidence classification: Convincing.

There is covincing evidence that family history of breast cancer is associated with increased risk of breast cancer. The evidence is consistent across two large meta-analyses and four large cohort and case-control studies published since the meta-analyses. The increased breast cancer risk associated with one affected first-degree relative has been estimated as 1.80 (95% Cl 1.70–1.91),⁷⁶ with two affected first-degree relatives as 2.93 (95% Cl 2.37–3.63)⁷⁶ and with 3 or more affected first-degree relatives as 3.90 (95% Cl 2.03–7.49),⁷⁶ compared to no family history of breast cancer. The increased risk associated with one or more affected second-degree relatives has been estimated as 1.5 (95% Cl 1.4–1.6).⁷⁷

The increased breast cancer risk associated with having a first-degree relative with breast cancer is likely higher for younger women and for women whose relative was diagnosed with breast cancer at a younger age.

Background

While most women who develop breast cancer do not have a family history of the disease, it has been shown that family history, either on the maternal or paternal side and in first- or second-degree relatives, can influence breast cancer risk.^{77, 78} First-degree relatives are an individual's parents, siblings and children. Second-degree relatives are an individual's aunts, uncles, grandparents, grandchildren, nieces, nephews and half-siblings.

Inherited genetic factors contribute to the mechanism for the association between increased breast cancer risk and family history of breast cancer. These genetic factors may include mutations in the *BRCA1* and *BRCA2* genes and in other genes such as *PALB2, TP53, PTEN and STK11.*⁷⁹ Shared environmental factors may also contribute to the association between family history and breast cancer risk. These include common environmental exposures and backgrounds (such as for sisters, especially in early life) and common lifestyle and dietary factors in families.^{77, 80}

Recent evidence

Relationship (first-degree or second-degree) and number of affected relatives

Women who have one affected first-degree relative have a higher risk of breast cancer than who have no affected relatives. The risk was estimated in two meta-analyses as 1.80 (95% CI 1.70–1.91; 6,810 cases and 6,998 controls),⁷⁶ and 2.1 (95% CI 2.0–2.2; 38 studies).⁷⁷

Two large cohort and one case–control study published since these meta–analyses reported a similarly increased risk of breast cancer for women with one first–degree relative compared with women with no affected relatives: HR 1.8 (95% CI 1.8–1.9; 69, 248 breast cancer cases from Swedish database);⁸¹ HR for postmenopausal women 1.42 (95% CI 1.30–1.55) (78,171 women from Women's Health Initiative, United States);⁸² and RR 1.79 (no CI provided; 7,861 cases from Swedish database study).⁷⁸

For women with two affected first-degree relatives, the increased risk of breast cancer compared with women who have no affected relatives has been estimated as: RR 2.93 (95% CI 2.37–3.63; meta-analysis of 603 cases and 404 controls);⁷⁶ RR 3.6 (95% CI 2.5–5.0; meta-analysis of five studies);⁷⁷ HR for postmenopausal women 1.66, (95% CI 1.32–2.08);⁸² and RR 2.84 (no CI provided; 543 cases).⁷⁸ For women with 3 or more affected first-degree relatives, the increased risk of breast cancer compared with women who have no affected relatives has been estimated as RR 3.90 (95% CI 2.03–7.49).⁷⁶

For women with one or more affected second-degree relatives, the increased risk of breast cancer compared with women who have no affected relatives has been estimated in a meta-analysis of 10 studies as 1.5 (95% Cl 1.4–1.6).⁷⁷ In a large case-control study of 56,498 cases of breast cancer in Sweden, women with an affected maternal grandmother had an increased risk of breast cancer of 1.27 (95% Cl 1.09–1.47; 198 cases) and the increased risk for having a paternal grandmother with breast cancer was 1.26, (95% Cl 1.05–1.50; 134 cases).⁷⁸ For women with at least two affected female second-degree relatives, increased breast cancer risk was estimated as 1.60 (95% Cl 1.24–2.07; 64 cases).

Age of a woman and family history of breast cancer

The estimated risk of breast cancer for a woman with a first-degree relative with breast cancer was reported to be larger at a younger age in the meta-analysis by the Collaborative Group on Hormonal Factors in Breast Cancer (CGHFBC).⁷⁶ For women with one first-degree affected relative compared with women with no affected relatives, the relative risk for women aged <50 years was 2.14 (95% CI 1.92–2.38); and for women \geq 50 years the risk was 1.65 (95% CI 1.53–1.78). Similarly, for women with two first-degree relatives, the relative risk for women aged <50 years was 3.84 (95% CI 2.37–6.22) compared with the risk for women aged \geq 50 years of 2.61 (95% CI 2.03–3.34).⁷⁶

The meta-analysis by Pharoah et al.⁷⁷ reported inconsistent findings among the 11 studies that estimated breast cancer risk according to the age of the subject with a family history of breast cancer.

In a cohort study, Kharazmi et al.⁸¹ reported a higher increased risk for a woman aged <50 years with a mother or sister with breast cancer, compared with a woman aged 60–78 years and the risk to a women with no affected relatives as 2.13 (95% Cl 2.06–2.21) at age <50 years and 1.6 (95% Cl 1.5–1.7) at age 60–78 years.

Age of relative at diagnosis and family history of breast cancer

In the meta-analysis by CGHFBC,⁷⁶ for women of a given age, the increased risks associated with having a first-degree relative with breast cancer were higher the younger their relative was at breast cancer diagnosis:

- For women aged <40 years with one first-degree relative with breast cancer, the RR with a relative diagnosed at <40 years was 5.7 (95% CI 2.7–11.8), compared with RR with a relative aged ≥60 years of 1.4 (95% CI 0.9–2.1).
- For women aged 50–59 years with one first–degree relative with breast cancer, the RR with a relative diagnosed at <40 years was 2.0 (95% Cl 1.2–3.4), compared with RR with a relative aged ≥60 years of 1.5 (95% Cl 1.2–2.0).
- For women aged <50 years with two first-degree relatives with breast cancer, the RR with at least one relative diagnosed at <40 years was 13.5 (95% Cl 3.4–53.9), compared with RR when both relatives diagnosed >40 years of 7.8 (95% Cl 2.4–25.0).⁷⁶

In the meta–analysis by Pharoah et al.,⁷⁷ the risk reported was higher if the relative was diagnosed at a younger age, with the greatest risk for women aged <50 years with a first–degree relative diagnosed at <50 years as RR 3.3 (95% CI 2.8–3.9) from five studies that reported on the relative's age at diagnosis.

In cohort studies published since the meta-analyses, the findings were:

- for women with one affected first-degree relative diagnosed before 40 years, HR 2.3 (95% CI 2.1–2.6), compared with if the relative was diagnosed at >80 years, HR 1.5 (95% CI 1.4–1.6)⁸¹
- breast cancer risk in women whose mother or sister was diagnosed with breast cancer aged <50 years compared with women with no family history, RR 1.70 (95% Cl 1.48–1.95; 219 cases) ⁸³
- in those whose mother or sister was diagnosed aged ≥50 years, RR 1.30 (95% CI 1.27–1.54; 467 cases), with p 0.016 for <50 years versus ≥50 years (69,805 women from the Nurses' Health Study, United States).⁸³

Table D.6 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.3.2 Family history of other cancers

Evidence summary

Evidence classification: Convincing.

There is convincing evidence from modelling studies, cohort studies and case-control studies that a family history of ovarian cancer and a family history of prostate cancer is associated with an increased risk of breast cancer. The association between a family history of pancreatic cancer and increased risk of breast cancer is observed from the population-level data used to inform the BOADICEA risk prediction model. Several studies have also shown an association between family history of colorectal cancer and increased risk of breast cancer.

Risks are higher as more relatives are affected by the various cancers, and if a woman also has relatives affected by breast cancer.

Background

Inherited mutations in genes associated with increased risk of female breast cancer (such as *BRCA1* and *BRCA2*) are also associated with increased risk of cancers other than breast. Hereditary Breast And Ovarian Cancer Syndrome (HBOC), caused by mutations in the *BRCA1* and *BRCA2* genes, is the most common. Mutations in *BRCA1* and, particularly, *BRCA2* are also associated with cancers other than ovarian cancer and female breast cancer, including male breast cancer, pancreatic cancer and prostate cancer.

Rarer hereditary genetic mutations associated with increased breast cancer risk include: *TP53* (associated with Li–Fraumeni Syndrome and childhood sarcomas), *CDH1* (associated with diffuse gastric cancer), *PTEN* (associated with Cowden Syndrome and thyroid and endometrial cancers) and *STK11* (associated with Peutz–Jeghers Syndrome and gastrointestinal, pancreatic and gynaecological cancers). Mutations in *PALB2* are associated with an increased risk of pancreatic cancer in women and men. The evidence on the risks of breast cancer associated with carriers of mutations in these specific genes is summarised in separate evidence summaries (sections 4.3.12, 4.3.6, 4.3.9 and 4.3.11, respectively).

The mechanisms for associations between family history of cancers other than breast cancer and breast cancer risk are likely via shared genetic factors and/or shared exposure to environmental factors in the families. Inherited mutations in genes such as *BRCA1*, *BRCA2*, *TP53*, *CDH1*, *PALB2*, *PTEN* and *STK11* may increase the risk of other cancers as well as breast cancer through similar biological mechanisms.⁸² Families may have similar dietary patterns, reproductive habits, physical activity or body size that may influence risk of different cancers.⁸⁴

A family history of many of these cancers is known to be associated with increased risk of carrying one or more of the genetic mutations associated with these cancers. However, few studies have estimated the associations between familial history of these cancers and risk of breast cancer among those women with unknown inheritance of the various gene mutations.

Recent evidence

Family history of ovarian cancer

Evans & Howell⁸⁵ indicated family history of ovarian cancer is included in the individual risk prediction models: BRCA probability (BRCAPRO), Cuzick–Tyrer, and BOADICEA (Breast and Ovarian Cancer Disease Incidence and Carrier Estimation Algorithm). The indicated relative risk at the extremes was reported as 1.5. Evans & Howell⁸⁵ noted that only these three models

(from five tested) accurately predicted risk in women with a family history of ovarian cancer. Only these models accounted for ovarian cancer in their risk assessment algorithm, which confirmed family history of ovarian cancer has a significant effect on breast cancer risk.

Sutcliffe et al.⁸⁶ indicated few published estimates of the risk of developing breast (or ovarian) cancer in women with a strong family history of ovarian cancer. Risks in women from families with 2 or more confirmed ovarian cancers in first-degree relatives were determined using data from the United Kingdom Coordinating Committee on Cancer Research (UKCCCR) Familial Ovarian Cancer Register. The number of cancers observed in more than 10,000 person–years of follow-up was compared with the number expected based on national-, age-, sex- and period-specific incidence rates. For breast cancer, the relative risk for women aged under 50 was 3.74 (95% Cl 2.04–6.28) and 1.79 (95% Cl 1.02–2.90) for women 50 years of age and older. The average risk was 2.36 (95% Cl 1.59–3.37). These relative risks were indicated to correspond to absolute risks by age 70 of 15% for breast cancer. When the analyses were restricted to families that had been negative for mutations in *BRCA1* and *BRCA2*, the breast cancer risk was 3.32 (95% Cl 1.52–6.31).⁸⁶

In the population-based case-control study by Slattery & Kerber,⁸⁷ the association with increased risk of breast cancer among women with a first-degree or second-degree relative with ovarian cancer were not significant. This result reflected the small number of cases (OR 1.13, 95% CI 0.91–1.38; 50 cases and OR 1.10, 95% CI 0.93–1.31; 67 cases; respectively).

Claus et al.⁸⁸ was the first study to calculate the risk of breast cancer for women with a firstdegree family history of ovarian cancer. Data were from the Cancer and Steroid Hormone Study, a large, population-based, case-control study conducted by the Centers for Disease Control. The lifetime risk of developing breast cancer for a woman with one or two firstdegree relatives affected with ovarian cancer was estimated to be approximately 14% and 31%, respectively. A woman with one first-degree relative affected with ovarian cancer and one first-degree relative affected with breast cancer has an estimated risk of 40% of developing breast cancer by age 79 years if the relative with breast cancer was diagnosed in her thirties. This risk decreases with increasing age of onset of the relative affected with breast cancer. The authors indicated that these estimates were preliminary.

Family history of prostate cancer

A large cohort study from the Women's Health Initiative included 78,171 women (median follow-up of 11 years); 3,506 breast cancer cases were diagnosed during follow-up.⁸² A family history of prostate cancer in a first-degree relative was associated with an increase in breast cancer risk after adjustments for confounders such as a family history of breast cancer (HR 1.14, 95% CI 1.02–1.26). A family history of both breast and prostate cancer in first-degree relatives was associated with an increased risk of breast cancer (HR 1.78, 95% CI 1.45–2.19).⁸² A family history among first-degree relatives that included breast, prostate and colorectal cancer was associated with approximately 2–fold increased risk of breast cancer (HR 2.06, 95% CI 1.38–3.08).

A pooled analysis of a number of case–control studies from Italy and Switzerland examined associations between risk of cancer at different sites and family history in first–degree relatives. Increased risk of breast cancer was associated with family history in first–degree relatives of prostate cancer (OR 1.6, 95% Cl 1.1–2.4, 59 cases).⁸⁰

A consecutive series study of prostate cancer families in France indicated increased breast cancer risk was associated with family history of prostate cancer (risk estimates not provided)

Valeri et al.⁸⁹ Breast cancer risk was substantially higher with multiple relatives with prostate cancer, and if relatives were diagnosed with prostate cancer at <55 years compared with diagnosis at \geq 75 years.

Family history of pancreatic cancer

Around 5% of patients with pancreatic cancer carry germline mutations in *BRCA2*. Mutations in *PALB2* are also associated with an increased risk of pancreatic cancer.⁹⁰ For this reason, the BOADICEA risk prediction model includes occurrence of pancreatic cancers in families.⁹¹ However, no individual studies were sourced examining the increased relative risk of breast cancer in women with a family of pancreatic cancer.

Family history of colorectal cancer

The large cohort study found no association between a family history of colorectal cancer and risk of breast cancer, after adjustments for a family history of breast and prostate cancer (HR 1.08, 95% Cl 0.99–1.19).⁸² A family history of both breast and colorectal cancer in first– degree relatives was associated with an increased risk of breast cancer (HR 1.47, 95% Cl 1.34–1.61). A family history among first–degree relatives that included breast, prostate and colorectal cancer was associated with an approximately 2–fold increased risk of breast cancer (HR 2.06, 95% Cl 1.38–3.08).

A pooled analysis of case–control studies from Italy and Switzerland examined associations between risk of cancer at different sites and family history in first–degree relatives.⁸⁰ Increased risk of breast cancer was associated with family history in first–degree relatives of colorectal cancer (OR 1.5, 95% Cl 1.1–1.9; 150 cases).

A US population-based case-control study indicated an association between a first-degree relative with colon cancer and increased breast cancer risk (OR 1.26, 95% CI 1.08–1.45; 201 cases).⁸⁷ This study also showed an association between a second-degree relative with colon cancer and increased risk of breast cancer (OR 1.21, 95% CI 1.07–1.36; 230 cases).

Family history of other cancers

Turati et al.⁹² found significant associations between breast cancer and family history of haemolymphopoietic cancers (OR 1.7, 95% CI 1.2–2.4), after controlling for multiple testing. This study included a network of case–control studies from Italy and Switzerland, including more than 12,000 cases of 13 different cancers.

Table D.7 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.3.3 ATM gene mutation

Evidence summary

Evidence classification: Convincing.

The risk of breast cancer for a woman in the general population who has an ataxiatelangiectasia mutated (ATM) gene mutation is approximately 1.7 times the risk for a woman without an ATM mutation, according to a large case-control gene panel testing study that adjusted for family history of cancer (OR 1.74, 95% CI 1.46-2.07).⁹³ The breast cancer risk associated with carrying a heterozygous ATM mutation is estimated to be higher (approximately 3) for those carriers who have relatives with ataxia-telangiectasia and is higher for younger women than for older women who are ATM mutation carriers.⁹⁴

Background

The ATM gene codes for a protein kinase that has a key role in DNA repair. This protein kinase recognises double-stranded DNA breaks and activates cellular responses by phosphorylating other proteins in the DNA-damage response cascade.^{95, 96} Mutations in the ATM gene can prevent cells from responding correctly to DNA damage, allowing breaks in DNA strands to accumulate, and potentially leading to formation of cancerous tumours.⁹⁶

The ATM gene mutation is associated with ataxia-telangiectasia (A-T), a rare, inherited, childhood-onset disorder that affects the nervous system. A-T is autosomal recessive, meaning that a person needs to inherit two mutated copies of the gene to develop the disease. People with A-T are 'homozygous mutation carriers' and the disease occurs in about 1 in 40,000 to 100,000 people worldwide.^{94, 96} A-T is associated with an increased risk of several cancers, including leukaemia and lymphoma.

About 1% of the general population are estimated to be heterozygous carriers of a mutated ATM gene, with one mutated copy and one normal copy of the ATM gene.⁹⁶

Associations with breast cancer risk have been investigated for carriers of inherited ATM mutations which can be truncating (resulting in a shortened protein that may function improperly or not at all) or, less commonly, missense mutations (a change in one gene base pair that results in an amino acid change in the ATM protein).^{94, 95, 97, 98}

Recent evidence

A large case–control gene panel testing study from Kurian et al.⁹³ estimated risks of breast cancer associated with germline mutations. The study used sequencing results of a 25–gene panel drawn from 95,561 women tested clinically for hereditary cancer risk in a retrospective cohort study. ATM mutations were detected in 640 women (0.67%), 244 of whom had invasive ductal breast cancer. ATM mutations were associated with increased breast cancer risk, with an odds ratio (OR) of 1.74 (95% CI 1.46–2.07)ⁱⁱ from multivariate logistic regression and an OR of 2.02 (95% CI 1.49–2.75) from a matched case–control analysis. The ATM mutations in this analysis were classified using the American College of Medical Genetics and Genomics Recommendations⁹⁹ and the analyses were adjusted for age, race/ethnicity and family cancer history.⁹³

Familial studies have produced higher risk estimates for carriers of the ATM gene who have family members with A–T. A meta–analysis by van Os et al.⁹⁴ analysed the risk of breast cancer in four studies from four cohorts of parents and siblings of A–T patients. Breast cancer incidences for all relatives of A–T patients and for relatives who were heterozygote ATM mutation carriers were compared with expected incidence rates for the general population or non–carrier reference populations. There was an increased risk of breast cancer for all

ⁱⁱ Risk estimates for invasive breast cancer overall, i.e. ductal and lobular breast cancer, were identical to those for ductal breast cancer (personal communication; A. Kurian via email).

relatives of A–T patients of RR 1.7 (95% CI 1.4–2.1). For heterozygous ATM carriers, the increased risk was higher (RR 3.0, 95% CI 2.1–4.5). Among heterozygous ATM carriers the breast cancer risk was higher for younger women (aged under 45 to 55 years) (RR for heterozygotes 7.0, 95% CI 4.1–11.9) than for older women (RR for heterozygotes 2.1, 95% CI 1.2–3.6).⁹⁴

Easton et al.⁹⁸ reported increased risk of breast cancer for truncating ATM mutations in a meta-analysis of three large cohort studies of relatives of A-T patients of RR 2.8 (95% CI 2.2-3.7). Easton et al.⁹⁸ also reported increased risk of breast cancer associated with some missense ATM mutations, including one missense mutation (ATM c.7271T > G) that was associated with a higher risk of breast cancer than truncating mutations (RR 8.0, 95% CI 2.3-27.4) in a case-control family study.⁹⁵

A meta-analysis by Aloraifi et al.¹⁰⁰ included 15 case-control studies of breast cancer risk in high-risk groups (cases with family history of breast cancer, bilateral breast cancer and/or early onset of breast cancer). For protein truncating mutations in the ATM gene, the pooled odds ratio for breast cancer was 3.2 (95 Cl 2.04–5.04).¹⁰⁰

A case–control study by Couch et al.¹⁰¹ estimated risk of breast cancer in women with breast cancer referred for hereditary cancer genetic testing, compared with controls in a public reference data set, using results of germline multigene panel tests. In women of European ancestry, *ATM* mutations were detected in 274 of 29,229 breast cancer cases and in 90 of 26,644 controls and were associated with increased risk of breast cancer (OR 2.78, 95% CI 2.22–3.62).¹⁰¹ For all ethnicities, the increased risk associated with *ATM* mutations was OR 2.91 (95% CI 2.41–3.50) (41,154 breast cancer cases and 52,160 controls).¹⁰¹

A case–control study by Decker et al.¹⁰² of 13,087 breast cancer cases and 5,488 controls from the United Kingdom showed an increased risk of breast cancer for truncating *ATM* mutations of OR 3.26 (95% Cl 1.82–6.46).

Table D.8 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.3.4 BRCA1 gene mutation

Evidence summary

Evidence classification: Convincing.

The increased risk of breast cancer among women with a *BRCA1* mutation compared to women without a *BRCA1* mutation has been estimated as 5.91 (95% CI 5.25–6.67), in a large case–control gene panel testing study that adjusted for family history of relevant cancers.⁹³

Risk estimates are considerably higher from a prospective cohort study, predominantly of *BRCA1* mutation carriers with a family history of breast or ovarian cancer and/or early age at onset of breast or ovarian cancer in a family member. Relative risk varies widely by age, and is substantially higher among younger women with a *BRCA1* mutation, with peak incidence in the 41–50 years age group.¹⁰⁸

The cumulative risk to age 80 years among *BRCA1* mutation carriers was estimated as 72% (95% CI 65%–79%).¹⁰⁸

Background

The *BRCA1* gene codes for a protein involved in repairing damaged DNA. It is a tumour suppressor protein that helps prevent cells from growing and dividing too rapidly or in an uncontrolled way. The BRCA1 protein interacts with several other proteins to mend breaks in DNA. By helping repair DNA, it plays a critical role in maintaining the stability of a cell's genetic information. The BRCA1 protein is also involved in other functions, including regulation of other genes and of cell division.¹⁰³

Researchers have identified more than 1,800 mutations in the *BRCA1* gene and many of these are associated with various cancers. The increased cancer risk associated with a *BRCA1* mutation is inherited in an autosomal dominant manner.⁷⁹ Many different mutations associated with increased risk of cancer have been identified in *BRCA1*, including truncating and some missense mutations.⁹⁸ The frequency of *BRCA1* or *BRCA2* mutations in the general population has been estimated at 1 in 400 to 1 in 800.⁷⁹

The frequency of *BRCA1* and *BRCA2* (see section 4.3.5) mutations is higher among certain ethnic populations associated with inheritance of the mutation—a founder mutation—from early ancestors in a group that is or was geographically or culturally isolated. Founder mutations in *BRCA1* and *BRCA2* have been identified in the Ashkenazi Jewish (Jews whose origins can be traced back to Eastern Europe) population and in populations of Iceland, the Netherlands, Sweden, Hungary, Italy, South Africa and Pakistan.^{104, 105}

As many as one in 40 individuals (men and women) of Ashkenazi Jewish descent has one of the three founder mutations in the breast/ovarian cancer susceptibility genes *BRCA1* and *BRCA2*. In Australia, the frequency of *BRCA1* and *BRCA2* mutations in the Ashkenazi Jewish population has been estimated at approximately 2.5% compared with less than 1% in the general population.^{106, 107}

Recent evidence

A large case–control gene panel testing study from Kurian et al.⁹³ estimated risks of breast cancer associated with germline mutations using a 25–gene panel testing of 95,561 women tested clinically for hereditary cancer risk. A *BRCA1* mutation was detected in 1,468 women (1.54%), 739 of whom were diagnosed with ductal invasive breast cancer. The mutation was associated with increased odds of breast cancer of 5.91 (95% CI 5.25–6.67)^{III} from multivariate logistic regression analysis and 5.89 (95% CI 4.57–7.68; 19,056 breast cancer cases, 15,826 controls) from a matched case–control analysis. The *BRCA1* mutations were classified using the American College of Medical Genetics and Genomics Recommendations.⁹⁹ The analyses were adjusted for age, race/ethnicity and family history of relevant cancers.⁹³

The three cohorts included in a prospective study by Kuchenbaeker et al.¹⁰⁸ included Australian families. *BRCA1* mutation carriers were ascertained through family clinics and

Risk estimates for invasive breast cancer overall, i.e. ductal and lobular breast cancer, were almost identical to those for ductal breast cancer (personal communication; A. Kurian via email).

were therefore mainly unaffected women with a cancer family history, early age at onset of cancer in a family member, or both. The breast cancer standardised incidence ratio (SIR) for *BRCA1* mutation carriers compared with the general population was 16.6 (95% CI 14.7–18.7; 2,276 women with pathogenic *BRCA1* mutations, of whom 269 were diagnosed with breast cancer).¹⁰⁸ SIRs decreased with increasing age from 73.7 (95% CI 42.9–126.8) at age 21–30 years, to 17.2 (95% CI 14.0–21.2) at age 41–50, and to 4.8 (95% CI 1.8–12.8) at 71–80 years.¹⁰⁸

Breast cancer incidence for carriers increased rapidly with age in early adulthood then plateaued in the 41–50 years age group and remained relatively constant throughout the remaining lifetime. Cumulative risk of breast cancer for *BRCA1* carriers to age 80 years was estimated to be 72% (95% CI 65%–79%).¹⁰⁸ Family history of breast cancer was indicated to be a strong risk factor for mutation carriers. For *BRCA1* carriers with 2 or more first- or second-degree relatives diagnosed as having breast cancer was 1.99 (95% CI 1.41–2.82) (cumulative risk estimates to age 70 years: 73% [95% CI 65%–80%] vs 53% [95% CI 39%–69%]). Cancer risks also varied by mutation location.

The pooled analysis by Antoniou et al.¹⁰⁹ reported that relative risk of breast cancer in *BRCA1* mutation carriers, relative to general population rates, increased with age to 30–39 years (RR 33, 95% CI 23–49), then declined with age to RR 14 (95% CI 6.3–31) at ages 60–69 years.

The cumulative risk of breast cancer for *BRCA1* carriers to age 70 years has been variously estimated as:

- 57% (95% CI 47%–66%) in a meta–analysis by Chen & Parmigiani¹¹⁰
- approximately 60% for Australian women by Suthers,¹¹¹ based on the meta–analysis by Chen & Parmigiani¹¹⁰
- 65% (95% CI 44%–78%) from the pooled analysis by Antoniou et al.¹⁰⁹
- 60% (95% CI 44%–75%) from the EMBRACE cohort study by Mavaddat et al.¹¹²
- 75% by Easton et al.⁹⁸

Table D.9 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.3.5 BRCA2 gene mutation

Evidence summary

Evidence classification: Convincing.

The increased risk of breast cancer among women with a BRCA2 mutation compared to women without a BRCA2 mutation has been estimated as 3.31 (95% CI 2.95–3.71), in a large case–control gene panel testing study that adjusted for family history of relevant cancers.⁹³

Risk estimates are considerably higher from a prospective cohort study among carriers of a *BRCA2* mutation, predominantly of women with a family history of breast or ovarian cancer and/or early age at onset of breast or ovarian cancer in a family member.¹⁰⁸ Relative risk varies widely by age, and is substantially higher among younger women with a *BRCA2* mutation, with peak incidence in the 51–60 years age group.¹⁰⁸

The cumulative risk to age 80 years among *BRCA2* mutation carriers was estimated as 69% (95% CI 61%–77%), similar to that among *BRCA1* mutation carriers in this study.¹⁰⁸

Background

The *BRCA2* gene codes for a protein involved in repairing damaged DNA. It is a tumour suppressor protein that helps prevent cells from growing and dividing too rapidly or in an uncontrolled way. The BRCA2 protein interacts with several other proteins to mend breaks in DNA. By helping repair DNA, it plays a critical role in maintaining the stability of a cell's genetic information. The BRCA2 protein is also involved in other functions including regulation of other genes and of cell division.¹¹³

The BRCA2 gene was originally identified as a breast cancer susceptibility gene and has been associated with increased risk of ovarian, contralateral breast cancer and other cancers, including male breast cancer, prostate and pancreatic cancer.^{79, 108, 114} The increased cancer risk associated with a BRCA2 mutation is inherited in an autosomal dominant manner.⁷⁹ Many different mutations associated with increased risk of cancer have been identified in BRCA2, including truncating and some missense mutations.⁹⁸

The frequency of BRCA1 or BRCA2 mutations in the general population has been estimated at 1 in 400 to 1 in 800.79

Recent evidence

A large case–control gene panel testing study from Kurian et al.⁹³ estimated risks of breast cancer associated with germline mutations using a 25–gene panel testing of 95,561 women tested clinically for hereditary cancer risk. A *BRCA2* mutation was detected in 1,539 women (1.61%), 703 of whom were diagnosed with invasive ductal breast cancer and was associated with increased breast cancer risk OR 3.31 (95% CI 2.95–3.71)^{iv} from multivariate logistic regression analysis and OR 3.12 (95% CI 2.56–3.83; 19,056 breast cancer cases, 15,826 controls) from a matched case–control analysis. The *BRCA2* mutations were classified using the American College of Medical Genetics and Genomics Recommendations.⁹⁹ The analyses were adjusted for age, race/ethnicity and family history of relevant cancers.⁹³

The three cohorts included in a prospective study by Kuchenbaeker et al.¹⁰⁸ included Australian families. *BRCA2* mutation carriers were ascertained through family clinics and were therefore mainly unaffected women with a cancer family history, early age at onset of cancer in a family member, or both. The breast cancer standardised incidence ratio (SIR) for *BRCA2* mutation carriers compared with the general population was 12.9 (95% Cl 11.1–15.1; 1,610 women with pathogenic *BRCA2* mutations, of whom 157 were diagnosed with breast cancer).¹⁰⁸ SIRs decreased with increasing age from 60.8 (95% Cl 25.5–144.9) at age 21–30 years, to 16.4 (95% Cl 12.9–20.9) at 41–50 years, and to 6.6 (95% Cl 3.0–14.7) at 71–80 years.¹⁰⁸

Breast cancer incidence for carriers increased rapidly with age in early adulthood then plateaued in the 51–60 years age group (5–10 years later than for BRCA1 mutation carriers) and remained relatively constant throughout the remaining lifetime. Cumulative risk of

^{iv} Risk estimates for invasive breast cancer overall, i.e. ductal and lobular breast cancer, were almost identical to those for ductal breast cancer (personal communication; A. Kurian via email).

breast cancer for *BRCA2* carriers to age 80 years was estimated to be 69% (95% Cl 61%–77%).¹⁰⁸ Family history of breast cancer was indicated to be a strong risk factor for mutation carriers. For *BRCA2* carriers with 2 or more first- or second-degree relatives diagnosed as having breast cancer compared with those with no family history of breast cancer, the HR for breast cancer was 1.91 (95% Cl 1.08–3.37) (cumulative risks to age 70 years: 65% [95% Cl 56%–74%] vs 39% [95% Cl 25%–56%]). Cancer risks also varied by mutation location.

The cumulative risk of breast cancer for BRCA2 mutation carriers to age 70 years has been variously estimated as:

- 49% (95% CI 40%–57%) in a meta–analysis by Chen & Parmigiani¹¹⁰
- approximately 50% for Australian women by Suthers,¹¹¹ based on the meta–analysis by Chen & Parmigiani¹¹⁰
- 45% (95% CI 31%–56%) from pooled analysis by Antoniou et al.¹⁰⁹
- 55% (95% CI 41%–70%) from the EMBRACE cohort study by Mavaddat et al.¹¹²

These estimates are approximately 10% lower than those from the same studies for BRCA1 mutation carriers (section 4.3.4).

Table D.10 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.3.6 CDH1 gene mutation

Evidence summary

Evidence classification—breast cancer: Inconclusive.

Evidence classification—lobular breast cancer: Convincing.

A large case–control gene panel testing study did not find an association between women with *CDH1* mutations and risk of ductal breast cancer after adjusting for family history of cancer.⁹³ All other studies were among women at high risk for breast cancer due to a personal or family history of breast cancer or hereditary diffuse gastric cancer (HDGC) and risk estimates are higher among these populations.

The same study reported an increased risk of lobular breast cancer of 17.7 (95% CI 7.68–40.11) for women with a *CDH1* mutation compared with women without a *CDH1* mutation, after adjusting for family history of cancer.⁹³

Background

Inherited, or germline, mutations in the *CDH1* gene are associated with the autosomal dominant cancer susceptibility syndrome, HDGC. Mutations in *CDH1* include small deletions and insertions, splicing mutations, nonsense, missense and large deletions.^{115, 116}

The vast majority of families with truncating *CDH1* germline mutations have a history of HDGC. However, mutations have been found in at least one family with only a family history of lobular breast cancer.¹¹⁷

The *CDH1* gene codes for the protein epithelial cadherin (E-cadherin), which is found in the membrane that surrounds epithelial cells (that line the surfaces and cavities of the body). E-cadherin helps neighbouring cells stick together to form organised tissues and plays a major role in epithelial architecture, cell adhesion and cell invasion. It acts as a tumour suppressor protein, which means it prevents cells from growing and dividing too rapidly or in an uncontrolled way.¹¹⁸

Recent evidence

A large case–control gene panel testing study from Kurian et al.⁹³ estimated risks of (invasive ductal) breast cancer associated with germline mutations, using sequencing results of a 25–gene panel from 95,561 women tested clinically for hereditary cancer risk. *CDH1* mutations were detected in 42 women (0.04%), 13 of whom had invasive ductal breast cancer. Mutations in the *CDH1* gene were not associated with invasive ductal breast cancer risk (OR 1.34, 95 %CI 0.66–2.68 from multivariate logistic regression analysis; OR 4.00, 95%CI 0.80–38.7 from a matched case–control analysis of 19,056 breast cancer cases, 15,826 controls). An exploratory analysis using a multivariable model showed a strong association of *CDH1* mutations with invasive lobular breast cancer risk (OR 17.7, 95% CI 7.68–40.1).⁹³ The *CDH1* mutations in this analysis were classified using the American College of Medical Genetics and Genomics Recommendations.⁹⁹ The analyses were adjusted for age, race/ethnicity and family cancer history.

A case-control study by Couch et al.¹⁰¹ estimated risk of breast cancer in women with breast cancer referred for hereditary cancer genetic testing compared with controls, using results of germline multigene panel tests. *CDH1* mutations were detected in 23 of 37,277 breast cancer cases and in three of 25,961 controls, and were associated with increased risk of breast cancer (OR 5.34, 95% CI 1.60–20.94). Breast cancer cases qualifying for clinical genetic testing were enriched for a clinical history of early-onset, bilateral, and triple-negative breast disease and a family history of breast cancer. None of the 23 breast cancer patients with *CDH1* mutations reported a personal history of gastric cancer, but familial HDGC was not ascertained.¹⁰¹

In a cross-sectional study by Lowstuter et al.¹¹⁶ of patients undergoing multigene panel testing, *CDH1* mutations were detected in 0.06% (16 of 26,936) patients. Breast cancer was diagnosed in 14 patients with a *CDH1* mutation, but the study provided no estimate for breast cancer risk associated with *CDH1* mutations. Breast cancer was lobular in eight of the 14 patients with breast cancer and a *CDH1* mutation.¹¹⁶

A large case-series analysis by Hansford et al.¹¹⁵ estimated cancer risk from 75 CDH1 mutation positive HDGC families. This study included 17 families and 58 additional families, some of who were reported earlier by Pharaoh et al.¹¹⁹ and Kaurah et al.¹²⁰ (see below). The 3,858 probands included 89 breast cancer cases. CDH1 germline mutations were associated with increased risk of breast cancer, with RR (age 10–49 years) 7.7 and RR (age \geq 50 years) 7.4 (no Cls provided). The cumulative risk of breast cancer to age 80 years for women with CDH1 mutations was 42% (95% Cl 23%–68%).¹¹⁵

Two additional studies, by Kaurah et al.¹²⁰ and Pharoah et al.¹¹⁹ were based on small numbers of patients with *CDH1* mutations. A case–series study by Kaurah et al.¹²⁰ estimated the cumulative risk of breast cancer to age 75 years for women with *CDH1* mutations as 52% (95% CI 29%–94%). This estimate was based on four HDGC families, each with the same *CDH1*

mutation; these four families included 16 cases of breast cancer. There were 'concentrations of lobular breast cancer cases' in branches of these families, but the number or percentage of lobular cases was not specified.¹²⁰

A segregation analysis by Pharaoh et al.¹¹⁹ included 235 women from HDGC families recruited internationally, where the family had at least three cases of diffuse gastric cancer and at least one affected family member with an identified *CDH1* mutation. There were seven cases of breast cancer diagnosed and of the four cases with histopathology available, two were lobular adenocarcinoma. *CDH1* mutations were associated with increased risk of breast cancer overall (RR 6.6, Standard error SE 0.67), and cumulative risk to age 80 years was 39% (95% CI 12%–84%).¹¹⁹

Table D.11 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.3.7 CHEK2 gene mutation

Evidence summary

Evidence classification: Convincing.

The increased risk of breast cancer among women with a CHEK2 mutation compared to women without a CHEK2 mutation has been estimated as 1.99 (95% CI 1.70–2.33), from a large case–control gene panel testing study that adjusted for family history of relevant cancers.⁹³ The magnitude of risk varies depending on the specific CHEK2 mutation. The CHEK 1100delC mutation has been studied most and has been estimated to be associated with an increased breast cancer risk of 2–3 times compared with women without this mutation.^{98, 101, 121-123}

Background

The CHEK2 gene codes for the checkpoint kinase 2 (CHK2) protein. Initially, mutations were identified in CHEK2 that are associated with familial breast cancer. More mutations and polymorphisms have since been identified in CHEK2 and investigated for any association with breast cancer risk. Many CHEK2 mutations are protein truncating mutations (resulting in a shortened protein that may function improperly or not at all). However, splice junction, deletion and missense mutations have also been associated with breast cancer risk.^{98, 122}

The CHEK2 1100delC mutation that results in a dysfunctional truncated CHK2 protein has been studied extensively. This mutation is present primarily in individuals of Northern and Eastern European descent and has a frequency of approximately 1% in these populations.¹²⁴

Inherited CHEK2 mutations have also been identified in some families with cancers characteristic of Li–Fraumeni syndrome and Li–Fraumeni–like syndrome that do not have TP53 mutations commonly associated with this syndrome.¹²⁵

The CHK2 protein, encoded by the CHEK2 gene, is a kinase that is activated when DNA becomes damaged or when DNA strands break. The CHK2 protein interacts with several other proteins, including tumour protein 53 (encoded by the *TP53* gene). These proteins halt cell division and determine whether the DNA is repaired or the cell will undergo programmed

cell death (apoptosis). This process stops cells with mutated or damaged DNA from dividing, which helps prevent tumours developing. CHK2 acts as a tumour suppressor, which means it regulates cell division by keeping cells from growing and dividing too rapidly or in an uncontrolled way.¹²⁶

Recent evidence

A large case–control gene panel testing study from Kurian et al.⁹³ estimated risks of breast cancer associated with germline mutations, using sequencing results of a 25–gene panel from 95,561 women tested clinically for hereditary cancer risk. *CHEK2* mutations were detected in 771 women (0.81%) including 319 women with invasive ductal breast cancer, and were associated with increased breast cancer risk of 1.99 (95% CI 1.70–2.33)^v in multivariate logistic regression analysis, and 2.12 (95% CI 1.63–2.77;19,056 breast cancer cases and 15,826 controls) from a matched case–control analysis.⁹³ The *CHEK2* mutations in this analysis were classified using the American College of Medical Genetics and Genomics Recommendations.⁹⁹ The analyses were also adjusted for age, race/ethnicity and family cancer history.

A case-control study by Couch et al.¹⁰¹ estimated risk of breast cancer in women with breast cancer referred for hereditary cancer genetic testing compared with controls, using results of germline multigene panel tests. In women of European ancestry, pathogenic mutations in *CHEK2* were detected in 424 of 29,090 breast cancer cases and in 163 of 25,215 controls. Further, these mutations were associated with increased risk of breast cancer (OR 2.26, 95% CI 1.89–2.72). Including two common *CHEK2* missense variants (*sp.lle157Thr* and *p.Ser428Phe*) in the estimate increased the odds of breast cancer for women of European ancestry (OR 1.48, 95%CI 1.31–1.67).¹⁰¹

A meta-analysis by Aloraifi et al.¹⁰⁰ included nine case-control studies of breast cancer risk in high risk groups (cases with family history of breast cancer, bilateral breast cancer and/or early onset of breast cancer). CHEK2 protein truncating variants were associated with increased breast cancer risk, with aggregated OR 3.25 (95% Cl 2.55–4.13; 7,263 cases and 13,785 controls).¹⁰⁰

CHEK 1100delC mutation

Four meta–analyses^{98, 121-123} and a large case–control study¹⁰¹ indicated the CHEK 1100delC mutation is associated with increased breast cancer risk:

- RR 3.02, 90% CI 2.6–3.; pooled analysis of two large case–control studies⁹⁸
- OR 2.75, 95% CI 2.25–3.36; 25 studies with 29,154 cases and 37,064 controls¹²¹
- OR 3.10, 95% CI 2.59–3.71; 47 studies with 41,791 cases and 50,910 controls¹²²
- OR 2.4 (95%Cl 1.8–3.2; unselected breast cancer in 12 studies) and OR 4.6 (95% Cl 3.1–6.8; familial breast cancer)¹²³
- OR 2.31 (95% CI 1.88–2.85; case–control study with 29,090 cases and 25,215 controls).¹⁰¹

A UK population-based case-control study by Decker et al.¹⁰² indicated an association between truncating *CHEK*2 gene mutations and increased breast cancer risk: OR 3.11

[•] Risk estimates for invasive breast cancer overall, i.e. ductal and lobular breast cancer, were almost identical to those for ductal breast cancer (personal communication; A. Kurian via email).

(95% CI 2.15–4.69; 13,087 breast cancer cases and 5,488 controls). Truncating mutations in CHEK2 were more strongly associated with the risk of oestrogen receptor positive (ER+) breast cancer (OR 3.42, 95% CI 2.33–5.21) than for oestrogen receptor negative (ER–) breast cancer (OR 1.59, 95% CI 0.80–3.00).¹⁰²

A meta–analysis by Liu et al.¹²⁷ indicated *CHEK2* 1157T was associated with increased risk of unselected breast cancer (OR 1.48, 95% CI 1.31–1.66; 13 studies with 17,073 cases and 26,501 controls).

A meta-analysis by Zhang et al.¹²² investigated breast cancer risk for candidate genes or loci that each had a minimum of three data sources available. The study included four CHEK2 variants (three mutations and one single nucleotide polymorphism that were associated with increased breast cancer risk:

- CHEK2 IVS2+IG>A—OR 3.07 (95% CI 2.03–4.63; five studies with 9,970 cases, 7,526 controls)
- 5.5 kb deletion (exons 9 and 10 of CHEK2)-OR 2.53(95% Cl 1.61-3.97; five studies with 10,543 cases and 8,447 controls)
- CHEK2 rs17879961—OR 1.52 (95 % CI 1.31–1.77; eight studies with 13,311 cases and 10,817 controls).

Southey et al.¹²⁸ genotyped rare mutations in CHEK2 in white European women from the Breast Cancer Association Consortium (BCAC) (42,671 cases and 42,164 controls). Three CHEK2 mutations were associated with increased risk of breast cancer:

- CHEK2 c.349A>G (p.Arg117Gly)—OR 2.26 (95% CI 1.29–3.95)
- CHEK2 c.1036C>T (p.Arg346Cys)—OR 5.06 (95% CI 1.09-23.5)
- CHEK2 c.538C>T (p.Arg180Cys)—OR 1.33 (95% CI 1.05–1.67).

The mutation CHEK2 c.715G>A (p.Glu239Lys) was not associated with breast cancer risk.¹²⁸

Table D.12 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.3.8 PALB2 gene mutation

Evidence summary

Evidence classification: Convincing.

The increased risk of breast cancer among women with a *PALB2* mutation compared to women without a *PALB2* mutation has been estimated as 3.39 (95% CI 2.79–4.12), in a large case–control gene panel testing study that adjusted for family history of cancer.⁹³ Risk estimates are moderately higher among *PALB2* carriers with a family history of relevant cancers and younger women with a *PALB2* mutation.

Background

The PALB2 gene codes for the partner and localier of BRCA2 (PALB2) protein, which was identified originally as a protein that interacts with BRCA2. PALB2 is one of the genes associated with the recessive childhood illness Fanconi's anaemia; pathogenic PALB2 mutations that are biallelic (mutations in both copies of the gene) have been identified in

some Fanconi's anaemia families. Loss of function *PALB2* mutations that are heterozygous, or monoalllelic (mutations in only one allele), have been associated with increased risk of pancreatic cancer and association with breast cancer risk has also been investigated.^{129, 130} Breast cancers reported in women with a *PALB2* mutation are frequently triple negative.¹²⁹

Mutations in PALB2 that have been identified include the founder mutations PALB2 c.1592delT in Finland, and PALB2 c.2323C \rightarrow T (p.Glu775X) in French Canadian women. Mutations in PALB2 that result in loss of function are frequently truncating mutations (resulting in a shortened protein that may function improperly or not at all). They have now been observed in persons from many countries and are found in 0.6–3.9% of families with a history of breast cancer, depending on the population.^{129, 130} Cybulski et al.¹³¹ estimated the frequency of PALB2 mutations in the general population to be 0.2%.

The PALB2 protein interacts with both BRCA1 and BRCA2 to form a BRCA1–PALB2–BRCA2 complex that has a key role in DNA repair. The PALB2 protein is involved in localising this complex to sites of DNA damage in the nucleus of the cell. *PALB2* mutations that result in reduced or defective PALB2 protein disrupt the BRCA1/BRCA2–dependent DNA repair pathway, which is part of the body's defence against developing cancer.^{129, 132, 133}

Recent evidence

A large case–control gene panel testing study from Kurian et al.⁹³ estimated risks of breast cancer associated with germline mutations, using sequencing results of a 25–gene panel from 95,561 women tested clinically for hereditary cancer risk. *PALB2* mutations were detected in 484 women (0.51%) including 257 women with invasive ductal breast cancer, and were associated with increased breast cancer risk of 3.39 (95% CI 2.79–4.12)^{vi} from multivariate logistic regression analysis, and 4.13 (95% CI 2.88–6.05; 19,056 breast cancer cases and 15,826 controls) from a matched case–control analysis. The *PALB2* mutations in this analysis were classified using the American College of Medical Genetics and Genomics Recommendations⁹⁹. The analyses were also adjusted for age, race/ethnicity and family cancer history.⁹³

A population–based case–control study by Decker et al.¹⁰² of 13,087 breast cancer cases and 5,488 controls from the United Kingdom indicated an association between truncating *PALB2* gene mutations and increased breast cancer risk (OR 4.69, 95% CI 2.27–9.68).

A case-control study by Couch et al.¹⁰¹ estimated risk of breast cancer in women with breast cancer referred for hereditary cancer genetic testing compared with controls, using results of germline multigene panel tests. In women of European ancestry, pathogenic mutations in *PALB2* were detected in 241 of 30,025 breast cancer cases and in 29 of 26,869 controls. Further, these mutations were associated with increased risk of breast cancer (OR 7.46, 95% CI 5.12–11.19). In analysis of women of all ethnicities, the estimated OR was 6.25 (95% CI 4.82–8.14).¹⁰¹

A meta-analysis by Easton et al.⁹⁸ estimated the increased breast cancer risk associated with *PALB2* mutations as RR 5.3 (90% CI 3.0–9.4). The meta-analysis included the study by Antoniou

vi Risk estimates for invasive breast cancer overall, i.e. ductal and lobular breast cancer, were almost identical to those for ductal breast cancer (personal communication; A. Kurian via email).

et al.¹³⁰ summarised separately below, plus two studies based on the Finnish founder variant, c.1592delT, which provided lower risk estimates.

A meta-analysis by Aloraifi et al.¹⁰⁰ included 13 case-control studies of breast cancer risk in high risk groups (cases with family history of breast cancer, bilateral breast cancer and/or early onset of breast cancer). PALB2 protein truncating variants were associated with increased breast cancer risk (aggregated OR 21.40, 95% CI 10.10-45.32; 5,862 cases and 17,453 controls). The authors noted this high OR may be due to potential selection bias of high-risk cases.¹⁰⁰

Southey et al.¹²⁸ genotyped rare mutations in PALB2 in white European women (34,488 cases and 34,059 controls) from the Breast Cancer Association Consortium (BCAC). Two PALB2 mutations were associated with increased risk of breast cancer: the OR for PALB2 c.1592delT (*p.Leu531Cysfs*) was 3.44 (95% CI 1.39–8.52) and the OR for PALB2 c.3113G>A (*p.Trp1038**) was 4.21 (95% CI 1.84–9.60). There was no association with breast cancer risk for the missense mutation PALB2 c.2816T>G (*p.Leu939Trp*).¹²⁸

A case–control study in Poland by Cybulski et al.¹³¹ reported increased risk of breast cancer associated with two mutations in *PALB2 (509_510delGA* and *172_175delTTGT*). The OR was 4.39 (95% CI 2.30–8.37; 12,529 cases unselected for family history and 4,702 controls).

A large family–based case–control study by Antoniou et al.¹³⁰ included 362 members of 154 families that had at least one family member diagnosed with breast cancer and had a germline loss–of–function *PALB2* mutation. The families were recruited internationally, including from Australia, and among the 154 families there were 48 different *PALB2* mutations. *PALB2* mutations were associated with an increased risk of breast cancer (RR 9.47, 95% CI 7.16–12.57), compared with the UK general population using a single gene model. All analyses were corrected for the method of ascertainment. For a woman with a *PALB2* mutation, the risk of breast cancer was larger at a younger age, compared with the general population. Estimated relative risks in comparison with age–specific breast cancer incidence in the United Kingdom from 1993–97 were: RR 8–9 for < 40 years, RR 6–8 for 40–60 years, and RR 5 for > 60 years. Breast cancer risk was also influenced by family history. By 70 years, the absolute breast cancer risk for women with a *PALB2* mutation ranged from 33% (95% CI 25%–44%) for those with no family history of breast cancer to 58% (95% CI 50%–66%) for those with ≥ 2 first–degree relatives with breast cancer diagnosed at 50 years of age.¹³⁰

Table D.13 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.3.9 PTEN gene mutation

Evidence summary

Evidence classification: Convincing.

The increased risk of breast cancer for women with a *PTEN* mutation compared to women without a *PTEN* mutation has been estimated as 5.83 (95% CI 2.43–14.0) in a large case– control gene panel testing study that adjusted for family history of relevant cancers.⁹³ The risk estimate is uncertain due to the large confidence intervals resulting from the very low frequency of *PTEN* mutations in the general population.^{93, 101} Risk estimates among women

carriers of PTEN mutation with *PTEN* Hamartoma Tumour Syndrome (PHTS) or familial PTEN– associated syndromes are substantially higher.

Background

The *PTEN* gene codes for a protein involved in regulating a cell survival signalling pathway— 'phosphotase and tensin homolog'. *PTEN* acts a tumour suppressor gene, which helps regulate cell division by keeping cells from growing and dividing too rapidly or in an uncontrolled way. The PTEN protein is a phosphatase that removes phosphate groups from other proteins. It is involved in several functions that may be involved in development of cancer, including DNA repair, cellular senescence, cell migration and maintaining the stability of the cell's genetic information.^{134, 135}

Inherited, or germline, mutations in the *PTEN* gene are associated with the *PTEN* Hamartoma Tumour Syndrome (PHTS) that encompasses several heritable disorders including Cowden Syndrome and Bannayan–Riley–Ruvalcaba Syndrome.¹³⁶ Cowden Syndrome is an autosomal dominant inherited disorder that affects many organs and is characterised by increased risk of several cancers, including breast, thyroid and endometrial cancer. Individuals affected by PHTS usually have macrocephaly and specific skin lesions (trichilemmomas).¹³⁷

PTEN mutations associated with PHTS include frame–shift, deletions, missense, nonsense and splice site mutations.^{136, 138, 139} PHTS is a rare condition and the prevalence of *PTEN* mutations in the general population is very low. Pathogenic mutations in *PTEN* are estimated to occur in approximately one in 200,000 individuals.¹³⁶

Recent evidence

A large case–control gene panel testing study from Kurian et al.⁹³ estimated risks of breast cancer associated with germline mutations, using sequencing results of a 25–gene panel from 95,561 women tested clinically for hereditary cancer risk. *PTEN* mutations were detected in only 24 women (0.03%), including 15 women with invasive ductal breast cancer, and were associated with increased odds of breast cancer of 5.83 (95% Cl 2.43–14.0)^{vii} from multivariate logistic regression analysis adjusted for age, race/ethnicity and family cancer history. There were too few mutation carriers to conduct a matched case–control analysis.⁹³ The *PTEN* mutations in this analysis were classified using the American College of Medical Genetics and Genomics Recommendations.⁹⁹

A case-control study by Couch et al.¹⁰¹ estimated risk of breast cancer in women with breast cancer referred for hereditary cancer genetic testing compared to controls, using results of germline multigene panel tests. *PTEN* mutations were detected in 20 of 38,179 breast cancer cases and in one of 24,166 controls. *PTEN* mutations were associated with increased risk of breast cancer, OR 12.66 (95% CI 2.01–258.89).¹⁰¹

A pooled analysis by Easton et al.⁹⁸ assessing the association between mutations in a number of genes and breast cancer risk did not report an estimate for *PTEN* mutations. The authors noted the estimates reported in two studies available were based on selected families with

vii Risk estimates for invasive breast cancer overall, i.e. ductal and lobular breast cancer, were almost identical to those for ductal breast cancer (personal communication; A. Kurian via email).

Cowden or related syndromes and thus were subject to ascertainment bias. These two case studies are summarised below.^{138, 139}

Nieuwenhuis et al.¹³⁴ estimated breast cancer risk in 99 women (24 of whom had breast cancer) with *PTEN* mutations, from Western Europe, Australia and the United States. Cumulative risk estimates for breast cancer from 30 years to 60 years were estimated, with lifetime risk estimated as 67% (by 60 years) compared to the general population at 12% (one in eight women).¹³⁴

Bubien et al.¹³⁹ estimated breast cancer risk in a study of 70 women (23 of whom had breast cancer) with PHTS and an identified *PTEN* gene mutation, from Europe and North Africa. The cumulative breast cancer risk at 70 years was estimated to be 77% (95% CI 59–91). The standarised incidence ratio (SIR) for women with a *PTEN* mutation compared with expected incidence in the French population, was estimated as 39.1 (95% CI 24.8–58.6).¹³⁹

Tan et al.¹³⁸ estimated breast cancer risk in 205 women (67 of whom had breast cancer) with PHTS and an identified *PTEN* gene mutation, from North America, Europe and Asia. Estimates for life time risk of breast cancer was estimated as 85% and the SIR for women with a *PTEN* mutation compared with expected US incidence using the Surveillance, Epidemiology, and End Results (SEER) database, was estimated as 25.4 (95% Cl 19.8–32.0).¹³⁸

Table D.14 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.3.10 Single nucleotide polymorphisms

Evidence summary

Evidence classification: Convincing.

A large number of single nucleotide polymorphisms (SNPs) have been identified that are associated with increased risk of breast cancer. Common susceptibility variants identified through genome-wide association studies (GWAs), including 65 newly identified susceptibility loci, explain an estimated 18% of familial relative risk of breast cancer.¹⁴⁰ In general, the predictive power of the SNPs increases with the number of SNPs.

Based on 77–SNPs, for women in the lowest 1% of the polygenic risk score (PRS) distribution compared to women in the middle quintile the OR was estimated to be 0.31 (95% CI 0.24–0.39). For women in the highest 1% of PRS distribution compared to women in the middle quintile the OR was 3.36 (95% CI 2.95–3.83).¹⁴¹

Background

SNPs are alterations in a single nucleotide (adenine, thymine, cytosine, or guanine) in the genome sequence, and are a common type of genetic variation that occur between different people. There are estimated to be approximately 10 million SNPs in the human genome. They occur normally throughout a person's DNA and most SNPs have no effect on health or development.^{79, 142} SNPs can act as biological markers that can help to identify genes or positions (loci, or 'susceptibility loci') in the genome that may be associated with a disease such as breast cancer.¹⁴²

The investigation of SNPs for any association with breast cancer risk, identification of breast cancer susceptibility loci using SNPs and development of polygenic risk scores, are areas of rapidly emerging research.

Genome-wide association studies (GWAS) analyse SNPs across the genome to identify SNPs that occur more frequently in people with a particular disease—such as breast cancer—than in people without the disease. These studies often look at hundreds or thousands of SNPs at the same time. By comparing SNPs between large numbers of cases and controls, these studies can identify SNPs associated with increased breast cancer risk and breast cancer susceptibility loci. Replication studies in other sets of subjects are then often used to validate any associations. Individual SNPs have a small effect size and PRSs for breast cancer risk have been developed based on combined scores for large numbers of SNPs.^{141, 143} Transcriptome-wide association studies (TWAS) are another emerging methodology to identify novel risk loci and inform functional investigations of known breast cancer SNPs.¹⁴⁴

Recent evidence

GWAS studies have been undertaken by several large consortium groups that have combined subjects from many studies to investigate breast cancer risk.^{140, 143, 145} Combinations of SNPs or PRSs have been developed and the associations between the scores and breast cancer risk investigated.^{141, 146} PRSs have also been developed for breast cancer subtypes or specific populations, such as *BRCA1/BRCA2* mutation carriers¹⁴⁷ and in women at high risk of breast cancer.¹⁴⁸ PRSs have been evaluated for independence with other risk factors such as breast density and for refining breast cancer risk estimates in combination with other risk prediction models.¹⁴⁹⁻¹⁵¹

Single nucleotide polymorphisms and susceptibility loci studies

A large GWAS and meta-analysis undertaken by Michailidou et al.¹⁴⁰ included 122,977 cases and 105,974 controls of European ancestry, and 14,068 cases and 13,104 controls of East Asian ancestry, from 68 studies in the Breast Cancer Association Consortium (BCAC) and the Discovery, Biology and Risk of Inherited Variants in Breast Cancer Consortium (DRIVE). An array of over 500,000 SNPs was used for genotyping. The study identified 65 new loci through GWAs which explain 18% of familial relative risk of breast cancer.¹⁴⁰

An earlier meta-analysis was undertaken by Michailidou et al.¹⁴⁵ of 11 GWASs comprising 15,748 breast cancer cases and 18,084 controls, and 46,785 cases and 42,892 controls from 41 studies genotyped on a custom array of more than 200,000 SNPs. All participants were of European ancestry. The meta-analysis confirmed 71 of the 79 previously published breast cancer susceptibility loci and an additional 15 new breast cancer susceptibility loci were identified.¹⁴⁵

A large GWAS by Milne et al.¹⁴³ of 21,468 oestrogen receptor negative (ER–) breast cases, 18,908 *BRCA1* mutation carriers and 100,594 controls of European origin, identified ten new SNPs for ER– breast cancer. Ten of 11 SNPs previously identified by GWAS as associated with ER– or *BRCA1* mutation carriers were confirmed. A further 105 SNPs previously identified as associated with breast cancer risk overall were associated with ER– breast cancer risk. It was estimated these 125 variants explain approximately 14% of the familial risk of ER– breast cancer.¹⁴³

Polygenic risk score studies

A large collaborative case–control study by Mavaddat et al.¹⁴¹ developed a PRS based on 77 SNPs, in 33,673 cases and 33,381 controls of European origin from the large BCAC consortium. The risk of breast cancer was increased for women in the highest 1% of the PRS compared with women in the middle quintile, with odds ratio (OR) 3.36 (95% CI 2.95–3.83). In contrast, for women in the lowest 1% of the PRS distribution, the estimated OR compared with women in the middle quintile was 0.31 (95% CI 0.24–0.39). For oestrogen receptor positive (ER+) and ER– breast cancer risk, the ORs were 3.73 (95% CI 3.24 to 4.30) and 2.80 (95% CI 2.26 to 3.46) respectively. For women in the highest quintiles of the PRS, lifetime risks of breast cancer were 16.6% for women without family history and 24.4% for women with a first– degree family history of breast cancer (compared to 5.2% for women without and 8.6% for women with family history in the lowest PRS quintile).¹⁴¹

A PRS was derived by Li et al.¹⁴⁶ based on analysis of 24 SNPs in 4,365 women from two familial cohorts, the Breast Cancer Family Registry (BCFR) cohort (United States, Australia and Canada) and the Kathleen Cuningham Consortium Foundation for Research into Familial Breast Cancer (kConFab) (Australia and New Zealand). The study included women from breast cancer families not known to have a *BRCA1/BRCA2* mutation and those women unaffected (no breast cancer diagnosis) at baseline were followed up for an average of 7.4 years. The PRS was associated with increased breast cancer risk, with a HR for upper versus lower quintile PRS 3.18 (95% CI 1.84–5.23), and HR for continuous PRS (per SD) 1.38 (95% CI 1.22–1.56).¹⁴⁶

In a study by Dite et al.,¹⁴⁹ the 77–SNP PRS developed by Mavaddat et al.¹⁴¹ was combined with risk predictions from the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA), BRCA PRObability (BRCAPRO), Breast Cancer Risk Assessment Tool (BCRAT) and International Breast Intervention Study (IBIS) models using 750 cases and 405 controls from the Australian Breast Cancer Family Registry. The study included Caucasian women who were not *BRCA1/BRCA2* mutation carriers and were less than 50 years of age at diagnosis or recruitment. Combining the PRS increased the ORs for the risk prediction models and was estimated to improve breast cancer prediction in women younger than 50 years by more than 20%.¹⁴⁹

A nested case–control study by Shieh et al.¹⁵⁰ investigated the association between a PRS based on 83 SNPs and breast cancer risk in 486 cases and 495 controls (80% Caucasian and 20% non–Caucasian descent) from a screening cohort. There was association with increased breast cancer risk for increasing quartiles of the PRS, OR for highest versus lowest quartile 2.51 (95% CI 1.63–3.86). The PRS, family history, and breast density remained strong risk factors in a multivariable model. Incorporation of the PRS into the Breast Cancer Surveillance Consortium risk model improved the discrimination of the risk model. A specific PRS based on East Asian populations discriminated breast cancer risk better for Asian women than the overall PRS.¹⁵⁰

Using 94 SNPs, Kuchenbaeker et al.¹⁴⁷ developed three different PRSs for risk of overall breast cancer, for ER+ breast cancer and for ER- breast cancer, and evaluated their associations for *BRCA1* and *BRCA2* mutation carriers. The study used data from 15,252 female *BRCA1* and 8,211 *BRCA2* carriers, from the Consortium of Investigators of Modifiers of *BRCA1/BRCA2* (CIMBA), recruited from 26 countries. In *BRCA1* mutation carriers, the PRS for ER- breast cancer had the strongest association with breast cancer risk (HR 1.27, 95% CI 1.23–1.31). In *BRCA2* carriers, the PRS for overall breast cancer had the strongest association with breast cancer risk (HR 1.22, 95% CI 1.16–1.27).¹⁴⁷

A study by Vachon et al.¹⁵¹ examined a 76–SNP PRS and breast density using the Breast Imaging Reporting and Data System (BI–RADS) in data from three case–control studies from the United States with 1,643 cases and 2,397 controls. The 76–SNP PRS was associated with breast cancer risk within and across the three studies, and was a risk factor independent of BI–RADS density. The estimated OR was 1.48 (95% CI 1.38–1.58) based on a model with PRS and BI–RADS density compared with a model with BI–RADS alone.¹⁵¹

Table D.15 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.3.11 STK11 gene mutation

Evidence summary

Evidence classification—women with *STK11* mutation but no clinical symptoms of Peutz–Jeghers Syndrome: Inconclusive.

Evidence classification-women with Peutz-Jeghers Syndrome: Convincing.

Due to the very low prevalence of *STK11* mutations in the general population, only a few *STK11* mutations were identified in a large case–control gene panel testing study, and there was no association with breast cancer risk.⁹³ If an *STK11* mutation is detected in a woman with breast cancer but no other features of PJS, the relevance of the mutation is uncertain.¹³⁷

There is consistent evidence that women with the rare inherited disorder Peutz–Jeghers Syndrome (PJS) have an increased risk of breast cancer. The majority of women with PJS possess a mutation in the *STK11* gene. The risk of breast cancer for women with PJS has been variously estimated to be six to 15 times that of women in the general population.¹⁵²⁻¹⁵⁴

Background

The *STK11* gene, also known as the *LKB1* gene, codes for a protein called serine threonine kinase 11. Inherited, or germline, mutations in the *STK11* gene cause PJS, a rare condition inherited in an autosomal dominant manner. PJS is characterised by the development of noncancerous growths called hamartomatous polyps in the gastrointestinal tract and mucocutaneous pigmentation.¹⁵⁵ Colocrectal cancer is the most common malignancy associated with PJS,¹⁵⁶ but PJS is also characterised by increased risk of developing several other types of cancer, including gastrointestinal, breast, pancreatic and gynaecological cancers. PJS mostly presents early in life with anaemia, rectal bleeding, abdominal pain, obstruction and/or intussusception.¹³⁷

The majority of people (up to 90%) that meet the clinical diagnostic criteria for PJS have a causative mutation in the *STK11* gene, which is located at 19p13.3. ^{157, 158} The probability of a heritable mutation being detected in a person who has a first or second–degree relative with documented pathogenic mutation is 25–50%.¹⁵⁷

Many different mutations in *STK11* associated with PJS have been identified, including truncating mutations (that result in a shortened non–functional protein), deletions and missense mutations.^{153, 154, 159} PJS is a rare condition, with estimated incidence between 1 in

8,300 and 1 in 200,000 births.¹⁵⁶ Somatic mutations of the *STK11* gene are rare in sporadic forms of common cancer types associated with PJS.¹⁶⁰

The serine threonine kinase 11 protein encoded by the *STK11* gene is an enzyme involved in cell programmed cell death (apoptosis), and in other roles such as cell polarisation and control of cell growth. It is a tumour suppressor, which means that it helps keep cells from growing and dividing too fast or in an uncontrolled way. *STK11* mutations may contribute to development of cancer through mechanisms including induction of angiogenesis, suppression of growth arrest, apoptosis and loss of cell polarity.¹⁵⁹

Recent evidence

A large case–control gene panel testing study from Kurian et al.⁹³ estimated risks of breast cancer associated with germline mutations, using sequencing results of a 25–gene panel from 95,561 women tested clinically for hereditary cancer risk. There were very small numbers of *STK11* mutations detected: five mutations in all women (0.01%), and two mutations in women with invasive ductal breast cancer. There was no association with breast cancer risk with OR 4.41 (95% CI 0.66–29.6) from multivariate logistic regression analysis. The *STK11* mutations in this analysis were classified using the American College of Medical Genetics and Genomics Recommendations.⁹⁹ The analyses were adjusted for age, race/ethnicity and family cancer history, and the estimates represent the breast cancer risk among mutations carriers who survive to adulthood. In a complementary matched case–control analysis, there were too few mutation carriers to estimate an OR for *STK11.*⁹³

A systematic review by van Lier et al.¹⁵⁶ on cancer risk in PJS patients, reported increased breast cancer risk associated with PJS, with cumulative risks for breast cancer ranging from 5– 8% at age 40, increasing to 45% at 70 years. These risk estimates for breast cancer were based on three studies, including the study by Hearle et al.¹⁵³ summarised separately below.

A meta-analysis by Giardiello et al.¹⁵² included 104 women with PJS. Confirmation of an identified germline *STK11* mutation in these patients was not specified. For women with PJS, there was increased risk of breast cancer (RR 15.2, 95% Cl 7.6–27.0) compared with the breast cancer risk in the general population.¹⁵² A retrospective cohort study conducted in Italy by Resta et al.¹⁵⁴ included 119 patients with PJS, of whom 99 had an identified *STK11* mutation. In the 68 women in the study, six breast cancer cases were diagnosed. For women with PJS, there was increased risk of breast cancer (RR 12.5, 95% Cl 5.1–26.0) compared with the breast cancer risk in the general Italian populational.¹⁵⁴

A case series by Hearle et al.¹⁵³ included 419 patients with a diagnosis of PJS from Europe, Australia and the United States. A germline mutation in *STK11* was identified in 297 (70%) of the 419 PJS patients. Sixteen women and one man developed breast cancer. There was no significant difference in risk for female breast cancer in women with and without germline mutations detected. The cumulative risks for developing breast cancer in women with PJS were: 40 years: 8% (95% CI 4–17%); 50 years: 13% (95% CI 7–24%); 60 years: 31% (95% CI 18– 50%) and 70 years: 45% (95% CI 27–68). This suggested an approximate six–fold increased risk for breast cancer in PJS (based on 7% risk of breast cancer in the general population by 70 years).¹⁵³

Table D.16 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.3.12 TP53 gene mutation

Evidence summary

Evidence classification: Convincing.

The increased risk of breast cancer associated with a *TP53* mutation among women in the general population has been estimated as 5.37 (95% CI 2.78–10.4) in a large case–control gene panel testing study that adjusted for family history of cancer.⁹³ Higher breast cancer risks have been estimated from studies among women in families with Li–Fraumeni syndrome.

The risk of breast cancer associated with a *TP53* mutation is higher for a women at a younger age (<40 years), than at an older age.¹⁰¹

Background

TP53 is a tumour suppressor gene that has been referred to as 'the guardian of the genome'. The *TP53* gene codes for tumour protein p53 that has a critical role in the cell following DNA damage. It can either activate repair of the damaged DNA, or stop the cell dividing and initiate cell death (apoptosis). The p53 protein helps prevent development of cancer by stopping cells with mutated or damaged DNA from dividing.^{161, 162}

Inherited, or germline, mutations in the tumour suppressor *TP53* gene are associated with Li– Fraumeni syndrome (LFS) and Li–Fraumeni–like syndrome. LFS is an autosomal dominant inherited disorder which is characterised by a high lifetime risk of malignancy. The commonest cancers are soft tissue sarcomas, particularly in children and young adults, and early–onset breast cancer in women.¹⁶¹ Various sets of diagnostic criteria have been developed for LFS. The majority of pathogenic *TP53* mutations are missense mutations that result in an altered TP53 protein, with reduced or no function.¹⁶²

LFS is a rare condition and the frequency of *TP53* mutations in the general population is uncertain, with estimates varying from 1 in 5,000 to 1 in 20,000.¹⁶¹ Germline *TP53* mutations can occur *de novo* and germline mutations in *TP53* have been identified in approximately 4–8% of women with early–onset breast cancer without a family history of LFS.^{163, 164}

Recent evidence

A large case–control gene panel testing study from Kurian et al.⁹³ estimated risks of breast cancer associated with germline mutations, using sequencing results of a 25–gene panel from 95,561 women tested clinically for hereditary cancer risk. Forty–two *TP53* mutations were detected in all women tested (0.04%), including 25 mutations in women with invasive ductal breast cancer. *TP53* mutations were associated with increased breast cancer risk, with OR 5.37 (95% CI 2.78–10.4)^{viii} from multivariate logistic regression analysis and OR 5.00 (95% CI 1.07–46.9; 19,056 cases with 15,826 controls) from a matched case–control analysis. The *TP53* mutations in this analysis were classified using the American College of Medical Genetics

viii Risk estimates for invasive breast cancer overall, i.e. ductal and lobular breast cancer, were almost identical to those for ductal breast cancer (personal communication; A. Kurian via email).

and Genomics Recommendations.⁹⁹ The analyses were adjusted for age, race/ethnicity and family cancer history. For *TP53* mutations that are associated with childhood mortality, the estimates represent the breast cancer risk among mutation carriers who survive to adulthood.⁹³

A case–control study by Couch et al.¹⁰¹ estimated risk of breast cancer in women with breast cancer referred for hereditary cancer genetic testing compared to controls, using results of germline multigene panel tests. *TP53* mutations were detected in 48 of 38,305 breast cancer cases and in 13 of 26,789 controls, and were associated with increased risk of breast cancer, OR 2.58 (95% CI 1.39–4.90). For women with *TP53* mutations who were diagnosed with breast cancer aged ≤40 years, the OR was 8.25 (95% CI 4.27–15.84).¹⁰¹

A pooled analysis by Easton et al.⁹⁸ estimated the increased breast cancer risk associated with *TP53* mutations as RR 105 (90% CI: 62–165). The authors indicated estimates for *TP53* mutations in most published studies were subject to ascertainment bias. One study based on *TP53* carriers identified through probands with childhood sarcoma also reported high breast cancer risk, SIR 105.1 (95% CI 55.9–179.8; 13 cases of breast cancer out of 56 carriers).¹⁶⁵

A prospective cohort study by Mai et al.¹⁶⁶ examined risks of first and subsequent cancers among germline *TP53* mutation carriers in the National Cancer Institute LFS Cohort. In the 186 women with a *TP53* mutation, breast cancer was the first cancer diagnosed in 76 women (68 of whom were diagnosed at <45 years), and was the second cancer diagnosed in 42 women. The annual hazard for breast cancer started to increase in the late teens and peaked at approximately 40 years. The cumulative incidence of breast cancer for women with a *TP53* mutation was approximately 85% by age 60 years.¹⁶⁶

A case series by Bougeard et al.¹⁶⁷ of 257 French women with a history suggestive of LFS who had an identified germline *TP53* mutation. In adults, breast cancer was observed in 79% of the women with a *TP53* mutation, and 31% of these women also developed a contralateral breast cancer.¹⁶⁷

Table D.17 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.4 Breast pathology

4.4.1 Previous benign breast disease

Evidence summary

Evidence classification—history of proliferative benign breast disease: Convincing.

Evidence classification—history of non-proliferative benign breast disease: Evidence of no association.

There is convincing evidence that a history of proliferative benign breast difsease (atypical hyperplasia or proliferative disease without atypia) is associated with an increased risk of breast cancer. The evidence is consistent across one meta-analysis and various studies reporting on one large prospective cohort. The increased breast cancer risk associated with atypical hyperplasia has been estimated as 3.93 (95% Cl 3.24–4.76) and with proliferative disease without atypia as 1.76 (95% Cl 1.58–1.95);¹⁶⁸ however these risk estimates should be interpreted cautiously as the reference population in most of the studies was not the general population.

No association between non-proliferative benign breast disease and risk of breast cancer was found in a meta-analysis of eight studies with high heterogeneity.¹⁶⁸

Background

Benign breast disease (BBD) is a broad group of conditions with benign (non-cancerous) changes in breast tissue. These changes can appear as abnormalities on imaging, such as mammography or ultrasound, or as palpable lesions found on physical examination. Different types of benign breast disease include those caused by an increase in the number of cells (proliferation) or by the growth of abnormal cells in the breast ducts or lobes (atypia). BBD is classified according to the degree of proliferation and/or atypia as: non-proliferative (NP), proliferative disease without atypia (PDWA), and atypical hyperplasia (AH). BBD can also be classified according to histology as: adenosis, atypical ductal hyperplasia (ADH), atypical lobular hyperplasia (ALH), fibroadenoma, papilloma, and cysts not otherwise specified.^{168, 169}

The mechanism for any association between BBD and breast cancer risk may involve genetic components¹⁷⁰ and may be influenced by exogenous hormone use. Postmenopausal women who use combined menopausal hormone therapy have an increased risk of BBD,¹⁷¹ while women prescribed the anti–oestrogen tamoxifen have a decreased BBD risk.¹⁷² BBD is generally regarded as a marker for breast cancer susceptibility, although it has been suggested that precursor cells may exist in BBD that may progress into breast cancer.^{168, 173} Shared risk factors, including genetic susceptibility, may contribute to any association between BBD and breast cancer.

Recent evidence

A meta-analysis by Dyrstad et al.¹⁶⁸ included 32 studies and estimated summary relative risks for breast cancer for BBD overall, for proliferative (PDWA and AH) disease, and NP disease compared with designated reference populations, or with a general or non-proliferative BBD population, rather than the general population. Breast cancer risk has also been estimated in several studies from the prospective Mayo Clinic BBD cohort of approximately 13,400 women in the United States who underwent benign breast biopsy between 1967 and 2001.¹⁷⁴⁻¹⁷⁷

The meta–analysis by Dyrstad et al.¹⁶⁸ estimated an increased breast cancer risk for BBD (not otherwise specified) with relative risk, RR 2.07 (95% CI 1.64–2.61; 10 studies with high heterogeneity). For NP disease, the meta–analysis indicated no association with breast cancer risk, RR 1.17 (95% CI 0.94–1.47; eight studies with high heterogeneity).¹⁶⁸

For AH, the meta–analysis by Dyrstad et al.¹⁶⁸ estimated the increased breast cancer risk as RR 3.93 (95% CI 3.24–4.76, 13 studies with low heterogeneity). Studies from the Mayo BBD cohort reported similar estimates for increased breast cancer risk for AH: HR compared with NP BBD at initial biopsy, 4.60 (95% CI 2.41–8.79);¹⁷⁴ HR compared with NP BBD in women with multiple biopsies, 5.49 (95% CI 2.56–11.81);¹⁷⁵ HR compared with NP BBD in women with excisional breast biopsies, 3.80, (95% CI 3.04–4.74);¹⁷⁶ and standardised incidence ratio (SIR) for women with AH on breast biopsy compared with the general population 4.34 (95% CI 3.66–5.12).¹⁷⁷

Breast cancer risk varies with the degree of atypia, with increased number of atypical foci in the breast associated with increased breast cancer risk.^{177, 178}

For ductal compared with lobular AH, inconsistent differences in the associated breast cancer risk have been reported from two meta–analyses^{168, 169} and from the Mayo Clinic BBD cohort study.^{177, 178}

For PDWA, the meta–analysis by Dyrstad et al.¹⁶⁸ estimated the increased breast cancer risk as RR 1.76 (95% CI 1.58–1.95; 15 studies with low heterogeneity). Studies from the Mayo Clinic BBD cohort have reported similar estimates for increased breast cancer risk for PDWA: HR compared with NP BBD at initial biopsy 1.79 (95% CI 1.20–2.66);¹⁷⁴ HR compared with NP BBD in women with excisional breast biopsies 1.61 (95% CI 1.40–1.85);¹⁷⁶ and HR compared with NP BBD in women with multiple biopsies 2.10 (95% CI 1.31–3.35).¹⁷⁵

Table D.18 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.4.2 LCIS

Evidence summary

Evidence classification: Convincing.

There is convincing evidence that a diagnosis of lobular carcinoma in situ (LCIS) is associated with increased risk of breast cancer. The evidence of effect is consistent, however large differences in methods, including sample size, study populations, inclusion of different treatment regimes, follow-up periods (including time since LCIS diagnosis) and statistical methods, combined with a low incidence of LCIS, have resulted in substantially different risk estimates across studies. Nevertheless, several studies have showed that there are no differences in the risk of subsequent breast cancer following a diagnosis of LCIS compared to DCIS. Moreover, the confidence intervals for the risk estimates for breast cancer after a diagnosis of LCIS are much wider than those for DICS, hence nearly all higher risk estimates

for LCIS compared to DCIS are unlikely to differ significantly from those for DCIS across studies. Finally, a validation study of an individual risk prediction model using Australian data has shown that actual incidence of breast cancer following an LCIS diagnosis is substantially lower than that predicted by a risk prediction model (IBIS-RET), for an LCIS diagnosis among women older than 50 years.

In conclusion, the body of evidence suggests that the risk of breast cancer after a diagnosis of LCIS may not be as high as reported in earlier studies; although a best estimate of risk remains unclear.

Background

LCIS is a non-invasive abnormality of the breast, characterised by abnormal changes in cells within the lobules and terminal ducts of the breast. It is usually found incidentally in breast biopsies performed for another reason, such as a suspicious mammogram.¹⁷⁹ The detection of LCIS has increased since the introduction of breast screening.^{180, 181}

Any association between LCIS and subsequent breast cancer risk may be due to common risk factors that may predispose to both LCIS and invasive breast cancer. LCIS can be considered a breast cancer marker. More recently, it has been suggested that LCIS can also be a precursor lesion that may progress to invasive breast cancer, based on associations with the laterality of the subsequent breast cancer and whether it is lobular or ductal^{182, 183}. Molecular similarities related to cancer development found between the LCIS and subsequent invasive cancer may also suggest progression of the LCIS to invasive cancer.^{180, 184}

Recent evidence

Substantial differences in risk estimates are observed across studies. For this particular exposure, data are cited from studies published several decades ago as these risk estimates are still frequently cited in the literature.

Differences in risk estimates may be due to inclusion of women with a spectrum of lobular neoplasia, i.e. the inclusion of women with atypical lobular hyperplasia (ALH). Histopathological diagnostic thresholds for ALF and LCIS have changed over time¹⁸⁵. The risk of subsequent breast cancer following LCIS also varies depending on the treatment for LCIS^{180, 186}. For example, studies which include women who underwent either unilateral or bilateral mastectomy will underestimate the risk compared with conservative or no treatment beyond the excisional biopsy. As treatments have varied over time then period of the study will affect risk estimates. Further, depending on the study type, risk estimates might be inflated as LCIS patients undergo more intensive screening regimes than the general population.

Subsequent breast cancer after a diagnosis of LCIS is more likely to be lobular than ductal^{181, 184, 187}. Mao et al.¹⁸⁶ reported a comparatively higher risk of subsequent invasive breast cancer for women with hormone receptor negative LCIS compared with hormone receptor positive LCIS (HR 0.356, 95% CI 0.14–0.90).

Chuba et al.¹⁸¹ found that breast cancer subsequent to LCIS was equally likely in either breast. An earlier study by Rosen et al.¹⁸⁸ also found that breast cancers occurred equally in

the ipsilateral and contralateral breasts among 99 women with LCIS. However, the risk of subsequent invasive breast cancer was reported in a large cohort study by King et al.¹⁸⁰ to be higher in the breast on the same side (ipsilateral) compared with the breast on the opposite side (contralateral). Rawal et al.¹⁸⁹ also observed higher breast cancer incidence in the ipsilateral breast.

There are inconsistent findings regarding the effect of age at LCIS diagnosis on risk of subsequent breast cancer.^{181, 186, 187, 190, 191}

Studies comparing LCIS and DCIS

The risk of breast cancer was lower after a diagnosis of LCIS than after a diagnosis of DCIS in a study of 1276 CIS patients (95% cases were DCIS) diagnosed in 1972-2002 and followed-up for less than 10 years, in The Netherlands (SIR = 2.5 vs. 3.4, respectively)¹⁹²; although the risk estimate for LCIS did not exclude 1.0 and as the confidence intervals were not presented it is likely that the difference was not significant. Overall increased risk was estimated as SIR 3.4 (95%: CI 2.6–4.3). Robinson et al.¹⁹³ has indicated that it was not clear if Soergomataram et al.¹⁹² allowed for mastectomies, but noted that they did apply overall incidence rates from the general population to each group, rather than half-rates, thus leading to expected numbers that were twice, and SIRs which were half, true values. Nevertheless, in the study by Robinson et al.¹⁹³ of 12 836 cases of CIS diagnosed in England between 1971 and 2003, the overall increased risk of breast cancer after a diagnosis of CIS was comparable to that observed by Soerjomataram et al.¹⁹² (SIR 1.96; 95% CI 1.96-2.14). In this study the increased risk of breast cancer was not different for DCIS and LCIS (specific results were not shown).¹⁹³

Rawal et al.¹⁸⁹ reported the increased invasive breast cancer risk associated with LCIS as RR 4.74 (95% CI 2.46–9.11) for ipsilateral invasive breast cancer and RR 3.16 (95% CI 1.42–7.03) for contralateral invasive breast cancer, from a cohort of 3,802 women in Sweden diagnosed between 1993 and 2003 with *in situ* disease. Comparative risks for DCIS were RR 3.80 (95% CI 2.98–4.84) and RR 1.96 (95% CI 1.40–2.74), respectively. This study included invasive cancers diagnosed at least one month after diagnosis of the *in situ* disease.¹⁸⁹

In a cohort study of 3455 women with CIS in Sweden, Warnberg et al.¹⁹¹ reported similar risks of subsequent breast cancer among women with a diagnosis of LCIS and DCIS (SIR 4.0, 95% CI 2.1–7.5 and SIR 4.5, 95% CI 3.7–5.5), respectively. Follow-up was only for around 5 years hence these data should be interpreted cautiously. Further, Franceschi et al.¹⁹⁴ observed that SIRs for subsequent breast cancer were higher for DCIS (8.6) than LCIS (4.2) among 249 primary cases of CIS in Switzerland (SIR 7.2; 95% CI 4.6–10.6). Using data from the same area in Switzerland, Levi et al.¹⁸⁷ showed that the incidence of subsequent breast cancer was similar among 579 cases of LCIS and DCIS (SIR 4.2 and 4.6, respectively; for CIS overall SIR 4.5, 95% CI 2.4-5.8).

LCIS only—relative risk

Chuba et al.¹⁸¹ using the SEER (Surveillance, Epidemiology and End Results program) database of women diagnosed with LCIS from 1973 to 1998 (4,853 women), estimated the SIR for invasive breast cancer within 10 years of diagnosis for women with LCIS compared with the general population as 2.4 (95% Cl 2.1–2.6). Subsequent cancer was equally likely to occur in either breast after partial mastectomy. This study included invasive cancers diagnosed at least 1 year after LCIS diagnosis but also included patients who had unilateral mastectomy at LCIS diagnosis. King et al.¹⁸⁰ indicated that the Chuba study was limited by a lack of central pathology review and treatment information.

Rawal et al.¹⁸⁹ reported the increased invasive breast cancer risk associated with LCIS as RR 4.74 (95% CI 2.46–9.11) for ipsilateral invasive breast cancer and RR 3.16 (95% CI 1.42–7.03) for contralateral invasive breast cancer, from a cohort of 3,802 women in Sweden diagnosed between 1993 and 2003 with in situ disease. This study included invasive cancers diagnosed at least one month after diagnosis of the *in situ* disease and did not account for mastectomies.

Many earlier studies have reported much higher risks in the range of 5.4 to 12 in studies including much smaller sample sizes conducted in the 1970s and 1990s, and these are frequently reported in the literature. For example, a relative risk of 'about 9' was reported among 39 women diagnosed with LCIS from the United States after an average follow-up of 18 years¹⁹⁵; increased risk 15 years after LCIS diagnosis was estimated to be 10.8 (95% CI: 4.3– 27.0). Rosen et al.¹⁸⁸ followed up 99 patients with LCIS not treated by mastectomy for an average of 24 years and reported a 9 times higher incidence of subsequent invasive breast cancer (28 cases) compared to the general population. Andersen¹⁹⁶ reported an 'about 12 times' higher incidence of breast cancer among 52 women with LCIS, 44 of whom had been treated by biopsy alone. Estimated risk of breast cancer was slightly lower in the study by Bodian et al.¹⁹⁰ among 236 patients with lobular neoplasia (LCIS), in which the observed long-term risk was 5.4 (95% CI 4.2-7.0; median follow-up 18 years).

LCIS only—cumulative risk

In a validation of the IBIS-RET (International Breast Cancer Intervention Study Risk Evaluation Tool) Lo et al.¹⁸⁵ showed that the mean observed 10-year risk of invasive breast cancer was 14.1% (95% CI 11.3%-17.5%) among 732 Australian women (Victorian Cancer Registry) with a mean-follow-up of 9.8 years. The mean assigned IBIS-RET 10-year risk was 20.9%. The authors noted that the lack of information regarding bilateral mastectomy or risk-reducing medication after LCIS diagnosis should not have affected findings as these interventions are rarely used in Australia.

Wong et al.¹⁹⁷ used data from the Surveillance, Epidemiology & End Results (SEER) database to identify 19,462 women with an LCIS diagnosis (mean age 53.7 years) between 1983 and 2014. Subsequent breast cancer incidence was 11.3% (95% CI 10.7-11.9) and 19.8% (95% CI 18.8-20.9) after 10 and 20 years, respectively. Mastectomy was performed in 11.1% of LCIS cases.

Cumulative risks vary across studies and follow-up period:

- Minimum of 7.1% for 10 years¹⁸¹
- 11.3% (95% CI 10.7-11.9) for 10 years¹⁹⁷
- 14.1% (95% CI 11.3-17.5) for 10 years¹⁸⁵
- 17% for 15 years¹⁹⁵
- 26% for 15 years¹⁸⁰
- 19.8% (95% CI 18.8-20.9) for 20 years¹⁹⁷
- 21.3% for 20 years¹⁹⁸
- 26% for 20 years¹⁸⁷.

Table D.19 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.4.3 DCIS

Evidence summary

Evidence classification: Convincing.

There is convincing evidence that a diagnosis of ductal carcinoma in situ (DCIS) is associated with increased risk of breast cancer. This evidence is consistent across cohort studies from several countries.

The increased breast cancer risk associated with DCIS (all grades) in Australia has been estimated as 3.9 (95% CI 3.6–4.2).¹⁹⁹ Risks are higher among women diagnosed at younger ages.

Background

DCIS is a heterogeneous, non-invasive abnormality of the breast, characterised by changes in the cells in the milk ducts. The abnormal cells are contained entirely within the milk ducts and have not spread into surrounding tissue. DCIS can be graded as high, intermediate or low. DCIS diagnoses were uncommon before mammography screening. The detection of DCIS in Australia has increased substantially since the introduction of breast screening.¹⁹⁹

Risk factors that are common to DCIS and invasive breast cancer, such as breast density, family history, history of benign breast disease and genetic factors, may play a part in any association of DCIS with increased risk of invasive breast cancer.^{200, 201} DCIS may be associated with increased risk for invasive cancer of the other breast or for cancers arising independently of the DCIS in the same breast, due to these common risk factors. Alternatively, it is possible that DCIS may progress to invasive breast cancer, although the probability of this occurring likely varies with characteristics of the DCIS, including its size and grade. Some DCIS tumours have been shown to have molecular features related to cancer development that are similar to those in subsequent invasive breast cancers, which may suggest progression of the DCIS to invasive breast cancer.²⁰⁰. Research aiming to clarify the malignant potential of DCIS lesions and factors that predict which lesions will become invasive is ongoing.

Recent evidence

In an Australian cohort study of 13,749 women diagnosed with DCIS between 1995 and 2005, the relative risk of invasive breast cancer compared with all Australian women was RR 3.9 (95% CI 3.6–4.2).¹⁹⁹ A similar increased risk of breast cancer was estimated for screen–detected DCIS in South Australian women (HR 4.0, 95% CI 3.4–4.8).²⁰²

Rawal et al.¹⁸⁹ reported the increased invasive breast cancer risk associated with DCIS as RR 3.80 (95% CI 2.98–4.84) for ipsilateral invasive breast cancer and RR 1.96 (95% CI 1.40–2.74) for contralateral invasive breast cancer, from a cohort of 3,802 women in Sweden diagnosed between 1993 and 2003 with *in situ* disease. This study included invasive cancers diagnosed at least one month after diagnosis of the *in situ* disease.¹⁸⁹

Cohort studies from other countries estimated increased breast cancer risk associated with DCIS as follows:

- SIR for breast cancer compared with the general population 4.8 (95% CI 4.1–5.5; 3,046 Norwegian women diagnosed with DCIS 1993–2007)²⁰³
- SIR 1.4 (95% CI 1.2–1.5) for invasive breast cancer that is contralateral (cancer in the opposite breast) and SIR 1.7 (95% CI 1.4–2.1) for invasive breast cancer that is ipsilateral (cancer in the same breast) (23,547 Californian women diagnosed with DCIS 1988–1999)²⁰⁴
- SIR 4.6 (95% CI 3.4-6.2; 482 Swiss women diagnosed with DCIS 1977-2002).187

Other estimates for increased risk of breast cancer following a diagnosis of DCIS, compared to following a diagnosis of LCIS, are indicated in section 4.4.2.

The relative risk of invasive breast cancer was higher for those younger at DCIS diagnosis in Australian women: RR for <40 years at DCIS diagnosis 19.8 (95% Cl 14.2–25.4), RR for 40–49 years at DCIS diagnosis 5.6 (95% Cl 4.7–6.5), RR for \geq 50 years at DCIS diagnosis 3.0–4.2.¹⁹⁹ Cohort studies from other countries also reported higher risk of invasive breast cancer for women who were younger at diagnosis of DCIS than for those older at DCIS diagnosis.^{189, 203-206}

The relative risk of invasive breast cancer in the period up to five years from DCIS diagnosis in Australian women was RR 3.6 (95% CI 3.3–3.9), which was lower than for the subsequent period of 5–11 years from DCIS diagnosis (RR 5.3, 95% CI 4.5–6.0).¹⁹⁹

A meta-analysis by Zhang et al.²⁰⁷ that examined the effect of detection method (screening versus non-screening) and tumour characteristics, such as margins, grade and hormone receptors, reported a higher risk of invasive breast cancer for positive versus negative margins and for non-screening versus screening-detected cancers.

Cohort studies have reported differences in risk of invasive breast cancer for different treatment regimens for DCIS.^{202-206, 208, 209}

Table D.20 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.4.4 Previous primary invasive breast cancer

Evidence summary

Evidence classification: Convincing.

There is convincing evidence that having had a primary invasive breast cancer is associated with an increased risk of a second primary breast cancer. There is consistent evidence from a large number of cohort studies. The increased risk of a second primary breast cancer associated with a primary breast cancer has been estimated as 1.55 (95% CI 1.45–1.66) in an Australian study²¹⁰ and has ranged from 1.15 to 3.5 in European cohort studies.²¹¹⁻²¹⁷

Background

A second primary breast cancer refers to a new primary breast cancer, which is different from a recurrence of the initial breast cancer. A second primary breast cancer occurs more commonly in the opposite (contralateral) breast, but can occur in the same (ipsilateral) breast if treatment for the first primary cancer was breast-conserving surgery. Contralateral breast cancer has been commonly used as the outcome measure of a second primary breast cancer, with any ipsilateral cancers recorded as recurrent being excluded.^{210, 212, 216}

Any association between risk of second primary breast cancer with first primary breast cancer may be due to common risk factors predisposing to both primary cancers, such as genetic, hormonal, environmental or lifestyle-related risk factors. Late effects of treatment, such as radiotherapy to the breast, may also potentially contribute to development of a second primary breast cancer.^{210, 212}

Recent evidence

Many studies investigating an association between primary breast cancer and risk of second primary breast cancer used metachronous contralateral breast (which develops at a consequent time to the first primary breast cancer) as the outcome measure of the second primary breast cancer. Synchronous cancers (defined usually as those diagnosed within six months of the first primary) have been specifically excluded in some studies, because they are more likely to be diagnosed as a result of detection bias.^{210, 213, 218}

In an Australian cohort study²¹⁰ of 26,725 women with primary breast cancer diagnosed from 1982–2001 in Queensland, the SIR relative to the general population for a second invasive breast cancer was 1.55 (95% Cl 1.45–1.66) (personal communication; D. Youlden via email). Cohort studies from other countries estimated increased risk of second primary contralateral breast cancer associated with a primary breast cancer:

- SIR 2.96 (95% CI 2.82–3.12; 17,745 women with non–metastatic breast cancer from France, 1981–2000)²¹¹
- SIR 1.15 (95% CI 1.02–1.29; European Prospective Investigation into Cancer and Nutrition (EPIC) cohort)²¹²
- SIR 1.2 (95% CI 1.1–1.3; 49,804 women with primary breast cancer from German cancer registries)²¹³
- SIR 2.46 (95% CI 2.40–2.52; 4,927 women diagnosed with invasive breast cancer, 1992–2004, from SEER database)²¹⁵
- SIR 1.74 (95% CI 1.41–2.12; 5,663 women with primary breast cancer in France, 1989– 1997)²¹⁴
- SIR 1.9 (95% CI 1.8–2.1; 45,229 breast cancer patients diagnosed in the Netherlands, 1989– 2002)²¹⁶
- SIR 3.5 (95% CI 3.2–3.8 (9,919 women diagnosed with breast cancer in the Netherlands, 1972–2000).²¹⁷

One cohort study (4,152 women diagnosed with breast cancer in Switzerland, 1995–2007) reported a higher risk of second primary breast cancer only among women with oestrogen receptor negative (ER–) rather than oestrogen receptor positive (ER+) primary breast cancers (SIR 1.98; 95% CI 1.19–3.09).²¹⁹

The risk of second primary breast cancer associated with a primary breast cancer reported varies with the treatment regimen for the first primary breast cancer. Endocrine treatment for the first primary breast cancer was associated with a lower risk of second primary breast cancer compared with no endocrine treatment (HR 0.58; 95% CI 0.48–0.69) in the cohort study by Schaapveld et al.²¹⁶ Three other studies also reported a decreased risk of breast cancer for endocrine treatment versus no endocrine treatment.^{211, 218, 219}. Schaapveld et al.²¹⁶

reported chemotherapy for first primary breast cancer was associated with a lower risk of contralateral breast cancer compared with no chemotherapy (HR 0.73; 95% Cl 0.60–0.90), but there was no association for radiotherapy treatment.

Table D.21 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.
4.5 Endogenous hormones

4.5.1 Age at menarche

Evidence summary

Evidence classification: Convincing.

There is convincing evidence that a younger versus an older age at menarche is associated with an increased risk of breast cancer. A large pooled analysis of 117 international studies estimated a 5% increased risk of breast cancer for each year younger at menarche (RR 1.05, 95% Cl 1.044–1.057 per year).²²⁰

Background

Breast cancer risk has been related to several reproductive risk factors. This finding is consistent with the hypothesis that breast cancer risk is related to the total extent of breast mitotic activity, driven by oestrogen and progesterone exposure during the luteal phase of the menstrual cycle, which will determine the probability of tumorigenic somatic events. Early age at menarche therefore increases the period during which the breast is mitotically active, particularly the period before first full term pregnancy during which breast cells undergo differentiation.²²¹ Women who have an early age of menarche therefore have a higher lifetime exposure to oestrogen and progesterone and breast tissue is responsive to steroid hormones produced by the ovaries during the reproductive years.²²²

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR)¹¹ stated 'early menarche [before the age of 12] increases lifetime exposure to oestrogen and progesterone and the risk of breast cancer', listing early menarche as an established cause of breast cancer. The WCRF/AICR 2018 Breast Report also noted the reverse applies: 'late menarche reduces the risk of breast cancer'.

Recent evidence

A large pooled analysis conducted by the Collaborative Group on Hormonal Factors included 118,964 women with invasive breast cancer and 306,091 without the disease from 117 international studies conducted between 1970 and 1999.²²⁰ Risk of breast cancer increased by a factor of 1.05 (95% CI 1.044–1.057) for each year younger at menarche. There was no evidence of significant heterogeneity across studies either overall, or according to study design. The association was stronger for lobular than ductal tumours, but there were no significant differences by oestrogen receptor status. Mean age of menarche was 13.1 years in the combined dataset. Compared with women aged 13 years at menarche, the RR for women aged 12, 11 and <11 years was 1.07 (95% CI 1.05–1.09), 1.09 (95% CI 1.06–1.12) and 1.19 (95% CI 1.13–1.25), respectively; and women aged 14, 15 and \geq 16 years 0.98 (95% CI 0.96–1.00), 0.92 (95% CI 0.89–0.95) and 0.82 (95% CI 0.79–0.85), respectively.

Data from two more recent cohort studies generally support these findings. Findings from the French Teacher Cohort⁴⁴ (67,634 women) were presented stratified by menopausal status. Women who experienced menarche at age 12–14 years compared with \geq 14 years were 36% more likely to develop premenopausal breast cancer (HR 1.36, 95% CI 1.09–1.70), although increased risks for younger ages at menarche were not significant. Among postmenopausal women, the increased risk of breast cancer associated with a later age at menarche was higher for women who experienced menarche at aged 10–12 years (HR 1.19, 95% CI 1.07–1.32) or 13–14 years (HR 1.13, 95% CI 1.04–1.23), compared with \geq 14 years. There was a non–significant increased risk among those who experienced menarche at age less than 10 years (1.58, 95% CI 0.91–2.74).

The prospective Breakthrough Generations Study in the United Kingdom included 104,931 women. A significant inverse trend with increasing age at menarche was reported (HR for a one-year increase in age at menarche 0.89, 95% Cl 0.81–0.99).²²³ However, the analyses were not adjusted for known confounders of breast cancer risk including alcohol consumption and body mass index, and follow-up was only for four years.

Table D.22 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.5.2 Parity

Evidence summary

Evidence classification: Convincing.

There is convincing evidence that parity is associated with a decreased risk of breast cancer and that nulliparity is associated with an increased risk of breast cancer.

In a dose–response analysis, the decreased breast cancer risk associated with parity compared to nulliparity was estimated to be 0.93 (95 % CI 0.95–0.91) per birth.²²⁴ In a metaanalysis, the increased breast cancer risk associated with nulliparity was estimated to be 1.16 (95% CI 1.04–1.26) compared with parous women.²²⁶

Background

Parity can be defined as the number of times a female has been pregnant and carried the pregnancies to a viable gestational age. Nulliparity refers to never having completed a pregnancy to a viable gestational age. Parity may reduce breast cancer risk through changes that occur in breast epithelial cells in preparation for lactation; the more highly differentiated cells are thought to be less vulnerable to DNA-damage.^{12, 225}

WCRF/AICR

The World Cancer Research Fund/American Institute of Cancer Research (WCRF/AICR)¹¹ stated that 'not bearing children increases lifetime exposure to oestrogen and progesterone and the risk of breast cancer', listing 'not bearing children' as an established cause of breast cancer. The WCRF/AICR 2018 Breast Report also noted the reverse applies; 'bearing children reduces the risk of breast cancer'.

Recent evidence

A pooled analysis of individual data from 47 epidemiologic studies in 30 countries reported that women with breast cancer had, on average, fewer births than did controls (2.2 versus 2.6).²²⁴ The relative risk of breast cancer decreased by 0.93 (95 % CI 0.91–0.95) for each birth.

A meta-analysis by Nelson et al.²²⁶ included 17 studies: 3 cohort, 13 case-control and one nested case-control study (with significant heterogeneity across the studies). Nulliparous women had an increased risk of breast cancer (OR 1.16, 95% Cl 1.04–1.26) compared with parous women. Women with three or more births were at lower risk of breast cancer (summary OR 0.73, 95% Cl 0.61–0.87), compared with nulliparous women.

The mostly recently published meta-analysis included 14 studies published between 2007 and 2014 reporting on the association according to tumour subtype (4 cohort and 10 case-control studies). This study found a significant protective effect of parity compared with nulliparity for luminal breast cancer (summary OR 0.75, 95% Cl 0.70–0.81; with evidence of significant heterogeneity) but not human epidermal growth factor receptor positive (HER2+) or triple negative breast cancer (TNBC).²²⁷

The two recent meta-analyses by Nelson et al.²²⁶ and Lambertini et al.²²⁷ did not include data from the E3N & European Prospective Investigation in Cancer and Nutrition (EPIC) cohorts. Dartois et al.⁴⁴ reported an increased risk of postmenopausal breast cancer associated with nulliparity in the E3N cohort data (HR 1.28, 95% CI 1.13–1.45), when compared with women having more than one child with the first birth before age 30 years. In the EPIC cohort, ever having a full-term birth was associated with a decreased risk of ER+PR+ breast cancer (HR 0.87, 95% CI 0.78–0.96; with evidence of dose-response); however parity was not associated with risk of ER-PR- breast cancer.²²⁸

Table D.23 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.5.3 Age at first birth

Evidence summary

Evidence classification: Convincing.

There is convincing evidence that women who give birth to their first child at later ages are at increased risk of breast cancer compared with women who have their first child at younger ages. The evidence is consistent across studies and there is also evidence of a dose-response association. Data from the Nurses Health Studies showed the increased risk to be 3% per one year increase in age at first birth (RR 1.03; 95% CI 1.02–1.03).²²⁹ The association may only be for oestrogen-receptor positive (ER+) breast cancer sub-types.

Background

Prior to first pregnancy, the breast has a high proportion of undifferentiated ducts and alveolar buds.²²⁸ An early age at first full term pregnancy may protect against breast cancer through the earlier induction of terminal differentiation of breast cells at risk.²³⁰ Terminally

differentiated cells have lower proliferation rates and longer DNA repair phases, and thus are less likely to undergo malignant transformation.²²⁸ The shorter the interval between menarche and first birth, the less time undifferentiated breast epithelial cells are at risk of carcinogenesis.²²⁸ Full term pregnancies also cause long term reductions in levels of circulating sex hormones,²²⁸ which may account for any association between age at first birth and risk of breast cancer.

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCR/AICR)¹¹ stated that 'a first pregnancy/birth over the age of 30 increases lifetime exposure to oestrogen and progesterone and the risk of breast cancer', listing it as an established cause of breast cancer. WCRF/AICR 2018 Breast Report also noted the reverse applies, 'pregnancy before the age of 30 reduces the risk of breast cancer'.

Recent evidence

Two recently published systematic reviews with meta–analysis^{226, 227} and two large cohort studies not included in either review^{228, 229} have examined the association between age at first birth and breast cancer risk.

The meta-analysis by Nelson et al.²²⁶ included five studies and compared breast cancer incidence in women aged 30 years or older with women aged 25–29 years at first birth. This study reported a pooled RR of 1.20 (95% CI 1.02–1.42; with no evidence of significant heterogeneity).

The systematic review and meta-analysis by Lambertini et al.²²⁷ included 12 studies (three cohort and nine case-control studies) and compared risk of breast cancer among women aged >24 years versus those aged ≤24 years at first birth for different breast cancer molecular subtypes. No estimate was provided for breast cancer overall. An increased risk of developing breast cancer of the luminal subtypes was observed (pooled OR for >24 years versus <24 years 1.15, 95% Cl 1.00–1.32; with evidence of significant heterogeneity), but no association of age at first birth with human epidermal growth factor receptor 2 (HER2) or triple negative breast cancer subtypes was observed.

Ritte et al.²²⁸ reported on data from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort (311,097 women; 9,456 breast cancer cases). No estimate was provided for breast cancer overall, only according to hormone receptor status. A later age at first birth (≥35 years versus ≤19 years) was associated with an increased risk of oestrogen receptor positive/progesterone receptor positive (ER+PR+) tumours (HR 1.47, 95% CI 1.15–1.88) but not with risk of oestrogen receptor negative/progesterone receptor negative (ER-PR-) tumours.

Data from the Nurses' Health Studies (NHS I and II; 121,700 and 116,430 women, respectively) indicated a positive association between older age at first birth and risk of developing breast cancer in a dose-response analysis (RR per one year increase in age at first birth 1.03, 95% CI 1.02–1.03).²²⁹ Analysis according to luminal subtypes showed an association between age at first birth and risk of luminal-A breast cancer (RR per one year increase in age at first birth 1.03, 95% CI 1.03, 95% CI 1.02–1.05), but not HER2 breast cancer.

Table D.24 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.5.4 Breastfeeding

Evidence summary

Evidence classification: Probable.

Breastfeeding (or lactation) is probably associated with a small decreased risk of breast cancer in the mother.¹¹ There is evidence of a dose-response relationship, that is, the longer the duration of breastfeeding, the larger the protective effect. The risk of breast cancer associated with breastfeeding has been determined by the WCRF¹⁰ from a pooled analysis of 13 prospective cohort studies as 0.98 (95% Cl 0.97–0.99) per 5–month increase in breastfeeding duration.

Background

Breastfeeding is defined as feeding a child human breast milk.²³¹ Lactation is defined as the physiological process of milk production.

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) have indicated that there is robust evidence for mechanisms operating in humans.¹¹ Several potential mechanisms through which breastfeeding might influence breast cancer risk have been proposed. The most plausible mechanism is through the hormonal effects of amenorrhoea and the consequent reduction in lifetime exposure to steroid hormones, including oestrogen.¹¹ Lactation may also induce epigenetic changes that exert a lasting impact on the risk of carcinogenesis. Epithelial exfoliation of breast tissue during lactation and the process of epithelial apoptosis at the end of breastfeeding may also influence breast cancer risk by eliminating cells with DNA damage.^{11,232}

WCRF/AICR

The World Cancer Research Fund/American Institute of Cancer Research¹¹ considered that "lactation probably protects against breast cancer (unspecified)"—that is, the judgement was 'Strong–probable'. A dose–response of 13 prospective studies showed a small but significant protective effect per 5–month duration of breastfeeding and overall breast cancer risk (RR 0.98, 95% CI 0.97–0.99).¹⁰ The evidence was insufficient to specify the association separately for premenopausal and postmenopausal breast cancer.

Recent evidence

Three meta-analyses reporting on the association between breastfeeding and breast cancer were published in 2015 and 2016.^{227, 233, 234} There was substantial overlap between studies included in each of these meta-analyses and also with the Continuous Update Project systematic literature review.¹⁰ The meta–analysis by Zhou et al.²³³ included three cohort studies and 23 case–control studies. The three cohort studies included were also included in the Continuous Update Project systematic review.¹⁰ A significant protective effect of 'ever' breastfeeding compared with 'never' breastfeeding was observed (RR 0.61, 95% CI 0.44–0.85) and of longest versus shortest duration of breastfeeding (RR 0.47, 95% CI 0.37–0.60). Across all studies involving all exposures, findings were significant among 23 case–control studies (summary OR 0.44, 95% CI 0.36–0.55) but not among the more reliable cohort studies (summary RR 1.00, 95% CI 0.91–1.08).

Two recent meta-analyses and a pooled analysis examined the relationship for 'ever' versus 'never' breastfeeding—and longer duration of breastfeeding in the pooled analysis—and risk of breast cancer according to breast cancer subtype and not breast cancer overall. The majority of studies contributing to the summary estimates are case-control studies, some of which were not population based,²²⁷ indicating the preliminary nature of the findings according to breast cancer subtype. Lambertini et al.227 reported a significant protective effect of 'ever' versus 'never' breastfeeding for Luminal and triple negative disease but not for human epidermal growth factor receptor 2 (HER2) breast cancer. The pooled analysis of three case-control studies by Ma et al.²³⁵ reported a significant inverse association between longer duration of breastfeeding and triple negative breast cancer and Luminal A-like breast cancer but not Luminal B-like nor HER2-enriched breast cancer. The meta-analysis by Islami et al.²³⁴ included eight cohort studies (all of which were included in the Continuous Update Project systematic review).¹⁰ For cohort studies, the association was significant only for oestrogen receptor negative (ER-)/progesterone receptor negative (PR-) breast cancer (summary RR 0.84, 95% CI 0.72–0.97) and triple negative subtypes (summary RR 0.73, 95% CI 0.62-0.87).

Table D.25 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.5.5 Age at menopause

Evidence summary

Evidence classification: Convincing.

There is convincing evidence that older age at menopause is associated with an increased risk of postmenopausal breast cancer. Evidence from a large pooled analysis of a substantial number of studies indicates a dose-response relationship, with risk increasing by about 3% for each year older at menopause (RR 1.029, 95% Cl 1.025–1.032).²²⁰ The increased risk of breast cancer with later menopausal age is one of several findings showing that any factor that increases exposure to endogenous oestrogen increases the risk of breast cancer.

Background

Menopause is signalled by 12 months since last menstruation. The median age of menopause in Australian women is 51 years.²³⁶ During natural menopause, the body's production of oestrogen and progesterone decreases. The later a woman goes through menopause, the longer her breast tissue is exposed to oestrogens released by the ovaries during her menstrual periods and the greater her lifetime exposure to oestrogen.

Recent evidence

The most reliable study providing evidence of an association between age at menopause and breast cancer risk is a large pooled analysis conducted by the Collaborative Group on Hormonal Factors in 2012.²²⁰ This study included 118,964 women with invasive breast cancer and 306,091 without the disease from 117 international studies conducted between 1980 and 2011 (38% of the cases were from cohort studies, 42% from population-based case-control studies and the remaining 20% from case–control studies with hospital controls). Among 35 cohort studies, risk of postmenopausal breast cancer was approximately 3% higher (RR 1.029; 95% CI 1.025–1.032) for every 1-year increase in age at natural menopause and there was no evidence of significant heterogeneity either across studies overall or according to study design. Relative to women who experienced menopause at age 50–54 years, women with age at menopause of 55 years or older had a 12% higher risk of breast cancer (RR 1.12, 95% CI 1.07–1.17) and women experiencing menopause at age 45–49 years had 14% lower risk (RR 0.86, 95% CI 0.84–0.89), compared with women aged 50 years or older at menopause. The association was stronger for oestrogen receptor-positive (ER+) disease than for oestrogen receptor-negative (ER-) disease and for lobular than for ductal tumours. The magnitude of the association did not differ significantly between women with a natural menopause and women whose menopause was induced (for example, bilateral oophorectomy), although the association was attenuated in women who were overweight or obese.

There have been two other large studies examining age at menopause and risk of breast cancer published since the Collaborative pooled analysis. One was a meta-analysis of six case-control studies among Chinese and Japanese women that is not generalisable to the Australian population.²³⁷ Another was a prospective cohort study—the European Prospective Investigation into Cancer and Nutrition (EPIC) study—of 311,097 European women,²²⁸ focusing on hormone receptor status and which showed no association with ER+PR+ or ER-PR- subtypes.

Table D.26 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.5.6 Circulating hormones—steroids

Evidence summary

Evidence classification—Convincing: oestrogen (postmenopausal), testosterone, insulin–like growth factor [IGF1].

Evidence classification—Inconclusive: oestrogen (premenopausal), sex hormone binding globulin [SHGB], luteal phase progesterone, prolactin.

There is convincing evidence from large pooled analyses that higher circulating levels of oestrogen, testosterone, and IGF–1 are associated with an increased risk of postmenopausal breast cancer (OR 2.15, 95% CI 1.87–2.46;²³⁸ OR 2.04, 95% CI 1.76–2.37;²³⁸ and OR 1.28, 95% CI 1.14–1.44;²³⁹ for highest versus lowest levels, respectively).

The evidence for an association between circulating levels of oestrogen and risk of premenopausal breast cancer, luteal progesterone and sex hormone binding globulin

(SHBG) and risk of breast cancer is inconclusive. The findings across studies are inconsistent. For prolactin the evidence is limited in amount.

There is some evidence that SHBG is not associated with risk of premenopausal breast cancer risk, and for postmenopausal breast cancer there is evidence of an inverse association.

Background

Endogenous sex or steroid hormones such as oestrogens, progesterone and androgens—such as testosterone—are hormones naturally produced by the body as part of normal healthy functioning. As a woman approaches and goes through menopause, levels of these hormones decline.

Oestrogen, produced by the ovaries, has multiple functions, including stimulating puberty including breast growth, laying down fatty deposits, causing the vagina to secrete mucous. It also affects skin and bones and can protect against heart disease. It regulates the menstrual cycle. Progesterone is produced by the ovaries and adrenal glands and is essential for fertility and for sustaining a pregnancy. Its most important function is to encourage the endometrium to secrete proteins in the second half of the menstrual cycle, in preparation for the fertilised egg. Testosterone is the most abundant biologically active female hormone, essential for physical and mental health in women.

Potential biological mechanisms suggested for the association between oestrogens and breast cancer risk include their actions to increase the mitotic rate and proliferation of breast epithelial cells, leading to increased risk of mutations and stimulation of the growth of early tumours.²⁴⁰ There is limited understanding of the way endogenous progesterone acts in the development of breast cancer. Not all progesterone signalling is tumour-promoting and progesterone may have anti-proliferative actions in breast cells. (See also section 3.2.3.)

Androgens have more complex actions, with both inhibitory and proliferative effects on breast cells in pre-clinical studies.²⁴¹ Testosterone can act directly on breast cells via the androgen receptor, which may inhibit proliferation. Androgens may also act indirectly through conversion by the aromatase enzyme in breast tissue to oestrogen, which has a proliferative effect via the ER.²⁴¹

SHBG is a protein that binds oestrogen and testosterone, transports them in the bloodstream and influences their bioavailability to cells. Levels of sex SHBG are inversely correlated with BMI. Any association between higher levels of SHBG and decreased breast cancer risk may involve reduced body fat and less aromatisation of hormones from androgens to oestrogens in fat tissue.⁵

Evidence

The evidence regarding any association between levels of oestrogen and risk of premenopausal breast cancer are inconclusive. Two pooled analyses have shown differing results.

The Endogenous Hormones and Breast Cancer Collaborative Group (EHBCCG)²⁴⁰ conducted a pooled analysis of individual participant data from seven prospective studies, including data from the Nurses' Health Study II, the Hormones and Diet in the Aetiology of Breast Cancer Risk (ORDET) cohort, and the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort studies. Among 767 premenopausal women with breast cancer and 1,699 controls, increased odds of breast cancer were found for doubling of levels of circulating oestradiol (OR 1.19, 95% CI 1.06–1.35), calculated free oestradiol (OR 1.17, 95% CI 1.03–1.33), oestrone (OR 1.27, 95% CI 1.05–1.54), androstenedione (OR 1.30, 95% CI 1.10–1.55), dehydroepiandrosterone sulphate (DHEAS) (OR 1.17, 95% CI 1.04–1.32), and testosterone (OR 1.18, 95% CI 1.03–1.35). Breast cancer risk was not associated with luteal phase progesterone or SHBG. An earlier pooled analysis of many of the same studies did not find an association between circulating levels of oestradiol and risk of premenopausal breast cancer (OR 1.10, 95% CI 0.96–1.27).

No associations were found between circulating oestrogens and progesterone and premenopausal breast cancer risk in some of the individual studies, including the Nurses' Health Study II,²⁴¹ ORDET,²⁴² and the EPIC cohort.²⁴³ However, in the Nurses' Health Study II, premenopausal luteal oestrogen levels were positively associated with ER+PR+ (oestrogen receptor positive/progesterone receptor positive) breast cancers.²⁴¹ For circulating testosterone, positive associations with breast cancer risk in premenopausal women were demonstrated in each of the Nurses' Health Study II,²⁴¹ ORDET cohort,²⁴² and the EPIC cohort.²⁴³

A pooled analysis of data by the EHBCCG from 18 prospective studies indicated a positive association between levels of circulating steroid hormones and risk of postmenopausal breast cancer—OR for highest versus lowest levels included oestradiol OR 2.15 (95% Cl 1.87–2.46), oestrone OR 1.81 (95% Cl 1.56–2.10) and testosterone OR 2.04 (95% Cl 1.76–2.37).²³⁸

This analysis also showed a positive association between each of these endogenous steroid hormones and BMI in postmenopausal women. In an earlier analysis of these pooled data, from nine prospective studies, levels of oestrogens and androgens were positively associated with postmenopausal breast cancer risk.²⁴⁴ SHBG was associated with a decreased risk of postmenopausal breast cancer.²⁴⁴ Significant dose–responses were observed for all hormones. Levels of progesterone were not examined in this study.

For breast cancer subtypes, varying associations between circulating oestrogens and androgens and postmenopausal breast cancer risk have been reported. Associations with endogenous oestrogens and androgens are strongest for ER+ breast cancers. However, some associations have been also reported with ER- breast cancers—for example, in a nested case-control study²⁴⁵ and the ORDET cohort²⁴⁶—including association between higher levels of testosterone with a lower risk of ER- breast cancer in postmenopausal women.²⁴⁷

Insulin-like growth factor 1

Background

IGF1 is a growth promoting peptide or hormone naturally produced by the body, which stimulates cell proliferation and inhibits programmed cell death (apoptosis) directly. There is also evidence from preclinical studies for crosstalk between the signaling pathways for oestrogen and IGF1. This may result in stimulation of cell growth and suppression of apoptosis, or programmed cell death. Therefore, higher circulating levels of IGF1, especially in combination with signaling via the ER, may facilitate cancer development in breast tissue.²⁴⁸

Evidence

Associations between circulating IFG1 level and increased breast cancer risk have been reported by EHBCCG.²³⁹ The pooled analysis of individual data from 17 prospective studies

showed that plasma IGF1 concentrations were associated with increased breast cancer risk for women in the highest versus the lowest quintile of IGF1 concentration (OR 1.28, 95% CI 1.14–1.44). The association was not substantially modified by menopausal status or by adjustment for breast cancer risk factors. For ER+ breast cancer, the association was significant (OR 1.38, 95% CI 1.14–1.68); however, there was no significant association for ER– breast cancer (OR 0.80, 95% CI 0.57–1.13).²³⁹ More recent data from the EPIC study showed an association only among ER+ breast cancer (OR 1.41, 95% CI 1.01–1.98) and among ER+ postmenopausal but not premenopausal breast cancer.²⁴⁸

Prolactin

Background

Prolactin is an endogenous hormone produced in the pituitary gland. It has a major role in milk production during lactation.²⁴⁹ Prolactin also has other physiological actions, including reproductive, metabolic and behavioural. It regulates fluids and the immune system and may also be produced locally in several other tissues.²⁵⁰

Potential mechanisms for the association of prolactin with breast cancer risk include its effects on increasing cell proliferation and reducing apoptosis, and synergistic effects with oestrogen and progesterone in the breast.^{251, 252}

Evidence

Analysis from the Nurses' Health Study has indicated an increased breast cancer risk for higher prolactin measured within 10 years of breast cancer diagnosis (RR 1.20, 95% Cl 1.03– 1.40 for highest versus lowest quartiles).²⁵¹ The association was stronger for ER+ breast cancer (RR 1.28, 95% Cl 1.07–1.54) and for postmenopausal women (RR 1.37, 95% Cl 1.11–1.69). Analysis from the EPIC cohort also indicated a positive association between prolactin levels and risk of postmenopausal breast cancer (OR 1.29, 95% Cl 1.05–1.58 for highest versus lowest quartile).²⁵² This risk was only significant in women who used postmenopausal hormone therapy (MHT) at time of testing. A non–significant inverse association between prolactin and premenopausal breast cancer risk was observed.

4.5.7 PCOS

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between polycystic ovarian syndrome (PCOS) and risk of breast cancer is inconclusive. The limited moderate and low quality evidence available indicates no association between PCOS and risk of breast cancer.

Background

PCOS is an endocrine disorder that affects around 8–13% of women of reproductive age and is characterised by features such as irregular or absent menstrual periods, skin and hair changes related to high levels of androgens such as hirsutism, and cysts on the ovaries²⁵³.

High blood pressure and obesity, and metabolic abnormalities such as insulin resistance, diabetes and high cholesterol levels, can be associated with PCOS.²⁵⁴

PCOS is associated with factors that increase risk of breast cancer (such as later age at first pregnancy), as well as factors that reduce risk of breast cancer (later age at menarche, anovulatory cycles).²⁵⁵ Obesity may also be a mediator or confounder of any association of PCOS with breast cancer risk.²⁵⁴ Potential mechanisms for any association of PCOS with breast cancer risk include prolonged anovulation with consequent exposure to oestrogen unopposed by progesterone, and increased androgen levels.²⁵⁴

Recent evidence

Methodological limitations in the evidence base include variable adjustment for confounding variables such as body mass index (BMI) and other established breast cancer risk factors, the use of patient recall for PCOS diagnosis, and differences in the diagnostic criteria used for PCOS.²⁵⁴⁻²⁵⁶

A meta-analysis by Shobeiri & Jenabi²⁵⁵ showed no association between PCOS and risk of breast cancer among five cohort studies (OR 1.18, 95% CI 0.93–1.43, no heterogeneity) or among three case-control studies (OR 0.87, 95% CI 0.44–1.31, low heterogeneity). The meta-analysis included over 45,000 participants, and study quality was assessed as moderate for four studies and low for four studies.²⁵⁵

A meta–analysis by Chittenden et al.²⁵⁶ included one case–control study that was not included by Shobeiri & Jenabi.²⁵⁵ The findings were consistent with those of Shobeiri & Jenabi,²⁵⁵ showing no association between PCOS and risk of breast cancer in the meta–analysis of three case–control studies (OR 0.88, 95% CI 0.44–1.77).²⁵⁶

Table D.27 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.6 Exogenous hormones

4.6.1 Hormonal contraception—combined

Evidence summary

Evidence classification: Convincing (for current and recent use).

There is convincing evidence that current use of combined oestrogen-progestogen oral contraceptives (OCs) is associated with an increased risk of breast cancer. Meta-analyses of prospective studies indicate an increased risk of breast cancer among current users of OCs that increases with increasing duration of use. The increased risk has been estimated as 1.07 (95% Cl 1.03–1.11) for every five years of use.²⁵⁷ The increased risk attenuates after cessation of use. Different progestogen components of combined OCs may have differential effects on breast cancer risk.

Background

Combined OCs consist of an oestrogen and a progestogen.²⁵⁸ The main contraceptive action of combined OCs is through preventing ovulation. Combined OCs inhibit the release of luteinising hormone releasing hormone. This suppresses levels of follicle stimulating hormone and luteinising hormone, thus preventing follicular development and ovulation. The progestogen component also inhibits endometrial proliferation (reducing the receptivity of the endometrium to implantation) and has an effect on cervical mucus (impairing sperm migration into the cervix).²⁵⁸ Combined hormonal contraceptives are available in numerous combinations of the oestrogen and progestogen components, dosages and modes of delivery.

Oestrogen and progestogen may influence breast cancer risk though one or more hormone receptor-mediated pathways or through hormone-induced DNA damage.^{259, 260}

IARC

The International Agency for Research on Cancer (IARC)²⁶⁰ classified combined oestrogenprogestogen oral contraceptives as 'carcinogenic to humans (Group 1)' and concluded that there is 'sufficient evidence in humans for the carcinogenicity of combined oestrogenprogestogen oral contraceptives' and 'combined oestrogen-progestogen oral contraceptives cause cancer of the breast'. IARC also concluded that combined oestrogen-progestogen oral contraceptives cause cancer of in-situ and invasive cancer of the uterine cervix, and cancer of the liver, and that an inverse relationship has been established for cancers of the endometrium, ovary and colorectum.

The evaluation for breast cancer was based on human epidemiological studies published up to 2008, including updated results of two long term UK cohort studies,^{261, 262} one cohort study conducted in China²⁶³ and additional data from population–based and hospital–based case–control studies. The evidence considered by IARC²⁶⁰ for breast cancer built on evidence previously reviewed by IARC.²⁵⁸ The earlier review, published 2007, included the pooled analysis of 54 studies (including six cohort studies) by the Collaborative Group on

Hormonal Factors in Breast Cancer,²⁶⁴ as well as data from five cohort studies published between 2000 and 2004, and 13 case–control studies published between 1977 and 2001. The pooled analysis reported an increased risk of breast cancer among current users (RR 1.24, 95% CI 1.15–1.33) and recent users (summary RR for 1–4 years after stopping 1.16, 95% CI 1.08– 1.23), but not 'ever users', compared with never users of combined OCs. Effects were most notable for women under 35 years of age at diagnosis who had initiated use when aged <20 years (summary RR 1.07, SD 0.035).²⁶⁴ The increased risk was not evident 10 years after cessation of use.

Recent evidence

Long term follow-up (44 years) of the UK Royal College of General Practitioners' Oral Contraception Study (46,022 women)²⁶⁵ showed that recent users (less than five years since cessation of use) had a significantly increased risk of breast cancer (incidence rate ratio 1.48, 99% Cl 1.10–1.97), which attenuated with longer duration post use. Incidence of breast cancer in the cohort of 'ever users' of combined OCs was not significantly higher than in the general population.

A meta-analysis by Gierisch et al.²⁶⁶ included eight cohort studies and 15 case-control studies. Recent use, determined as 0–5 years since cessation of use, was associated with a significantly increased risk of breast cancer (OR 1.21, 95% CI 1.04–1.41) with significant heterogeneity across studies, but this raised risk attenuated and was no longer significant with longer time post use. A borderline significant association was reported for ever versus never use of combined OCs (OR 1.08, 95% CI 1.00–1.17) with evidence of significant heterogeneity. Gierisch et al.²⁶⁶ did not find a significant trend for duration of use up to 121+ months. A significant trend was observed with 'time since last use' in a subgroup analysis of 11 studies.

Two additional systematic reviews with meta–analyses published since the review by IARC^{257, 267} included many of the same studies reviewed by Gierisch et al.²⁶⁶ It was not clear how many studies contributed to the meta–analysis of combined OC use conducted by Anothaisintawee et al.,²⁶⁷ which reported a summary estimate for breast cancer risk associated with ever versus never use of combined OCs of 1.10 (95% Cl 1.02–1.19; significant heterogeneity). Zhu et al.²⁵⁷ included only prospective studies, and the summary estimate for breast cancer associated with ever versus never use of combined OCs was not significantly different (RR 1.08, 95% Cl 0.99–1.17). A dose–response meta–analysis of five studies suggested an increased risk for every five years of use (summary RR 1.07, 95% Cl 1.03–1.11), with no evidence of significant heterogeneity among studies.

The Nurses' Health Study reported a HR for current use of OCs (any type—that is, including progestin–only) of 1.33 (95% CI 1.03–1.73).²⁶⁸ The risk was slightly larger with longer duration of use, but was not maintained beyond four years after cessation of use. Hunter et al.²⁶⁸ also reported risk according to type of progestin formulation among current OC users (any type). It concluded current use of triphasic preparations containing levonorgestrel as the progestin was associated with a higher risk than use of other formulations. Recent use (in past 12 months use) of combined or progestogen–only OCs was associated with an increased risk of postmenopausal breast cancer compared with past use of 10 or more years (HR 1.38, 95% CI 1.18–1.61) in the French Teachers Cohort (E3N).⁴⁴

Table D.28 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.6.2 Hormonal contraception—progestogen only

Evidence summary

Evidence classification: Inconclusive.

The evidence for an association between the use of progestogen-only contraceptives and risk of breast cancer is inconclusive. There are insufficient, poor-quality studies examining the association. Most of the available studies, although limited in sample size and by poor measurement of exposure, indicate no association between use of progestogen-only contraceptives and risk of breast cancer.

Background

Progestogen-only contraceptives contain synthetic compounds designed to mimic some of the effects of natural progesterone. These compunds may be structurally related to progesterone (e.g. medroxyprogesterone acetate (MPA), dydrogestrone) or to testosterone (e.g. levonorgestrel) and are used by women who are breastfeeding or have other contraindications to oestrogen therapy (such as in the postpartum period). They are available as oral preparations or as injections, implants, hormone-releasing intrauterine devices and emergency contraceptives.²⁶⁹ Progestogen-only contraceptives can suppress ovulation. However, their main contraceptive action is through an effect on cervical mucus (impairing sperm migration into the cervix) and, to a lesser extent, reducing the receptivity of the endometrium to implantation.²⁵⁸ Progestogens may influence breast cancer risk through a hormonal-mediated effect on cell proliferation in breast tissue but may also have antiproliferative effects.²⁵⁹

IARC

The International Agency for Research on Cancer (IARC) overall evaluation was that 'Progestogen-only contraceptives are possibly carcinogenic to humans (Group 2B)'. IARC concluded that there was 'inadequate evidence in humans for the carcinogenicity of progestogen-only contraceptives' and 'there is no evidence of an increased risk of breast cancer',²⁶⁹ based on the results of eight case-control studies. Breast and endometrial cancers are the only context in which the carcinogenicity of pharmacological progesterone has been investigated by IARC.

Recent evidence

A limited number of studies have examined the association between use of progestogenonly oral contraceptives (OCs) and breast cancer risk since those reviewed by IARC, and these vary according to dose and route of administration. Two cohort studies^{270, 271} and one case-control study²⁷² examined oral progestogen-only use, two case-control studies have examined injectable/implantable progestogen-only use, and one cohort study has examined use of a progestogen-releasing intrauterine system (Levonorgestrel).²⁷³

Oral progestogen

Kumle et al.²⁷¹ reported that after eight years of follow–up in the Women's Lifestyle and Health Cohort Study in Norway and Sweden (103,027 women aged 30–49 years at recruitment in 1991), the RR for ever versus never use of progestogen–only contraceptives was 1.1 (95% Cl 0.8–1.7)) and the increased risk was higher for current/recent use versus never use (RR 1.6, 95% Cl 1.0–2.4), with no significant difference in the association for women aged 30–39 or 40–49 years at the start of follow–up.

No increased risk for ever use or current use of oral progestogen contraception among premenopausal women over the age of 40 years was found after nine years of follow-up in the French Teacher's Cohort (E3N) (73,664 women).²⁷⁰ In interpreting the findings from the E3N cohort, note that in France, oral progestogen alone is prescribed to premenopausal women for other purposes, as well as for oral contraception; it is also prescribed for menstrual disorders, and benign uterine, ovarian and breast diseases.²⁷⁰

The population–based case–control study similarly reported a null association²⁷² for both ever use and current use versus never use of progestogen–only oral contraceptives.

Injectable and implantable progestin only

Current use compared with never use of an injectable progestogen-only contraceptive was associated with an increased risk of breast cancer (OR 1.6, 95% CI 1.1–2.3), in a non-population-based case-control study conducted of South African women aged 20–54 years.²⁷⁴ However, ever versus never use was not associated with risk of breast cancer in the same study.

A larger population–based study conducted in the United States of women aged 35–64 years reported a null association between ever use of injectable or implantable progestogen–only contraceptive use and risk of breast cancer.²⁷⁵

Levonorgestrel-releasing intrauterine system

Among a cohort of 17,360 Finnish women ever or currently using the Levonorgestrel-releasing intrauterine system, the overall and age-specific incidence of breast cancer was not significantly different to the general population.²⁷³ In addition, there was no apparent association between the length of time elapsed from the intrauterine system insertion up to 10 years and the yearly incidence of breast cancer.

Table D.29 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.6.3 Menopausal hormone therapy—combined

Evidence summary

Evidence classification: Convincing.

The evidence for an association between use of combined oestrogen-progestogen menopausal hormone therapy (combined MHT) and increased risk of breast cancer is convincing. A randomised controlled trial (RCT) and numerous cohort studies show an increased risk of breast cancer among current users compared with never users of combined MHT. The increased risk of current versus never use of combined MHT has been estimated in a large meta-analysis of 30 observational studies and two RCTs as 1.72 (95% Cl 1.55–1.92).²⁷⁶ The risk among current users of combined MHT increases with increasing duration of use and is higher among women who start using combined MHT close to menopause.²⁷⁷ The RCT showed a possible persistence in effect post-use, however, observational studies show no persistence in effect, except perhaps for certain formulations of combined MHT.

Background

Combined MHT involves the co-administration of an oestrogen and a progestogen to perimenopausal or menopausal women.²⁶⁰ In the 1970s it was shown oestrogen-only therapy was associated with increased risk of endometrial cancer. Progestogens were added to mitigate this risk.

Combined MHT is used to mitigate the effects of diminishing circulating oestrogens and progesterone in menopause. Many observational studies suggested oestrogen reduces the incidence of coronary heart disease and osteoporotic fractures in postmenopausal women.

Combined MHT use may influence breast cancer risk through hormonal–mediated pathways, extending exposure to oestrogen and progestogen.²⁶⁰

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR)¹¹ stated 'Hormone therapy (also known as hormone replacement therapy) (containing oestrogen with or without progesterone) increases the risk of breast cancer, and the risk is greater with combined oestrogen plus progesterone preparations'. Combined MHT is listed as 'an established cause of breast cancer'.

IARC

The International Agency for Research on Cancer (IARC)^{258, 260} classified combined oestrogen-progestogen menopausal therapy as 'carcinogenic to humans (Group 1)' and concluded that there is 'sufficient evidence in humans for the carcinogenicity of combined [MHT]', and 'combined [MHT] causes cancer of the breast'. Evidence for an increasing risk of breast cancer with increasing duration of use among current users was noted. The IARC²⁶⁰ evaluation for breast cancer included the human epidemiological evidence from four systematic reviews, three clinical trials (including two reports from the Women's Health Initiative (WHI) trial), 15 cohort and 11 case–control studies.

Recent evidence

Long term follow-up of the WHI trial has shown an increased risk of breast cancer from use of combined MHT.^{278, 279} Of 27,347 postmenopausal women aged 50–79 years with an intact uterus, women who received conjugated equine oestrogens plus medroxyprogesterone acetate had a significantly increased risk of breast cancer in the intervention phase (mean of 6.8 years) (HR 1.24, 95% CI 1.01–1.53). In the early postintervention phase—within 2.75 years from intervention—there was a sharp decrease in breast cancer incidence with combined MHT use, although the risk was higher than 1 (HR 1.23, 95% CI 0.90–1.70); the HR

was below 1 for follow-up of less than 2 years (HR 0.71, 95% Cl 0.47–1.08). This was attributed to a therapeutic influence of change in hormone environment.

Two systematic reviews with meta-analyses^{267, 276} published since the IARC review reported an increased risk of 1.34 (95% CI 1.24–1.46) and 1.33 (95% CI 1.30–1.36) respectively, for ever versus never use of combined MHT. The risk was higher among current users (RR 1.72, 95% CI 1.55–1.92).²⁷⁶ Munsell et al.²⁷⁶ reported a positive association between both current or ever use of combined MHT and oestrogen receptor positive/progesterone receptor positive (ER+PR+) breast cancer, but not oestrogen receptor negative/progesterone receptor negative (ER–PR–) breast cancer. However, in a review article published in 2015, Cheblowski & Anderson indicate that current concepts indicate that increased risks are observed across breast cancer subtypes.

Reported increased risks among current versus never users of combined MHT have been higher in recent cohort studies. Jones et al.,²⁸⁰ for example—using a robust study design examining biases from a single baseline measurement of MHT use—reported a risk of 2.96 (95% CI 2.19–3.99) for women enrolled in the United Kingdom Generations Cohort Study, with a median duration of 5.4 years of current use. Román et al.²⁸¹ reported an increased risk of 2.74 (95% CI 2.55–2.95) among women in a Norwegian cohort who were current users of oestradiol–norethisterone acetate, followed for an average of 4.8 years.

The increased risks observed in the WHI trial^{278, 279} during the intervention period (current use) remained elevated for the post-intervention period up to a median of 13.2 years (HR for cumulative follow-up 1.28, 95% CI 1.11–1.48).²⁷⁸ However, earlier findings involving shorter term follow-up of the WHI trial showed an attenuation of risk year-by-year after cessation of MHT use. ²⁷⁸, ²⁸² None of the cohort studies, including Fournier et al.,²⁸³ Román et al.,²⁸¹ and Jones et al.,²⁸⁰ reported persistence in risk post-use. One of the largest cohort studies—the Million Women Study—also observed a decreased risk of breast cancer to levels seen in never-users of MHT following cessation of treatment (RR 1.00; 95% CI 0.97–1.03)²⁷⁷. Further, the meta-analysis by Munsell et al.²⁷⁶ reported no risk among past users of combined MHT (RR 1.02, 95% CI 0.92–1.14).

Fournier et al.²⁸³ noted a persistence in effect among long term users (>five years of use) up to 10 years post-use only among users of combined MHT that included 'other progestogens' and not for users of MHT composed of oestrogen and progesterone/dydrogesterone.

A longer duration of use among current users of combined MHT is associated with a higher increased risk of breast cancer. This effect was noted in the meta-analyses by Collins et al.²⁸⁴ and Shah et al.,²⁸⁵ cited by IARC.²⁶⁰ These meta-analyses reported an increased risk of 1.53 (95% CI 0.88–2.18) and 1.63 (95% CI 1.22–2.18) for current users of longer than five years, compared with 1.15 (95% CI 0.78–1.52) and 1.35 (95% CI 1.16–1.57) for users of less than five years, respectively. Data from the Breakthrough Generations Study in the United Kingdom showed a significant trend with increasing duration of use. The risk of breast cancer for current versus never users of combined MHT was 2.96 (95% CI 2.19–3.99) for a median duration of 5.4 years of current use, increasing to 3.69 (95% CI 1.73–7.90) at ≥15 years of use.²⁸⁰ Increased risks were more moderate for longer term use in other cohort studies. Lee et al.,²⁸⁶ for example, reported increased risks of 1.43 (95% CI 1.06–1.93), 1.82 (95% CI 1.53–2.17) and 2.18 (95% CI 1.86–2.56) for up to five, 10 and more than 10 years of use, respectively. Similarly, Bakken et al.²⁸⁷ reported increased risks of 1.44 (95% CI 1.09–1.89), 1.81 (95% CI 1.44–2.29) and 1.98 (95% CI 1.12–3.50) for less than one year, 3–5 years and more than 10 years of use, respectively.

In the Million Women Study, time since menopause appeared to influence MHT-related breast cancer risk. Women starting combined MHT less than five years since menopause had an increased risk of breast cancer (RR 2.04, 95% CI 1.97–2.12) compared to women initiating MHT more than five years since menopause (RR 1.53, 95% CI 1.38–1.69).²⁷⁷ This higher risk of breast cancer associated with starting combined MHT close to menopause has been observed in the Women's Health Initiative trial^{288, 289} and the French E3N cohort²⁹⁰; with the latter study showing increased risks of breast cancer even after a short duration of use (≤2 years) initiated within the first 3 years following menopause onset.

Three cohort studies reported on different formulations and different routes of administration of MHT.^{281, 287, 291} In the Norwegian cohort study, Román et al.²⁸¹ reported similarly increased risks for both continuous (every day) (RR 2.80, 95% CI 2.59–3.02) and sequential (cyclic) (RR 2.31, 95% CI 1.88–2.83) MHT use. Data from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort²⁸⁷ and the Women's Health Study in the United States²⁹¹ suggested the risk associated with continuous regimes was higher. The Norwegian study²⁸¹ suggested transdermal delivery of the combined estradiol–norethisterone acetate was associated with a non–significant increased risk of breast cancer, when compared with oral delivery, although the analyses were based on a small number of users, and this was contrary to findings from the EPIC cohort.²⁸⁷ Fournier et al.,²⁸³ in the French Teacher's Cohort (E3N), reported risk of breast cancer associated with combined MHT was less elevated when it contained micronised progesterone (a bioidentical hormone with a molecular structure identical to that of endogenous progesterone produced by the ovary) or dydrogesterone (HR 1.22, 95% CI 1.11–1.35) rather than 'other progestogens' (HR 1.87, 95% CI 1.71–2.04).

Table D.30 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.6.4 Menopausal hormone therapy—oestrogen only

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between oestrogen-only menopausal hormone therapy (MHT) and risk of breast cancer is inconclusive. The evidence is inconsistent across studies. Although an increased risk of breast cancer was found with 'ever use' versus 'never use' of oestrogen-only MHT in a meta-analysis of cohort and case-control studies—and among current users in some, but not all, more recently published cohort studies—there is no evidence of a dose-response relationship. Evidence from a randomised controlled trial (RCT) does not support an increased risk of breast cancer among oestrogen-only MHT current or past users.

Background

Oestrogen-only MHT, also known as oestrogen-only hormone therapy, is also known as unopposed oestrogen MHT and refers to the administration of an oestrogen without a progestogen to perimenopausal or menopausal women.²⁶⁰ It is used to mitigate the effects of diminished circulating oestrogens in menopause and is mainly prescribed to women who have had a hysterectomy,²⁶⁰ since unopposed oestrogen increases the risk of cancer of the endometrial cancer.²⁶⁰ Proposed pathways for an association with breast cancer relate to the generally longer duration of exposure to oestrogen over a lifetime among oestrogenonly MHT users compared with non-users.

IARC

The International Agency for Research on Cancer (IARC) classified oestrogen-only menopausal therapy as 'carcinogenic to humans (Group 1)' and concluded that 'oestrogen-only menopausal therapy causes cancer of the endometrium and of the ovary'. An inverse relationship has been established for cancer of the colorectum. IARC noted that 'a positive association has been observed between exposure to oestrogen-only menopausal therapy and cancer of the breast' but a causal relationship was not determined.²⁶⁰ The IARC evaluation for breast cancer included human epidemiological studies published between 1996 and 2008, including one systematic review,²⁹² one randomised controlled trial and over 20 cohort and case-control studies.

Recent evidence

A systematic review not cited by IARC²⁶⁰ that was published in 2005 reported that the evidence from RCTs did not support an association between use of oestrogen–only MHT and risk of breast cancer (0.78, 95% CI 0.61–1.01). However, the observational studies suggested a small but significantly increased risk associated with 'current use', but not 'ever use', of oestrogen–only MHT (summary estimate 1.18, 95% CI 1.01–1.38).²⁸⁴ This increased risk among current users did not vary according to duration of use (less than five years, five or more years).

More recent findings from an RCT are those from a longer term follow-up of the Women's Health Initiative (WHI) trial. This study showed that, among 10,739 postmenopausal women aged 50–79 years with a prior hysterectomy, there was an indication of a decreased risk of breast cancer among women who received conjugated equine oestrogens (CEE) alone compared with women receiving a placebo, both in the intervention phase (median 5.6 years) (HR 0.79, 95% CI 0.61–1.02) and in the post-intervention phase (HR 0.80, 0.58–1.11),^{ix} with a mean follow-up of 13 years.²⁷⁸

One meta-analysis has been published since the IARC review.²⁶⁷ This meta-analysis reviewed the evidence in 29 cohort and case-control studies published up to 2011, with substantial overlap in studies included in the meta-analysis conducted by Greiser et al.²⁹² (reviewed by IARC).²⁶⁰ The summary estimate for breast cancer risk associated with 'ever' versus 'never use' of oestrogen-only MHT was 1.09 (95% CI 1.06-1.12).

Several reports from cohort studies^{280, 281, 283, 287} have been published subsequent to the IARC review²⁶⁰ that were not included in the meta–analysis by Anothaisintawee et al.²⁶⁷

The UK Generations Cohort Study (39,183 postmenopausal women) reported no association between 'ever use' of oestrogen–only MHT and breast cancer risk.²⁸⁰ Similarly, Roman et al.,²⁸¹ in a large population–based cohort of Norwegian women, did not find an increased

^{ix} The data presented in the text of the paper indicated that 'for women assigned to CEE alone, the risk reduction became statistically significant during cumulative follow-up (HR 0.79, 0.65-0.97)'.

risk of 'ever use' of oestradiol or oestriol formulations, although 'current use' of oestradiol was associated with a significant increased risk (HR for 1 mg preparation 1.52, 95% CI 1.11–2.10; and 1.68, 95% CI 1.30–2.15 for 2 mg preparations).

An increased risk of breast cancer was associated with current use of oestrogen-only MHT among the women in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort (HR 1.42, 95% CI 1.23–1.64) but there was no dose-response relationship with longer duration of use.²⁸⁷ Route of oestrogen delivery (oral versus transdermal) did not modify the association. Fournier et al.,²⁸³ using data from the French Teacher's Cohort (E3N), did not find an increased risk of breast cancer associated with current use of oestrogen-only MHT (HR 1.17, 95% CI 0.99–1.38), either for short term (up to five years) or long term (more than five years) users.

Table D.31 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.6.5 Hormonal infertility treatment

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between hormonal treatment for infertility and risk of breast cancer is inconclusive. The evidence is limited by substantial methodological issues. However, the majority of the evidence from a large number of cohort studies shows no association between risk of breast cancer and hormonal infertility treatment, either with or without in vitro fertilisation (IVF).

Background

Hormonal treatment for infertility encompasses stimulation of ovulation in women with ovulatory disorders using agents such as selective oestrogen receptor modulators (for example, clomiphene citrate and tamoxifen), follicle-stimulating hormone, gonadotropins and gonadotropin-releasing hormone (GnRH) analogues, without IVF, and progestogens. It also encompasses IVF and other assisted reproductive technologies (ARTs) that use hormonal treatment as part of the treatment protocol.²⁹³

Hormonal infertility treatments result in levels of oestrogen that are higher than those during natural menstrual cycles.²⁹⁴ It has been hypothesised that the prolonged or uninterrupted exposure to these higher levels of oestrogen may be associated with breast cancer.

Recent evidence

Recent meta-analyses and additional cohort studies have investigated any association between breast cancer and hormonal fertility treatment, with and without IVF.

Methodological limitations include differences in the choice of reference population, which has considerable bearing on inference. For example, some studies used the general population as the reference category, rather than a population of infertile women not

exposed to fertility treatment. Using the general population as the reference category means that an independent effect of infertility on breast cancer risk cannot be excluded. Other limitations include the changes in fertility treatment protocols that have occurred over time, the relatively short follow-up times in some studies, and potentially inaccurate measurements of the hormonal doses prior to and during the treatment regimes compared with those in the general population.^{293, 294} There are also many potential confounders, such as age at menarche, age at treatment, body mass index (BMI), previous infertility treatment, pre-eclampsia, and multiple births. Studies have varied in their approaches to adjusting for these and other variables.²⁹³

A recent meta–analysis of 20 cohort studies with a total of over 200,000 participants investigated any association between breast cancer risk and hormonal fertility treatment, with and without IVF.²⁹⁵ There was no association between hormonal treatment for infertility and breast cancer risk (summary RR 1.05, 95% CI 0.96–1.14).²⁹⁵ There was also no association between breast cancer risk and IVF (summary RR 0.96, 95% CI 0.80–1.14) based on seven studies with moderate heterogeneity. However, an increased risk of breast cancer was observed among women treated without IVF in three studies (summary RR 1.26, 95% CI 1.06–1.50, moderate heterogeneity). There was an increased breast cancer risk associated with hormonal infertility treatment for longer versus shorter duration of follow–up (≥10 years versus <10 years): summary RR 1.13 (95% CI 1.02–1.26) versus RR 0.95 (95% CI 0.85–1.06).²⁹⁵

An earlier meta–analysis by Sergentanis et al.²⁹³ investigated breast cancer risk and IVF. Eight cohort studies were included, all of which were also included in the meta–analysis by Gennari et al.²⁹⁵

Cohort studies published since the search dates for the meta–analyses include a large Swedish cohort study by Lundberg et al.²⁹⁶ In this study, a decreased risk of breast cancer was observed among infertile women who gave birth after ART compared with parous women who had no infertility (HR 0.84, 95% CI 0.74–0.95) and among infertile women who gave birth after spontaneous conception compared with fertile parous women (HR 0.83, 95% CI 0.77–0.89). Similarly, in a cohort study of over 100,000 women in the United States, with mean follow–up of 4.87 years,²⁹⁷ women treated with ART had a lower risk of breast cancer than the expected incidence in the general population (SIR 0.83, 95% CI 0.75–0.91).²⁹⁷ However, in the Swedish study, among a separate cohort of women born between 1960 and 1992, there were no differences in breast cancer incidence among parous women who received controlled ovarian stimulation (HR 0.86, 95% CI 0.69–1.07) or other hormonal treatment for infertility (HR 0.79, 95% CI 0.60–1.05), compared with parous women with no infertility–related diagnosis or treatment.²⁹⁶

In a Norwegian cohort study of over 1,300,000 women with median follow–up of 11 years, ART was not associated with risk of breast cancer either in nulliparous (HR 1.11, 95% CI 0.75–1.66) or parous women (HR 0.96, 95% CI 0.76–1.22).²⁹⁸ In the latter study, treatment with clomiphene citrate was associated with an increased breast cancer risk in parous women (HR 1.26, 95% CI 1.03–1.54) but no dose–response relationship was observed.

In an historical cohort study of over 25,000 women from the Netherlands by van den Belt– Dusebout et al.,²⁹⁴ with median follow–up of 21 years, breast cancer risk in women treated with IVF prior to 1995 was no different than that of the general population (SIR 1.01, 95% CI 0.93–1.09) or than the risk in a non–IVF sub–fertile comparison group, HR 1.01 (95% CI 0.86– 1.19).²⁹⁴ There was also no association with longer time since treatment either in the IVF group or in the non–IVF group and risk of breast cancer. Table D.32 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.6.6 DES in utero

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between exposure to diethylstilboestrol (DES) in utero and risk of breast cancer inconclusive. Initial findings from pooled analyses of cohort studies in the United States indicated an increased risk of breast cancer among women exposed to DES in utero who were aged over 40 years at diagnosis. However no significant differences between risk of breast cancer among exposed versus unexposed women were found in longer term follow–up of these cohorts, nor in a large cohort study in the Netherlands, among women overall or by age at diagnosis.^{299, 300}

Background

DES is a synthetic non-steroidal oestrogen that was commonly prescribed to women from the late 1940s to the early 1970s, to prevent complications of pregnancy, including spontaneous abortion and premature delivery. It works by stimulating the synthesis of oestrogen and progesterone in the placenta.^{260, 300} It was also used as an emergency contraceptive (morning after pill) and less commonly for other indications such as treatment of hypogonadism or dysfunctional menstrual cycles.²⁶⁰ The use of DES declined after studies in the 1950s showed it was not effective in preventing the problems.³⁰¹ Following repercussions from a 1971 publication by Herbst et al.³⁰² prenatal DES exposure to a rare vaginal cancer in girls and young women, the Food and Drug Administration (FDA) issued a drug bulletin to physicians, stating that DES in contra-indicated for use in pregnant women. Use in some countries did not cease until the early 1980s. DES is no longer registered for use in Australia. It has been estimated that 15,000 Australian women used the drug during pregnancy.³⁰³

Exposure to DES as a potential risk factor for breast cancer can be through one of two routes: maternal exposure, where a woman has taken DES while pregnant (section 4.6.7); and in utero exposure when the woman was a foetus. This evidence summary reports on the association between in utero exposure to DES and risk of breast cancer.

DES is known to be an endocrine–disrupting chemical, one of a number of substances that interfere with the endocrine system to increase risk of cancer, birth defects and other developmental abnormalities. These effects are pertinent when exposure occurs during foetal development.³⁰⁴

In utero exposure to oestrogen may plausibly be associated with an increased risk of breast cancer later in life.³⁰⁵ Studies in mice have provided some evidence that DES exposure in utero permanently alters hormonal responsiveness in the breast tissue.²⁶⁰ In utero exposure also influences immune function in both animals and humans.²⁶⁰

IARC

The International Agency for Research on Cancer²⁶⁰ concluded that there is 'sufficient evidence in humans for the carcinogenicity of DES (Group 1)'. In utero exposure to DES causes clear cell adenoma of the cervix and vagina.²⁶⁰ IARC reviewed the human epidemiological evidence for an association between in utero exposure to DES and breast cancer, and found little evidence of an association. The human epidemiological evidence included three cohort studies published between 1998 and 2007.³⁰⁶⁻³⁰⁸ Only one of the studies reported an increased incidence of breast cancer, and only among women aged over 40 years exposed to DES in utero compared with those not exposed (IRR 1.91, 95% CI 1.09–3.33 for women aged \geq 40 years; IRR 3.85, 95%CI 1.06–14.0 for women aged \geq 50 years).³⁰⁸ It was noted that women at these ages would have been exposed during the period of peak usage, and when high doses of DES were prescribed.

Recent evidence

The most recently published data from the Diethylstilbestrol (DES) Combined Cohort Follow– up²⁹⁹ in the United States (the NCI DESAD study, the Dieckmann clinical trial cohort, and offspring of women from the Women's Health Study (WHS)) added 10 more years of follow– up data to those previously reported by Troisi et al.³⁰⁷ The SIR for breast cancer for the exposed women was 1.17 (95% CI 1.01–1.36), compared with SIR 1.06 (95% CI 0.83–1.33) in the unexposed women. When adjusted for risk factors in the Gail model, the SIR declined to 1.07 (95% CI 0.89–1.25) in the exposed women, comparable to that in the unexposed participants. Given these results, the authors suggested any excess risk in exposed women might be due to DES effects on established risk factors. The HR for exposure to DES in utero and risk of breast cancer adjusted for major confounders was 1.07 (95% CI 0.80–1.44). No significant differences were found by age or by menopausal status, although risks were highest among women aged 40–49 years at diagnosis, compared with women aged less than 40 years or older than 49 years at diagnosis. The data across cancer types did not support a diathesis of cancers in DES–exposed female offspring.

Findings from earlier analyses of these cohort studies were reported by Hoover et al.,³⁰⁹ Troisi et al.³⁰⁷ and Palmer et al.³⁰⁸ Hoover et al.³⁰⁹ reported a significantly increased risk of breast cancer at 40 years of age or older in women exposed to DES in utero, compared with those not exposed (HR 1.82, 95% Cl 1.04–3.18). Risk was higher among women with vaginal epithelial changes (VEC), a histological marker of high–dose DES exposure, compared with women without VEC. Troisi et al.³⁰⁷ also reported an excess risk for breast cancer among women aged 40 years or older (RR 1.83, 95% Cl 1.1–3.2) and no excess risk in women aged less than 40 years. Similar data were reported on the same cohorts by Palmer et al.³⁰⁸

A large cohort study conducted in the Netherlands compared breast cancer incidence in 12,091 women exposed to DES in utero with the incidence of breast cancer in the general population.³⁰⁰ No overall risk of breast cancer risk was found (SIR 1.05, 95% CI 0.90–1.23). Nor was there any difference when stratified by age: SIR 0.95 (95% CI 0.69–1.29) among those aged <40 years at diagnosis, and compared with SIR 1.09 (95% CI 0.91–1.31) among those \geq 40 years at diagnosis.

Table D.33 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.6.7 DES maternal exposure

Evidence summary

Evidence classification: Convincing.

There is convincing evidence that exposure to diethylstilboestrol (DES) during pregnancy is associated with an increased risk of breast cancer. There is consistent evidence from cohort studies. The increased risk has been estimated as RR 1.27 (95% Cl 1.07–1.52) in extended follow–up of the Dieckmann clinical trial cohort and the Women's Health Study.³¹⁰

Background

DES is a synthetic non-steroidal oestrogen that was commonly prescribed to women from the late 1940s to the early 1970s, to prevent complications of pregnancy, including spontaneous abortion and premature delivery. It works by stimulating the synthesis of oestrogen and progesterone in the placenta.^{260, 300} It was also used as an emergency contraceptive (morning after pill) and less commonly for other indications such as treatment of hypogonadism or dysfunctional menstrual cycles.²⁶⁰ The use of DES declined after studies in the 1950s showed it was not effective in preventing the problems.³⁰¹ Following repercussions from a 1971 publication by Herbst et al.³⁰² prenatal DES exposure to a rare vaginal cancer in girls and young women, the Food and Drug Administration (FDA) issued a drug bulletin to physicians, stating that DES in contra–indicated for use in pregnant women. Use in some countries did not cease until the early 1980s. DES is no longer registered for use in Australia. It has been estimated that 15,000 Australian women used the drug during pregnancy.³⁰³

Exposure to DES can be through one of two routes: maternal exposure, where a woman has taken DES while pregnant; and in utero exposure when the woman was a foetus. This summary reports on the association between maternal exposure to DES (DES mothers) and risk of breast cancer. Further information about in utero exposure to DES can be found in section 4.6.6.

DES induces chromosomal breaks and other chromosomal aberrations in human and animal cells, in a process mediated largely by oestrogen receptors in susceptible breast tissue during pregnancy, and which most likely accounts for the main carcinogenic effect.²⁶⁰

IARC

The International Agency for Research on Cancer (IARC)²⁶⁰ classified exposure to DES as 'carcinogenic to humans (Group 1)' and concluded that there is 'sufficient evidence in humans for the carcinogenicity of DES', and 'Diethylstilboestrol causes cancer of the breast in women who were exposed while pregnant'. The evaluation for breast includedhuman epidemiological studies published between 1978 and 2001, including data from the Dieckmann study,³¹¹ the Women's Health Study (WHS),^{312, 313} and several other small cohort studies. The Dieckmann study was a clinical trial that examined the effects of DES on pregnancy outcomes.³¹¹

Recent evidence

The most recently published and largest study to examine the association, by Titus–Ernstoff et al., was included in the IARC evaluation.³¹⁰ This study included data from extended follow– up of the Dieckmann clinical trial cohort, and the WHS, with a total of 3,844 exposed women and 3,716 unexposed women. An increased risk of breast cancer was observed (RR 1.27, 95% Cl 1.07–1.52) that was not modified by reproductive history, menopausal status, or exogenous hormone use (including oral contraceptives, menopausal hormone therapy use). Breast cancer incidence in exposed women was slightly elevated compared with the general population (SIR 1.10, 95% Cl 0.98–1.23), but this comparison is limited because the combined study cohort included only parous women. The data, in aggregate, do not support a dose–response relationship. However, exposure to DES is brief, even among women with multiple exposed pregnancies.³¹⁰

Table D.34 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7 Lifestyle factors

4.7.1 Adiposity

Evidence summary

Evidence classification—body fatness in young adulthood (18–30 years) (marked by BMI) and decreased risk of premenopausal and postmenopausal breast cancer: Probable.

Higher body fatness during young adulthood is probably associated with a decreased risk of premenopausal and postmenopausal breast cancer. The decreased risk of premenopausal and postmenopausal breast cancer per five units higher body mass index (BMI) (kg/m²) during young adulthood (ages 18–30 years) is estimated to be 0.82 (95% CI 0.76–0.89) and 0.82 (95% CI 0.76–0.88), respectively.¹¹

Evidence classification—adult body fatness before the menopause (marked by BMI, waist circumference and waist-hip ratio) and decreased risk of premenopausal breast cancer: Probable.

Higher adult body fatness before the menopause is probably associated with a decreased risk of premenopausal breast cancer. The decreased risk of premenopausal breast cancer per five units higher BMI before menopause is estimated to be 0.93 (95% CI 0.90–0.97).¹¹

Evidence classification—adult body fatness throughout adulthood (marked by BMI, waist circumference and waist-hip ratio) and increased risk of postmenopausal breast cancer: Convincing.

There is convincing evidence that higher adult body fatness throughout adulthood is associated with an increased risk of breast cancer. The increased risk of postmenopausal breast cancer per five units higher BMI throughout adulthood is estimated to be 1.12 (95% CI 1.09–1.15).¹¹

Background

BMI is an index of weight–for–height that is used to classify weight status categories in adults. It is defined as the weight in kilograms divided by the square of the height in metres (kg/m²): <18.5 kg/m²=underweight; 18.5–24.9 kg/m²=normal weight; 25–29.9 kg/m²=overweight; \geq 30 kg/m²=obese.³¹⁴

Other measures of fat accumulation and/or distribution include waist circumference (WC) and waist-to-hip ratio (WHR). These measures can be used to identify individuals at increased risk of obesity-related diseases since abdominal fat mass can vary within a narrow range of BMI.³¹⁴

The International Agency for Research on Cancer (IARC) indicated that obesity is associated with substantial metabolic and endocrine abnormalities, including alterations in sex hormone metabolism, insulin and insulin–like growth factor (IGF) signalling, and adipokines or inflammatory pathways.³¹⁵ Lauby–Secretan et al.³¹⁵ further noted that evidence for a role of sex hormone metabolism and of chronic inflammation in mediating the obesity–cancer relation is strong, and evidence for a role of insulin and IGF signalling is moderate. In relation

to breast cancer specifically, the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR)¹¹ have indicated that obesity in premenopausal women probably reduces ovarian progesterone production and therefore risk of premenopausal breast cancer, although they indicate that the mechanisms underlying the inverse association of early life body fatness and breast cancer risk are complex and not well– understood. In postmenopausal women, in whom ovarian oestrogen production is low, oestradiol production is increased by obesity through the action of aromatase in adipose tissue.¹¹ In addition, studies are increasingly implicating obesity as associated with a low– grade chronic inflammatory state and the activation of inflammatory cascades is one process that may predispose to carcinogenesis.

IARC

The International Agency for Research on Cancer (IARC)³¹⁶ concluded there 'is sufficient evidence in humans for the cancer-preventive effect of the absence of body fatness' and, specifically with respect to breast cancer that, 'the absence of excess body fatness reduces the risk of cancer of the breast in postmenopausal women'.^{315, 316} The IARC review relied heavily on a meta-analysis conducted by Renehan et al.³¹⁷ that included 31 studies reporting on the association between BMI and postmenopausal breast cancer (RR 1.22, 95% CI 1.08–1.16) and 21 studies on premenopausal breast cancer (RR 0.92, 95% CI 0.88–0.97). The increased risk cited by Lauby–Secretan et al.³¹⁵ was 'approximately 1.1 per 5 BMI (kg/m²) units', and an effect particularly for oestrogen receptor positive tumours was noted.

WCRF/AICR

Consideration was given separately to the evidence regarding body fatness in young adulthood (ages 18–30 years) and to body fatness throughout adulthood.¹¹ Measures of body fatness included BMI, WC and WHR.

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) considered that 'greater body fatness (marked by BMI) in young women (aged about 18–30 years) probably protects against premenopausal breast cancer and postmenopausal breast cancer'.¹¹ Twelve and 17 studies contributed to dose–response meta–analyses (per 5 unit BMI increase), respectively. The summary risk estimates were of the same magnitude (RR per 5 kg/m² 0.82, 95% CI 0.76–0.89 and 0.82, 95% CI 0.76–0.88, respectively).

In consideration of body fatness during adulthood, WCRF/AICR considered that 'greater body fatness before menopause (marked by BMI, WC and WHR) probably protects against premenopausal breast cancer', and that 'greater body fatness throughout adulthood (marked by BMI, waist circumference and waist-hip ratio) is a convincing cause of postmenopausal breast cancer'.¹¹

Thirty-seven studies contributed to a dose-response meta-analysis for the association between BMI throughout adulthood and risk of premenopausal breast cancer (RR per 5 unit increase in BMI 0.93, 95% CI 0.90–0.97; significant heterogeneity). Fifty-six studies (including four pooled analyses) contributed to a dose-response meta-analysis for the association between BMI throughout adulthood and risk of postmenopausal breast cancer (RR per 5 unit increase in BMI 1.12; 95% CI 1.09–1.15; significant heterogeneity). The observed high heterogeneity was partly attributable to geographical locations of the cohorts. When stratified by use of menopausal hormone therapy (MHT) and breast cancer subtypes, significant positive associations were observed only among never users of MHT or never/former user but not current or ever users. For hormone receptor status, BMI was associated with postmenopausal ER+, PR+ and ER+PR+ breast cancers.

Dose-response meta-analyses for waist circumference and risk of premenopausal breast cancer, showed no association in six studies unadjusted for BMI, however the association was significant among three studies adjusting for BMI (RR per 10 cm increase, 1.14, 95%CI 1.04–1.26; no heterogeneity).

For postmenopausal breast cancer, dose-response meta-analyses for waist circumference showed a significantly increased risk per 10 cm increase in waist circumference for studies not adjusted for BMI (RR 1.11, 95% CI 1.09–1.13; 11 studies; no heterogeneity), and for studies adjusted for BMI (RR 1.06, 1.01–1.12; 5 studies; high heterogeneity).

Dose-response analyses for waist-hip ratio (WHR) showed no association for premenopausal breast cancer among studies unadjusted for BMI but a positive association among the nine studies adjusted for BMI (RR per 0.1 unit increase 1.15, 95% CI 1.01–1.31). Conversely for postmenopausal breast cancer, but there was a positive association with WHR among15 studies unadjusted for BMI (RR 1.10, 95% CI 1.05–1.16), but no association between WHR and risk of postmenopausal breast cancer in a dose-response meta-analysis of ten studies adjusted for BMI.

Recent evidence

The effect of weight status on risk of breast cancer among premenopausal women aged 18– 54 years was examined in a large multicentre pooled analysis using individual-level data from 758,592 premenopausal women from 19 prospective cohorts.³¹⁸ Medium follow-up was 9.3 years with 13,082 incident cases of breast cancer. BMI at all ages was negatively associated with risk of breast cancer in a dose-response relationship. Among 18–24 year olds the trend per 5 kg/m² BMI was 0.77 (95% CI 0.73–0.80) with a lower risk among those who were overweight (0.75, 95% CI 0.68–0.82) or obese (0.55, 95% CI 0.45–0.68) and a higher risk among those who were underweight (1.14, 95% CI 1.07–1.21), compared with those who were normal weight. This effect was attenuated in the older age groups. Associations were strongest for hormone receptor positive tumours.

Freisling et al.³¹⁹ demonstrated an increased risk of postmenopausal breast cancer with BMI in a meta-analysis of data from seven prospective cohort studies in the CHANCES consortium (The Consortium on Health and Ageing: Network of Cohorts in Europe and the United States (CHANCES) project). After adjustment for hip circumference (HC), WC and WHR, the estimated HR per 1–SD increase in BMI was 1.15 (95% CI 1.03–1.27). No significant multiplicative interactions were observed between BMI and any of the three measures of body fat distribution. In this analysis, women who had never used MHT had an approximately 20% higher risk of postmenopausal breast cancer per standard deviation of BMI, WC and hip circumference, compared with ever MHT users.

Similar findings were observed in the California Teachers Cohort of 109,862 women, which included only oestrogen receptor positive (ER+) breast cancer cases,⁵⁰ and in the earlier pooled analysis by the Collaborative Group on Hormonal Factors in Breast Cancer (CGHFBC).³²⁰ In the former study, compared with women with a BMI of <25 kg/m² at baseline, women with a BMI of >25 kg/m² or more and who had never used MHT had a

significantly increased risk of ER+ breast cancer (HR 1.21, 95% CI 1.07–1.37) while there was no association among non–users of MHT (HR 1.07, 95% CI 0.95–1.21). However, analyses of data from the Women's Health Initiative Clinical Trial cohort found no evidence of effect modification of the BMI–postmenopausal breast cancer relationship by MHT use.³²¹

Table D.35 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.2 Adiposity—weight gain

Evidence summary

Evidence classification—postmenopausal breast cancer: Convincing.

Evidence classification—premenopausal breast cancer: Inconclusive.

There is convincing evidence that adult weight gain is associated with an increased risk of postmenopausal breast cancer. There is a dose–response relationship and the increased risk per 5 kg increase in weight has been estimated as 1.06 (95% CI 1.05–1.08) by the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR).¹¹

The evidence for an association between adult weight gain and risk of premenopausal breast cancer is inconclusive. Among the limited number of studies, there is no evidence of an association between adult weight gain and risk of premenopausal breast cancer.¹¹

Background

Long term weight change in adults predominantly reflects change in fat mass, and thus weight gain is a measure of excess body fat storage.¹¹ Adult weight gain may influence breast cancer risk through the effect of adipose tissue on circulating hormone levels. Weight gain in postmenopausal women is inversely associated with serum hormone binding protein levels, which results in higher levels of circulating oestrogen.³²²

IARC

The International Agency for Research on Cancer (IARC)³²³ concluded there was 'sufficient evidence in humans for a cancer-preventive effect of the avoidance of weight gain for postmenopausal breast cancer'. IARC also indicated that the available evidence on the avoidance of weight gain suggests a lack of cancer-preventive protective effect for premenopausal breast cancer. The evaluation was based on data from three cohort and seven case-control studies. Among these studies, higher weight gain during young adulthood was associated with premenopausal breast cancer. Higher weight gain during young adulthood was associated with a 10–30% decrease in overall breast cancer risk in most, but not all, studies. The IARC working group noted the magnitude of the inverse association between weight gain and postmenopausal breast cancer risk was attenuated among current users of menopausal hormone therapy (MHT).

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) ¹¹ considered there was convincing evidence—that is, the judgement was 'Strong– convincing'— that greater weight gain in adulthood is a cause of postmenopausal breast cancer, based on 22 studies. Fifteen of these studies contributed to a dose–response meta– analysis for postmenopausal breast cancer. The summary RR per 5 kg increase in weight was 1.06 (95% CI 1.05–1.08), with evidence of significant heterogeneity among the included studies. In subgroup analyses the increased risk associated with weight gain was significant only for ER+PR+ breast cancer (five studies), and not ER+PR– (three studies) or ER–PR– disease (five studies). Contrary to the IARC review, risk was not affected by use of MHT (three studies).

WCRF/AICR¹¹ made no conclusion about the association between adult weight gain and premenopausal breast cancer due to 'limited evidence'. Five studies contributed to a dose-response meta-analysis for premenopausal breast cancer risk with no significant association observed.

Recent evidence

Data from the Women's Health Initiative Clinical Trial cohort (Neuhouser et al.³²¹) and from a Japanese cohort (Nitta et al.⁵¹) on the association between adult weight gain and postmenopausal breast cancer were published subsequent to the Continuous Update Project Systematic Literature Review in 2017.¹⁰ Nitta et al.⁵¹ reported a significantly increased risk of postmenopausal but not premenopausal breast cancer with weight gain after age 20 in a study among 38,610 Japanese women (HR for weight gain of 6.7–9.9 kg 2.48, 95% Cl 1.40–4.41; HR for weight gain of ≥10.0 kg 2.94, 95% Cl 1.84–4.70). A dose–response relationship was observed, consistent with the findings of WCRF/AICR.¹⁰

Among 67,142 women in the Women's Health Initiative Clinical Trial cohort, those who gained >5% of their baseline weight over a mean follow-up period of 13 years had a modest increased risk of breast cancer (HR 1.12, 95% Cl 1.00–1.25) compared with weight stable women. Among women who gained >5% of their bodyweight during follow-up, women who were in the normal weight range (body mass index (BMI)<25 kg/m²) at baseline had a significantly higher risk of breast cancer (HR 1.36, 95% Cl 1.10–1.65) than women who were already overweight or obese at baseline.³²¹

Table D.36 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.3 Adiposity—weight loss

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between weight loss and risk of breast cancer is inconclusive. There are inconsistent findings from prospective studies regarding a possible association between adult weight loss and risk of breast cancer. The evidence base is limited by methodological issues, including whether the weight loss is intentional or non-intentional.

Background

As epidemiological associations have been observed between overweight and obesity and risk of postmenopausal breast cancer, it has been hypothesised that weight loss may reverse or reduce increased breast cancer risk in postmenopausal women. Weight loss has been hypothesised to lower risk of breast cancer through several possible pathways, including changes in oestrogen and testosterone levels and reduced inflammation.^{324, 325}

There are particular methodological challenges in aetiologic studies of weight loss and risk of breast cancer. For example, it may be difficult to separate the effects of physical activity— which is important in maintaining weight loss, and has an independent protective effect on breast cancer risk—from the effects of weight loss in observational studies or weight loss trials.³²⁵ Other challenges in determining the likelihood of any association between weight loss and risk of breast cancer include: the different means by which weight loss is achieved, for example, dietary intervention, physical activity or bariatric surgery; the difficulty in distinguishing intentional weight loss from non–intentional weight loss; and the issue that many of the prospective studies have not been designed specifically to investigate weight loss, and are thus very underpowered to identify true effects.³²⁶ Further, unintentional weight loss may indicate a comorbid illness and may obscure any relationship between intentional weight loss and health benefit.

IARC

The International Agency for Research on Cancer (IARC) Handbook of Cancer Prevention on Weight Control and Physical Activity indicated that there was inadequate evidence in humans for a cancer-preventive effect of intentional weight loss for any cancer site.³²³

Recent evidence

In a meta-analysis by Winder et al.³²⁷ of four controlled studies of bariatric surgery, there was no association with breast cancer risk for women who had undergone bariatric surgery (9,235 women) compared with controls (16,492 women; OR 0.59, 95% CI 0.25–1.39). Limitations identified included the high heterogeneity between studies, difficulty in identifying accurate controls, no monitoring and reporting of weight loss in the controls or surgical participants (outcome bias), and short follow–up.³²⁷

Among over 60,000 postmenopausal women followed for 11.4 years in the Women's Health Initiative (WHI) Observational Study (which tracks the health of postmenopausal women between the ages of 50 and 79), self-reported weight loss of \geq 5% and of \geq 15% compared with women who maintained a stable weight over three years was associated with decreased risk of postmenopausal breast cancer (HR 0.88, 95% CI 0.78–0.98; HR 0.63, 95% CI 0.45–0.90, respectively). There was no significant difference in breast cancer incidence observed in women with intentional or unintentional weight loss. Subgroup analyses by hormone receptor subtype, baseline body mass index (BMI), race/ethnicity and age group, indicated similar effects in all subgroups.³²⁸

In an earlier analysis of the WHI trial of over 67,000 postmenopausal women with a median of 13 years follow-up, among women who were already overweight or obese, there was no association between weight loss of either 2–5% or >5% (or weight gain) and risk of postmenopausal breast cancer (HR 1.00, 95% CI 0.89–1.12; HR 1.00, 95% CI 0.95–1.21,

respectively). There was also no association between weight loss and postmenopausal breast cancer risk for subgroups stratified by baseline BMI compared with women whose weight was stable during follow–up (<25, 25–<30, 30–<35, \geq 35 kg/m²). The WHI trials encompassed three randomised controlled trials (hormone trials and dietary intervention trial) and it was noted that the weight loss data could reflect both intentional and unintentional weight loss.³²¹

A systematic review by Birks et al.³²⁶ on the impact of weight loss on breast cancer risk identified seven prospective cohort and three case–control studies, but did not include a meta–analysis. In four prospective cohort studies, weight loss was associated with decreased risk of postmenopausal breast cancer, and in three prospective cohort studies there was no association.

Table D.37 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.4 Alcohol consumption

Evidence summary

Evidence classification: Convincing.

There is convincing evidence that alcohol consumption is causally related to breast cancer.^{329, 330} The evidence for daily alcohol consumption has been classified as 'Strong-convincing' for risk of postmenopausal cancer and as 'Strong-probable' for risk of premenopausal breast cancer by the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR).¹¹ There is a dose-response relationship and no threshold for regular consumption is observed. The summary RR for every 10 g/day increase in alcohol consumption has been estimated as 7% (RR 1.07, 95% Cl 1.05–1.09) for breast cancer overall and 9% (RR 1.09, 95% Cl 1.07–1.12) for postmenopausal breast cancer.

Background

Exposure has generally been measured as grams of alcohol per day; one 'standard' drink contains approximately 10 g of alcohol. Binge drinking has been rarely researched.

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) concluded that there are robust mechanisms operating in humans for an association between alcohol consumption and risk of breast cancer.¹¹ The postulated mechanisms through which alcohol may affect risk of breast cancer are several and include both hormone–dependent and hormone–independent pathways. Alcohol acts as a lipid solvent, facilitating the movement of carcinogens into cells. It has important effects on lipid metabolism and in the generation of free radical oxygen species.³³¹ These oxygen species are associated with DNA damage and thus with carcinogenesis.¹⁰ Also, genetic polymorphisms for ethanol metabolism can affect breast cancer risk.¹⁰ In addition, alcohol consumption has been associated with higher serum oestrogen concentrations.³³²

IARC

The International Agency for Research on Cancer (IARC)³³³ has concluded that alcohol consumption is 'carcinogenic to humans (Group 1)' and that there is 'sufficient evidence in humans for the carcinogenicity of alcohol consumption' and that 'alcohol consumption causes cancer of the female breast'. Alcohol consumption is also causally associated with cancers of the oral cavity, pharynx, larynx, oesohpagus, and liver, and colorectal cancer. IARC noted the presence of a linear dose-response relationship in the human epidemiological evidence for breast cancer, citing the evidence from the Million Women's Study³³⁴ where risk of breast cancer increased by 12% (95% Cl 9–14%) for every 10 g/day increase in alcohol consumption. The IARC review concluded that there was consistent evidence that the increased risk of breast cancer associated with alcohol consumption did not vary significantly by beverage type.³³³ The earlier IARC 2010³²⁹ evaluation of the evidence included more than 100 epidemiological studies and cited a pooled analysis of 53 studies reporting a dose-response relationship of 7% increase in risk for every 10 g/day increase in alcohol consumption.³³⁵

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR)¹¹ judged that there was 'Strong-convincing' evidence that alcohol consumption increases risk of postmenopausal breast cancer and 'Limited-probable' evidence that alcohol increases risk of premenopausal breast cancer.

The judgements were based on evidence from the WCRF Continuous Update Project systematic literature review (CUP Breast SLR) which included 62 studies (randomised controlled trials, cohort, case-control, and nested case-control studies).¹⁰ Twenty-three studies were included in the dose-response meta-analysis: 10 for premenopausal and 22 for postmenopausal breast cancer. The summary RR for every 10 g/day increase in alcohol consumption was 7% (RR 1.07, 95% CI 1.05–1.09) for breast cancer overall, 5% (RR 1.05, 95% CI 1.02–1.08) for premenopausal breast cancer and 9% (RR 1.09, 95% CI 1.07–1.12) for postmenopausal breast cancer. There was no evidence of a non-linear association or of a threshold effect, with an increased risk evident even at low levels of daily consumption. The increased risk did not differ materially across types of beverages (beer, wine, liquor) although the risk per 10 g/day increase in consumption was statistically significant only for alcohol intake from beer and wine. There was an indication among postmenopausal women that the increased risk of breast cancer from daily alcohol consumption is not apparent for oestrogen receptor negative/progesterone receptor negative (ER–PR–) tumours.

Recent evidence

The findings of four meta–analyses^{332, 336-338}, a large pooled analysis of 20 cohort studies³³⁹ and five individual cohort studies³⁴⁰⁻³⁴³ all support alcohol consumption as a risk factor for breast cancer.

The two largest meta-analyses included overlapping study populations and examined the association between 'light drinking' (defined as <12.5 g of ethanol per day or less than one standard drink per day) and breast cancer risk.^{332, 338} Sietz et al.³³² included 113 studies (39 cohort and 74 case-control studies) and reported a significant association (RR for less than one standard drink per day 1.05, 95% Cl 1.02–1.08). Bagnardi et al.³³⁸ included 110 studies (39

cohort and 71 case–control studies) and reported a significant association of the same magnitude (RR for less than one standard drink per day 1.05, 95% Cl 1.02–1.08). The two smaller meta–analyses^{336, 337} included 26 and 16 studies respectively, and focused on specific alcohol exposures. Chen et al.³³⁶ reported on consumption of wine only, while Jayasekara et al.³³⁷ reported on the association between long term alcohol consumption and breast cancer risk. Both reviews reported significant associations with highest versus lowest consumption and positive dose–response relationships that did not reach statistical significance. Chen et al.³³⁶ reported a significant association between wine drinking and risk of premenopausal but not postmenopausal breast cancer (RR 1.79, 95% Cl 1.34–2.40 and 1.20, 95% Cl 0.94–1.53, respectively).

Jung et al.³³⁹ reported that, when breast cancer was classified jointly by oestrogen-receptor (ER) and progesterone-receptor (PR) status, there were only statistically significant associations with alcohol consumption for ER+PR+ and ER+PR- disease, which supported the findings of the 2017 WCRF CUP Breast SLR.¹⁰ This pooled analysis of prospective studies found no effect modification according to menopausal hormone therapy (MHT) use,³³⁹ in accordance with inconclusive findings for an effect of MHT use in studies reviewed by IARC in 2012.³³³

Table D.38 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.5 Bras

Evidence summary

Evidence classification: Inconclusive.

The evidence of any association between aspects of bra wearing and risk of breast cancer is inconclusive. A very limited amount of evidence, which is of low quality, is available. The single population-based case-control study does not support an association between any aspect of bra wearing and increased breast cancer risk.

Background

'Bra' is universally understood to refer to a form-fitting undergarment designed to support or cover the wearer's breasts. The proposed mechanisms for a link between bra use and breast cancer include impeding lymphatic drainage from the breast. This hypothesis has been shown to lack biological plausibility.³⁴⁴

Recent evidence

There are no published cohort studies examining an association between any aspects of wearing a bra and risk of breast cancer.

Only one population-based, case-control study, by Chen et al, has examined an association between any aspect of bra wearing and risk of breast cancer.⁷⁵ Multiple potential confounders were examined in this study, which included 454 postmenopausal women with invasive ductal carcinoma (IDC), 590 postmenopausal women with invasive lobular

carcinoma (ILC) and 469 age-matched controls. There was no association between any aspect of bra wearing—including average number of hours/day worn, average lifetime hours/day worn, age at first regular use, wearing a bra with an underwire—and risk of either IDC or ILC.

A systematic review and meta-analysis on aspects of bra wearing and risk of breast cancer has been published; but the 11 studies included in the review, in addition to that by Chen et al., were all hospital-based case-control studies of very low quality. ³⁴⁵ The main other included study, by Hsieh & Trichopoulos³⁴⁶, is often reported in the literature. This study noted a suggested increased risk of breast cancer among premenopausal women who did not wear bras. However, this finding wasn't statistically significant and was indicated to be likely due to these women being thinner and having smaller breasts.

Table D.39 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.6 Coffee, tea, caffeine

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between coffee and/or tea intake and risk of breast cancer is inconclusive. There is some inconsistency in findings across studies. However, in meta-analyses of prospective cohort studies no association has been found between coffee consumption and risk of breast cancer or between tea consumption and risk of breast cancer overall.^{10, 11} There is some evidence from meta-analyses that coffee consumption may be associated with a small decreased risk of postmenopausal breast cancer in a linear dose-response relationship.^{10, 11, 347} The upper confidence interval, however, is close to or equal to 1.00, limiting confidence in the association. A recent meta-analysis of nine prospective studies reported no association between highest versus lowest intakes of caffeine and risk of breast cancer.

Background

Coffee and tea contain caffeine, a naturally occurring plant alkaloid. One cup of coffee contains approximately 100 mg of caffeine (instant coffee 80 mg/250 ml cup, espresso 145 mg/50 ml cup) and black and green tea contains 50 mg/250 ml cup.³⁴⁸

Potential pathways hypothesised for any association between coffee and/or tea consumption and decreased risk of breast cancer have been linked to the caffeine content. This includes an increase in sex hormone-binding globulin thereby lowering the circulating free levels of oestrogens, and reduced levels of bioavailable testosterone with high intake of caffeine.³⁴⁹

In addition, there are compounds other than caffeine in coffee and tea—such as polyphenols—that may have anti-carcinogenic effects via antioxidant actions, inhibiting oxidative stress and oxidative damage.^{349, 350}

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) has judged the evidence for any association between consumption of coffee or tea and risk of breast cancer as 'Limited—no conclusion', for both premenopausal and postmenopausal breast cancer.¹¹

In dose-response meta-analyses undertaken in the WCRF Continuous Update Project systematic literature review (CUP Breast SLR), there was a borderline association for 1 cup/day increments in coffee consumption with decreased risk of breast cancer (RR 0.99, 95% CI 0.98–1.00, 14 studies, low heterogeneity).¹⁰ There was no association for premenopausal breast cancer (RR 1.00, 95% CI 0.97–1.03, seven studies, moderate heterogeneity) and a borderline association for decreased risk of postmenopausal breast cancer (RR 0.95–1.00, seven studies, moderate heterogeneity).

For tea, in dose-response meta-analyses undertaken in the SLR, there was no association for one cup/day increments with breast cancer risk (RR 1.03, 95% CI 0.98–1.09, six studies, high heterogeneity). There was no association for premenopausal breast cancer (RR 1.00, 95% CI 0.96–1.05, four studies, no heterogeneity), or for postmenopausal breast cancer (RR 1.05, 95% CI 0.99–1.11, five studies, high heterogeneity).¹⁰

For green tea, in dose-response meta-analyses undertaken in the SLR there was no association with breast cancer risk (RR 0.99, 95% CI 0.97–1.02, six studies, no heterogeneity).¹⁰

Recent evidence

Studies have focused on coffee consumption. A meta-analysis by Lafranconi et al.³⁴⁷ of coffee intake and breast cancer risk included a total of 21 prospective studies including the findings from recent cohort studies by Hashibe et al.,³⁵⁰ Oh et al.,³⁵¹ Bhoo–Pathy et al.³⁵² and Lukic et al.³⁵³ The authors noted that their meta-analysis was an update of the reviews by Jiang et al.³⁵⁴ and Li et al.³⁵⁵

Lafranconi et al.³⁴⁷ reported the findings of Jiang et al.³⁵⁴ and Li et al.³⁵⁵ as follows: 'The metaanalysis performed by Li and colleagues, on 16 cohort and 10 case-control studies, showed a borderline significant inverse association between coffee intake and the risk of breast cancer (RR 0.96, CI 95% 0.93–1.00 for highest versus lowest analysis; RR 0.98, CI 95% 0.97–1.00 for an increment of 2 cups per day). Statistical significance was reached only for those women without oestrogen receptor (ER-negative, RR 0.81, 95% CI 0.67–0.97). In our [Lafranconi et al 2018] study, such a finding was not confirmed. The work carried out by Jiang and colleagues, which included 17 prospective and 20 case-control studies, found no significant association between coffee consumption and breast cancer risk (highest versus lowest analysis: RR 0.98, CI 95% 0.95–1.02; dose-response analysis: RR 0.98, 95% CI 0.92–1.05 for an increment of 2 cups per day).'

Lafranconi et al.³⁴⁷ conducted a dose-response analysis of 13 studies and reported a significant linear association between coffee consumption and risk of breast cancer. This association was stronger among postmenopausal women. Relative risks for one to seven cups of coffee/day were 0.97 (95% CI 0.95–1.00), 0.95 (95% CI 0.90–1.00), 0.92 (95% CI 0.86–1.00), 0.90 (95% CI 0.82–0.99), 0.88 (95% CI 0.78–0.99), 0.85 (95% CI 0.74–0.99), and 0.83 (95% CI 0.70–0.99) respectively compared with no coffee consumption. In addition, an association between highest versus lowest consumption of coffee was observed only among
postmenopausal women (RR 0.92, 95% CI 0.88–0.98) and not for premenopausal breast cancer or breast cancer overall.

Some studies have reported on caffeine intake, as opposed to coffee and/or tea intake and risk of breast cancer. A meta-analysis by Grosso et al.³⁴⁹ included nine prospective studies where caffeine intake was determined. A descreased risk of 0.99 (95% CI 0.94–1.04) for the highest versus lowest intakes of caffeine was observed.

Table D.40 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.7 Diet—calcium

Evidence summary

Evidence classification: Suggestive (for dietary calcium).

The evidence is suggestive of an association between dietary calcium and decreased risk of breast cancer. There is limited but generally consistent evidence from two meta-analyses that dietary calcium intake is associated with decreased risk of breast cancer.^{10, 356} No association between intake of calcium supplements and breast cancer risk was found in two meta-analyses, based on a very limited amount of evidence.^{10, 356}

Background

Calcium is an essential mineral in the diet and is found in many foods. Foods high in calcium include dairy products, such as milk, yoghurt and cheese, dark green vegetables, some soy products, fish, nuts, and legumes. Some foods such as fruit juices and drinks, tofu and cereals, may be fortified with calcium.³⁵⁷ In addition to dietary intake, calcium may also be taken as a supplement. Calcium supplements may be taken concurrently with vitamin D supplements.

Potential mechanisms for associations between calcium intake and breast cancer risk include calcium's role in regulating cell proliferation, differentiation, and programmed cell death (apoptosis). This is supported by evidence from animal studies suggesting that calcium has anti-proliferative and pro-differentiation actions in breast cells that would reduce risk of developing cancer. The effects of calcium on breast cancer risk may also involve its interactions with vitamin D.³⁵⁶

Methodological limitations for studies of calcium intake include measurement error associated with assessment of dietary calcium intake using food frequency questionnaires, and potential multiple confounders (such as age, reproductive factors, body mass index (BMI) and alcohol consumption) that were adjusted for in most studies.^{10, 356}

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) judged the evidence for an association between diets high in calcium with decreased risk of both premenopausal and postmenopausal breast cancer as 'Limited-suggestive'.¹¹

For dietary calcium, in dose-response meta-analyses undertaken in the WCRF Continuous Update Project systematic literature review (CUP Breast SLR), there was no association between dietary calcium intake and overall breast cancer risk (RR per 300 g/day 0.97, 95% CI 0.94–1.00; five studies with low heterogeneity).¹⁰ Dietary calcium intake was associated with decreased risk of premenopausal breast cancer (RR per 300 g/day 0.87, 95% CI 0.76–0.95; five studies with high heterogeneity) and with decreased risk of postmenopausal breast cancer (RR per 300 g/day 0.87, 95% CI 0.76–0.95; five studies with high heterogeneity) and with decreased risk of postmenopausal breast cancer (RR per 300 g/day 0.96, 95% CI 0.94–0.99; six studies with no heterogeneity). All studies in the dose-response meta-analyses were adjusted for age, alcohol intake, BMI and reproductive factors, except for one study that did not adjust for alcohol intake.¹⁰

For calcium supplements, the WCRF CUP Breast SLR reported that one meta-analysis of six randomised controlled trials (none of which were designed to investigate cancer risk as the primary outcome) found no association between supplemental calcium intake and breast cancer risk. No associations were reported in cohort studies between breast cancer risk and calcium supplements, except in one study for decreased breast cancer risk in women who used calcium supplements compared with non-users. Dose-response meta-analyses were not conducted due to the low number of studies.¹⁰ For concurrent calcium and vitamin D supplements, the WCRF CUP Breast SLR identified one randomised controlled trial and one prospective cohort study. No associations were reported between breast cancer risk and concurrent calcium and vitamin D supplementation.¹⁰

For total calcium (calcium from food and supplements), the WCRF CUP Breast SLR identified one meta-analysis and four cohort studies. No associations were reported in cohort studies between total calcium intake and breast cancer risk, except in one study for decreased premenopausal breast cancer risk associated with highest compared with lowest total calcium intake. Dose-response meta-analyses were not conducted due to the low number of studies.¹⁰

Recent evidence

A meta–analysis by Hidayat et al.³⁵⁶ examining any association between calcium intake (dietary and/or supplemental calcium) and risk of breast cancer included 11 prospective cohort studies, 10 of which were also included in the WCRF CUP Breast SLR in 2017.¹⁰ The meta–analysis by Hidayat et al.³⁵⁶ also noted an association between dietary calcium and decreased breast cancer risk. For dietary and/or supplemental calcium intake, a high versus low intake of calcium was associated with a decreased breast cancer (RR 0.92, 95% CI 0.85–0.99; 11 studies with moderate heterogeneity), with a decreased risk of premenopausal breast cancer (RR 0.75, 95% CI 0.59–0.96) and a decreased risk of postmenopausal breast cancer (RR 0.94, 95% CI 0.87–1.01). In subgroup analyses by type of intake, intake of dietary calcium but not total or supplemental calcium was associated with a decreased risk of breast cancer (RR 0.90, 95% CI 0.84–0.97, nine studies; RR 0.93, 95% CI 0.84–1.03; six studies and RR 0.98, 95% CI 0.92–1.03; four studies).³⁵⁶

Table D.41 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.8 Diet—dairy

Evidence summary

Evidence classification: Suggestive.

The evidence is suggestive of an association between dairy intake and decreased risk of breast cancer. There is limited, but generally consistent, evidence that intake of dairy products may be associated with a decreased risk of breast cancer (overall and premenopausal breast cancer) from three meta–analyses, including a dose response association.¹⁰

No association between dairy intake and risk of postmenopausal breast cancer was found in the meta–analysis by the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR).¹¹

No associations have been observed between intake of total milk or whole milk and risk of breast cancer.

Background

Dairy products are foods produced from the milk of mammals such as cows, sheep and goats. Dairy products include milk (whole milk, low–fat milk, skim milk), butter, cheese (natural and processed), cultured products (yoghurt, cottage cheese) and products such as ice– cream. Dairy products contain calcium and fat, however, these components are considered as separate exposures (sections 4.7.7 and 4.7.18).

The potential mechanism for any association between dairy intake and breast cancer risk may be via dietary calcium, because dairy products are a major source of calcium, or via fortification of dairy products with vitamin D.^{11, 358} For yoghurt, the presence of probiotics and the effects of fermentation in yoghurt production may be potential mechanisms for any association with breast cancer risk.³⁵⁸

Methodological issues in studies of dairy intake include the measurement error associated with assessment of intake using food frequency questionnaires—a commonly used method— which can differ between studies and are often self-administered.^{10, 358} There are multiple possible confounders, such as age, reproductive factors, body mass index (BMI) and alcohol consumption; most studies have adjusted for these.¹⁰ Fat intake could confound any association of breast cancer risk with dairy intake, since a diet with high diary consumption may also have high total fat intake, particularly saturated fat.³⁵⁸

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) judged the evidence for intake of dairy products as 'Limited-suggestive' for an association with reduced risk of premenopausal breast cancer, and as 'Limited-no conclusion' for an association with risk of postmenopausal breast cancer.¹¹

In dose-response meta-analyses undertaken in the WCRF Continuous Update Project systematic literature review (CUP Breast SLR), dairy product intake was associated with a

decreased risk of breast cancer overall (RR per 200 g/day 0.96, 95% CI 0.94–0.99; six studies, no heterogeneity).¹⁰ Dairy intake was also associated with decreased risk of premenopausal breast cancer, RR per 200 g/day 0.95 (95% CI 0.92–0.99; seven studies, no heterogeneity) but there was no association with postmenopausal breast cancer, RR per 200 g/day 0.97 (95% CI 0.93–1.01; eight studies, moderate heterogeneity). Dose–response meta–analyses indicated no associations between total milk intake or whole milk intake and risk of breast cancer.¹⁰

WCRF/AICR¹¹ reported on a pooled analysis of eight studies which was excluded from the CUP analysis because fluid and solid intake were reported separately.³⁵⁹ No significant dose-response associations were observed for total dairy fluids or for total dairy solids and risk of breast cancer.

Recent evidence

A meta-analysis by Wu et al.³⁶⁰ included analyses of specific types of dairy products but did not include any more recent additional studies than the WCRF CUP Breast SLR. The metaanalysis indicated that decreased risk of breast cancer was associated with consumption of skim milk and yoghurt: RR for highest versus lowest intake of skim milk was 0.93 (95% CI 0.85– 1.00, eight studies with moderate heterogeneity) and RR for highest versus lowest intake of yoghurt was 0.90 (95% CI 0.82–1.00, seven studies with no heterogeneity).³⁶⁰ There was no association with breast cancer risk for consumption of total milk (18 studies) or whole milk (nine studies).³⁶⁰

A meta-analysis by Zang et al.³⁵⁸ on dairy intake and breast cancer risk, that included casecontrol (five studies, all conducted in Asia) not included in the WCRF CUP Breast SLR, and 22 prospective cohort studies, reported findings consistent with the WCRF CUP Breast SLR. High and modest dairy consumptions (>600 and 400-600 g/day, respectively) were associated with decreased breast cancer risk, compared with low dairy consumption (<400 g/day): RR for high consumption was 0.90 (95% CI 0.83-0.98) and RR for modest consumption was 0.94 (95% CI 0.91-0.98).³⁵⁸

Table D.42 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.9 Diet—dietary fibre

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between dietary fibre intake and breast cancer risk is inconclusive. Meta-analyses have indicated a possible association between increased intake of dietary fibre and decreased risk of breast cancer overall and postmenopausal breast cancer, but not premenopausal breast cancer; and an association of soluble fibre intake but not insoluble fibre intake with decreased breast cancer risk overall.¹⁰

Background

Dietary fibre comprises plant cell wall constituents (carbohydrate polymers, such as cellulose) that are not digested in the small intestine and includes both naturally-occurring and added fibre in food.³⁶¹ There are two types of dietary fibre: soluble fibre (found in oat bran, barley, nuts, seeds, beans, lentils, peas, and some fruits and vegetables) that absorbs water; and insoluble fibre (found in wheat bran, vegetables and whole grains) that adds bulk. The source of fibre, such as legumes, cereal, vegetable or fruit, can also be used to classify dietary fibre.³⁶¹

Potential mechanisms for any association between dietary fibre intake and decreased risk of breast cancer include via decreased levels of oestrogens, through inhibition of intestinal reabsorption, and increased faecal excretion of oestrogens.³⁶² Other potential mechanistic effects of dietary fibre may include delayed gastric emptying and increased small intestine transit time, resulting in slower glucose absorption and reduced insulin secretion.³⁶²

WCRF/AICR

The World Cancer Research Fund/American Institute of Cancer Research (WCRF/AICR) judged the evidence for the association between dietary fibre intake and risk of breast cancer as 'Limited-no conclusion' for both premenopausal and postmenopausal breast cancer.¹¹

In the WCRF Continuous Update Project systematic literature review (CUP Breast SLR), doseresponse meta-analyses indicated that dietary fibre intake was associated with decreased risk of breast cancer overall (RR per 10 g/day increase 0.95, 95% CI 0.93–0.98; 16 studies with no heterogeneity).¹⁰ There was no association in dose-response meta-analyses with dietary fibre intake for premenopausal breast cancer (RR per 10 g/day increase 0.91, 95% CI 0.75– 1.10; four studies with moderate heterogeneity). However, dietary fibre intake was associated with decreased risk of postmenopausal breast cancer (RR per 10 g/day increase 0.95, 95% CI 0.92–0.99); 11 studies with no heterogeneity).¹⁰ Decreased risk of breast cancer overall was associated with intake of soluble fibre (RR per 10 g/day 0.74, 95% CI 0.63–0.88; five studies with no heterogeneity) but not insoluble fibre (RR per 10 g/day 0.97, 95% CI 0.87– 1.07; six studies with low heterogeneity). Analyses by sources of dietary fibre (legume fibre, cereal fibre, vegetable fibre and fruit fibre) indicated no associations of different dietary fibre sources with breast cancer risk.¹⁰

Recent evidence

A meta-analysis by Chen et al.³⁶³ of 24 prospective cohort and case-control studies included all 16 cohort studies in the WCRF SLR (2017) and an additional four studies (one of which was published after the cut-off date for the WCRF SLR). The meta-analysis indicated that dietary fibre intake was associated with decreased risk of breast cancer overall (RR 0.88, 95% CI 0.83–0.93; 24 studies with moderate heterogeneity) and with decreased risk of premenopausal (RR 0.78, 95% CI 0.62–0.94) and postmenopausal breast cancer (RR 0.88, 95% CI 0.79–0.97). In dose-response meta-analysis, dietary fibre intake was associated with decreased risk of breast cancer (RR per 10 g/day increase 0.96, 95% CI 0.92–0.98).³⁶³ A cohort study by Narita et al.,³⁶⁴ published since the meta–analyses, included 44,444 Japanese women who were followed for an average of 14 years. There was no association reported between dietary fibre intake (total fibre, soluble fibre, insoluble fibre) and risk of breast cancer overall, or for premenopausal or postmenopausal breast cancer. However, the median level of fibre intake for this cohort was low, ranging from a median of 7.9 g/day in the lowest quartile of intake to 18.1 g/day in the highest quartile.³⁶⁴

Table D.43 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.10 Diet-fruit

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between fruit intake and breast cancer risk is inconclusive. The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) has judged the evidence to be 'Limited-no conclusion'; although meta-analyses have indicated a possible association of increased fruit intake with decreased overall breast cancer risk and with decreased risk of postmenopausal, but not premenopausal breast cancer.¹⁰ A more recent large cohort study reported no association between fruit intake and breast cancer risk,³⁶⁵however another large cohort study with long-term follow-up has shown a positive association.³⁶⁶

Background

Fruit, used as a culinary term, refers to the edible part of a plant, tree, bush or vine that contains the seeds and pulpy surrounding tissues and has a sweet or tart taste.¹¹ As a botanical term, fruit, more broadly, refers to the edible part of a plant that consists of seeds and surrounding tissues.

Fruit includes apples, bananas, berries, figs, grapes, mangoes, melons, citrus fruits and dried fruits.

Fruits are a source of dietary fibre, vitamins and minerals and other bioactive compounds such as phytochemicals. Nutrient levels of fruit vary with the species and the environment and may be affected by how they are produced (including when they are harvested), stored and prepared.¹¹

Potential mechanisms for any association between fruit intake and breast cancer risk may be via components of fruits, such as vitamins C and E, minerals, fibre and other bioactive compounds (for example, antioxidants and polyphenols in berries).³⁶⁵ These compounds may reduce breast cancer risk by mechanisms such as reducing oxidative damage to DNA, increasing programmed cell death (apoptosis) or increasing the activity of enzymes able to detoxify carcinogens.³⁶⁷

Methodological issues in studies of fruit intake include the measurement error associated with assessment of intake using food frequency questionnaires—a method commonly used—which can differ between studies and are often self-administered.¹⁰ There are multiple

possible confounders, such as age, reproductive factors, BMI and alcohol consumption, and, while most studies have adjusted for these, residual confounding is possible as women who eat a lot of fruit and vegetables might have healthier lifestyles.³⁶⁶

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) noted in the 2018 Continuous Update Project Third Expert Report that the evidence for any association between fruit intake and risk of breast cancer was previously judged as 'Limited-no conclusion' in the Second Expert Report (2010)³⁶⁸, and that it remained the same.¹¹

In the WCRF Continuous Update Project systematic literature review (CUP Breast SLR), doseresponse meta-analyses indicated that fruit intake was associated with decreased risk of breast cancer overall (RR per 200 g/day increase 0.94, 95% CI 0.90–0.98; 12 studies with low heterogeneity). However, fruit intake was associated with decreased risk of postmenopausal breast cancer (RR per 200 g/day 0.92, 95% CI 0.87–0.98; eight studies with low heterogeneity).¹⁰ There was no association in dose-response meta-analyses with fruit intake for premenopausal breast cancer (RR per 200 g/day 1.00, 95% CI 0.81–1.23; three studies with moderate heterogeneity).

WCRF/AICR reported on a pooled analysis by Jung et al.³⁶⁹ from the Pooling Project of Prospective Studies of Diet and Cancer. This study included data from 993,466 women from 20 cohort studies followed for 11 to 20 years, with 19,869 ER+ and 4,821 ER- breast cancer cases. There was no association between highest versus lowest amounts of fruit intake and risk of breast cancer (RR 0.99, 95% CI 0.95–1.03), or by breast cancer hormone-receptor subtypes, and no evidence of a dose-response.³⁶⁹

Recent evidence

A meta-analysis by Fabiani et al.³⁷⁰ published since the WCRF SLR reported that apple intake was associated with a decreased risk of breast cancer in case-control studies (OR for highest versus lowest level of apple consumption 0.79, 95% Cl 0.73–0.87; five studies with low heterogeneity) but there was no association between apple consumption and breast cancer risk in cohort studies (RR 0.97, 95% Cl 0.94–1.01; three studies with no heterogeneity).

Two large cohort studies on associations between fruit intake and breast cancer risk have been published since the WCRF SLR. A prospective cohort study by Emaus et al.³⁶⁵ from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort (335,054 women with median follow–up of 11.5 years) reported no association between fruit intake and breast cancer risk (HR for highest (399–565 g/day) versus lowest (36–86 g/day) quintile of intake 1.01, 95% CI 0.94–1.09). There were also no associations between total fruit intake and breast cancer hormone–receptor subtypes.³⁶⁵

Farvid et al.,³⁶⁶ from an analysis of data from the prospective Nurses' Health Study (90,476 premenopausal women), reported that high versus low fruit consumption during adolescence (ages 13–18 years) was associated with a lower risk of breast cancer (HR for highest (median intake of 2.9 servings/day) versus lowest (median intake of 0.5 serving/day) quintile of intake 0.75, 95% CI 0.62–0.90). However, total fruit intake during early adulthood (age 27–44 years) was not associated with a lower risk of breast cancer (HR for highest versus lowest quintile of intake 0.96, 95% CI 0.85–1.09).³⁶⁶

Longer term follow–up of the Nurses' Health Study I and II, as reported by Farvid et al.,³⁷¹ and with repeated measures of dietary intake, showed that, among 182,145 premenopausal women at baseline, after a mean of 23.7 years of follow–up, that total fruit intake was associated inversely with breast cancer incidence (HR >2.5 servings/day versus ≤ 4 servings/week of fruits 0.91, 95% CI 0.84–0.99). Fruit juice consumption was not associated with breast cancer risk. Higher consumption of fruits and vegetables rich in vitamin C, alpha–carotene, β –carotene and lutein, was each associated with lower risk of ER–negative (ER–) breast cancer. Higher consumption of fruit juice was associated with higher risk of ER–breast cancer (data were not provided). Examining individual fruits, higher intakes of blueberries and strawberries were associated with decreased risk of ER– breast cancer.

Total fruit and vegetable consumption was associated with decreased breast cancer risk 8– 12 years after exposure but not for shorter latency periods. Total fruit consumption was more strongly associated with breast cancer risk for longer time lags, 12–16 years after exposure. Shorter exposures were associated with decreased risk of ER– breast cancers.

Table D.44 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.11 Diet—vegetables

Evidence summary

Evidence classification: Suggestive (for intake of non-starchy vegetables and decreased risk of oestrogen receptor negative (ER-) breast cancer).

The evidence is suggestive of an association between intake of non-starchy vegetables and decreased risk of oestrogen receptor negative (ER–) breast cancer. There is limited but generally consistent evidence from one meta–analysis, one pooled analysis and two additional cohort studies. The decreased risk associated with increased intake of non–starchy vegetables for ER– breast cancer has been estimated as 0.79 (95% CI 0.63–0.98).¹¹

Background

The term 'vegetables' refers to the edible parts of plants and includes edible leaves, roots, tubers, bulbs, stems and stalks, flowers and grains used as vegetables (for example, sweetcorn, tomatoes, eggplant and zucchini). It does not include nuts, seeds and most grains.¹¹ Vegetables are sources of dietary fibre, vitamins and minerals, and other bioactive compounds such as phytochemicals. Nutrient levels of vegetables vary with species and environment, and may be affected by how they are produced, stored and prepared (as most forms of cooking reduce the nutrient content of vegetables).¹¹ One serve of vegetables is equivalent to approximately 100 grams.

Vegetables can be classified as starchy and non-starchy. Both contribute to a healthy diet. Starchy vegetables are higher in carbohydrate content and include some tubers and roots such as potatoes, sweet potatoes, cassava, sago and taro. Non-starchy vegetables have a lower carbohydrate content and include green leafy vegetables (spinach and lettuce), carrots, broccoli, cabbage, and onions. The WCRF/AICR has separated its review of evidence on starchy and non-starchy vegetables.¹¹ Specific exclusion of starchy vegetables has been made by studies, such as exclusion of potatoes by Jung et al.,³⁶⁹ and exclusion of legumes, potatoes and other tubers by Emaus et al.³⁶⁵

Potential mechanisms for any association between vegetables intake and breast cancer risk include through components of vegetables, such as vitamins C and E, minerals, fibre and other bioactive compounds (for example, glucosinolates in cruciferous vegetables).³⁶⁵ It has been suggested the effect of bioactive components may be more detectable in ER-cancers than in oestrogen receptor positive (ER+) cancers, where the effect of oestrogens may obscure a smaller effect from vegetables.¹¹ A potential mechanism may be through reduction of the epidermal growth factor receptor by phytochemicals in vegetables.¹¹

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) judged the evidence for the association between the intake of non-starchy vegetables and decreased risk of ER- premenopausal and postmenopausal breast cancer as 'Limited--- suggestive'.¹¹

Dose-response meta-analyses included in the WCRF Continuous Update Project systematic literature review (CUP Breast SLR) indicated non-starchy vegetables intake was not associated with risk of breast cancer overall (RR per 200 g/day increase 0.98, 95% CI 0.93–1.02; 12 studies, low heterogeneity), or with risk of premenopausal breast cancer (RR per 200 g/day increase 0.96, 95% CI 0.83–1.11; three studies, no heterogeneity) or postmenopausal breast cancer (RR per 200 g/day increase 1.03, 95% CI 0.97–1.09; eight studies, no heterogeneity).¹⁰

However, meta-analysis of breast cancer risk by hormone receptor subtype of three studies—including data from the large European Prospective Investigation into Cancer and Nutrition (EPIC) study by Emaus et al.³⁶⁵—indicated that non-starchy vegetables intake was associated with decreased risk of ER-PR- breast cancer (RR per 200 g/day increase 0.79, 95% CI 0.63–0.98; moderate heterogeneity). There was no association with breast cancer risk for ER+PR+ breast cancer (RR per 200 g/day increase 0.89, 95% CI 0.79–1.01) or for ER+PR- breast cancer (RR per 200 g/day increase 0.96, 95% CI 0.81–1.13).¹⁰

WCRF/AICR reported on a pooled analysis by Jung et al.³⁶⁹ from the Pooling Project of Prospective Studies of Diet and Cancer. This study included data from 993,466 women from 20 cohort studies followed for 11 to 20 years, with 19,869 ER+ and 4,821 ER- breast cancer cases. Vegetable intake was associated with a decreased risk of ER- breast cancer (pooled RR for highest versus lowest quintile of total vegetable consumption 0.82, 95% CI 0.74-0.90). For ER- breast cancer, a dose-response analysis resulted in a pooled RR per 300 g/day of 0.88 (95% CI 0.81-0.95)³⁶⁹. There was no association between vegetable intake and ER+ breast cancer risk (RR 1.04, 95% CI 0.97-1.11).³⁶⁹

Recent evidence

A prospective cohort study by Emaus et al.³⁶⁵ from the EPIC cohort (335,054 women with median follow–up of 11.5 years), reported vegetables intake was associated with decreased risk of breast cancer (HR for highest versus lowest quintile of vegetable intake 0.87, 95% CI 0.80–0.94). Although the study was published after the WCRF CUP Breast SLR publication search date, the results from the study for breast cancer risk by hormone receptor subtype

were included in the WCRF hormone receptor breast cancer subtypes meta-analysis (summarised above).

An early analysis of data from the Nurses' Health Study (90,476 premenopausal women) reported no association with risk of breast cancer between total vegetables intake during adolescence or early adulthood and risk of breast cancer (HR for highest verses lowest vegetables intake at ages 13–18 years 0.86, 95% CI 0.73–1.01), or in early adulthood (HR for highest versus lowest vegetables intake age 27–44 years 0.96, 95% CI 0.86–1.07).³⁶⁶

Longer term follow–up of the Nurses' Health Study I and II, as reported by Farvid et al.,³⁷¹ and with repeated measures of dietary intake, showed that, among 182,145 premenopausal women at baseline, after a mean of 23.7 years of follow-up, that total vegetables consumption was inversely associated (borderline significant) with breast cancer incidence (>4.5 versus ≤1.5 servings/day of vegetables; HR 0.91, 95% CI 0.84–1.00). There were also significant inverse associations with cruciferous vegetables consumption (>5 versus ≤ 2 servings/week; HR 0.92, 95% CI 0.85–0.98) and those rich in vitamin C (>1 servings/day versus ≤2 servings/week; HR 0.89, 95% CI 0.82–0.95), a-carotene (≥3 servings/week versus <2 servings/month; HR 0.91, 95% CI 0.84–0.98;), and β -carotene (>1 servings/day versus \leq 2 servings/week; HR 0.87, 95% CI 0.80–0.94). Although there was significant heterogeneity among individual vegetables in associations with breast cancer risk, the association for carrots remained significant using step-wise selection analysis. Higher intakes of carrots, lettuce, winter squash, broccoli, cabbage, and cauliflower were also significantly associated with lower incidence of breast cancer. In analyses by tumour hormone receptor status, higher consumption of green leafy, yellow/orange, cruciferous, tomato, and other vegetables, as well as fruits and vegetables rich in vitamin C, alpha-carotene, β -carotene, and lutein was each associated with lower risk of ER-negative (ER-) breast cancer. Overall intake of total vegetables was especially associated with lower risk of ER- tumours (HR per 2 additional servings per day 0.85, 95% CI 0.77–0.93).

Various findings also related similar types of vegetables consumption with HER2–enriched and basal–like breast cancers. The study authors noted that the positive findings in their study may have been due to the latency period. The long follow–up period in this study showed that fruit and vegetables intake may be important 8 or more years before diagnosis. Total fruit and vegetables intake was associated with decreased risk of breast cancer 8–12 years after exposure but not for shorter latency periods. Total vegetables intake was associated with decreased risk 8–12 years and 12–16 years after exposure. Shorter exposures were associated with decreased risk of ER– breast cancers.

Table D.45 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.12 Diet—foods high in carotenoids

Evidence summary

Evidence classification: Suggestive.

The evidence is suggestive of an association between intake of foods high in carotenoids and decreased risk of breast cancer. The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) judged the evidence to be 'Limited-suggestive' of an association between circulating carotenoids and decreased risk of breast cancer. Although there are mixed findings across the range of carotenoids and across studies, this may be partly due to differences in measurement of exposure. Moreover, dose-response analyses have generally been in the direction of an inverse association.¹¹

Background

Carotenoids are naturally occurring pigments and are the sources of the yellow, orange and red colours of many plants. Fruit and vegetables provide most of the 40–50 carotenoids found in the human diet. The most common carotenoids in the western diet are alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, zeanthin and lycopene. Alpha-carotene, beta-carotene and beta-cryptoxanthin are pro-vitamin A carotenoids and can be metabolised to retinol.

The systemic and breast metabolism of carotenoids may have an impact on processes related to cell growth, differentiations and apoptosis, thereby altering the carcinogenic processes (WCRF/AICR¹¹ citing Zhang et al.³⁷²). Some evidence suggests carotenoids may have a direct impact on breast carincogenesis. Carotenoids have antioxidant properties, for example, and may quench reactive oxygen and various free radicals, providing protection against DNA damage (WCRF/AICR¹¹ citing Elliot³⁷³). Any anti-cancer properties of specific carotenoids may, therefore, result variously from their anti-oxidant properties, interactions with cellular (including growth control) signaling cascades, and/or altering gene expression.³⁷⁴

The evidence for the exposure to dietary carotenoids often includes exposure as circulating carotenoids. Considering measurement error in studies estimating carotenoid intake, the bioavailability of carotenoids from different foods, and individual differences in absorption and metabolism, circulating carotenoids as biomarkers of intake may be better indicators of underlying carotenoid exposure.¹¹

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) judged the evidence to be suggestive of an association between circulating carotenoids and decreased risk of breast cancer. The WCRF Continuous Update Project systematic literature review (CUP Breast SLR) identified studies on dietary beta-carotene and circulating beta-carotene, alpha-carotene, total carotenoids, lutein, beta-cryptoxanthin, and lycopene and had sufficient data to conduct meta-analyses on all of these exposures.¹⁰ An additional published pooled analysis was also reported on for beta-carotene and for other dietary carotenoids by hormone receptor status.³⁷²

Significant inverse dose-response associations were observed for circulating beta-carotene, circulating total carotenoids and circulating lutein (RR per 50 μ g/dL 0.78, 95% Cl 0.66–0.92; RR per 100 μ g/dL 0.82, 95% Cl 0.71–0.96; RR per 25 μ g/dL 0.72, 95% Cl 0.55–0.93). No significant associations were observed for circulating alpha-carotene, β -cryptoxanthin and lycopene, although results for each of these exposures were all in the direction of an inverse association. There was no association between dietary β -carotene and risk of breast cancer in 18 studies (RR 1.00, 95% Cl 0.98–1.02).

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR)¹¹ report on findings by hormone receptor status from the pooled analysis by Zhang et al.³⁷² and other individual studies and noted an overall stronger association with oestrogen receptor negative (ER–) breast cancers although the findings vary by type of carotenoid.

Recent evidence

Longer term follow up of the Nurses' Health Study I and II with repeated measures of dietary intake showed that, among 182,145 premenopausal women at baseline and after a mean of 23.7 years of follow–up, there were significant inverse associations with vegetables and fruits containing a–carotene (\geq 3 servings/week versus <2 servings/month; HR 0.91, 95% CI 0.84–0.98;), and β –carotene (\geq 1 servings/day versus \leq 2 servings/week; HR 0.87, 95% CI 0.80–0.94). These associations were stronger for ER– disease. There was also an association between consumption of fruit and vegetables rich in lutein and risk of ER– and HER2–enriched disease (data were not provided). ³⁷¹

Data from a large case-control study nested in the European Prospective Investigation into Cancer and Nutrition cohort (521,000 participants from 10 European countries; 1502 breast cancer cases including 462 ER- cases) suggested that higher plasma concentrations of α -carotene and β -carotene were inversely associated with ER- breast cancer risk (OR for quintile 1 of intake compared with quintile 5 of intake 0.61, 95% Cl 0.39- 0.98; and 0.41, 95% Cl 0.26-0.65; respectively).³⁷⁵ Higher levels of vitamin C were associated with a decreased risk of oestrogen receptor positive/ progesterone receptor positive (ER+PR+) breast cancer. No association was observed between retinol or tocopherols and breast cancer risk.

A case-control study nested in the Cancer Prevention Study II (CPSII) Nutrition cohort (98,000 women) reported that higher levels of plasma concentration of alpha-carotene, but not beta-carotene, beta-cryptoxanthin, lycopene, lutein + zeaxanthin or total carotenoids, were significantly inversely associated with postmenopausal breast cancer (OR for the highest quintile versus the lowest quintile 0.50, 95% CI 0.29–0.85).³⁷⁶

Table D.46 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.13 Diet—Mediterranean diet

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between a Mediterranean diet and risk of breast cancer is inconclusive. While a randomised trial and the majority of cohort studies have indicated a possible association between a Mediterranean diet and decreased risk of postmenopausal breast cancer, there are methodological limitations to the evidence.

Background

Dietary patterns, such as the Mediterranean diet, integrate the contributions of individual dietary components, enabling simultaneous assessment of the effects of individual nutrients

and their potential interdependencies.^{377, 378} A Mediterranean diet is characterised by high consumption of whole grains, vegetables, fruits, nuts and legumes and regular intake of fish and seafood, but low amounts of meat, eggs, high–fat dairy and sugar. Olive oil is the main source of fat, and moderate alcohol consumption, preferably as red wine consumed with meals, can be included as an indicator.^{377, 378}

Definitions of a Mediterranean diet have changed over time and can vary.^{377, 379} Different indices used to assess adherence to a Mediterranean diet include the Mediterranean diet index, and the modified–, alternate– and relative–Mediterranean diet indices.³⁷⁷ Since alcohol is an established risk factor for breast cancer, some studies have excluded alcohol from the Mediterranean diet score.³⁷⁸

Potential mechanisms for any associations of a Mediterranean diet and breast cancer risk include reduction in total and low density lipoprotein cholesterol, body weight, blood pressure, fasting plasma glucose and C-reactive protein, and antioxidant and antiinflammatory effects.³⁷⁹

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) judged the evidence for any association between breast cancer risk and dietary patterns, or culturally defined diets, as 'Limited—no conclusion' for both premenopausal and postmenopausal breast cancer. No classification of evidence was made specifically for the Mediterranean diet.¹¹

The WCRF Continuous Update Project systematic literature review (CUP Breast SLR) identified 10 cohort studies on Mediterranean diet score, or modified/alternate Mediterranean diet score, and breast cancer risk. Some studies excluded alcohol consumption from the score, or examined scores both with and without alcohol. No dose-response meta-analyses were undertaken due to the low number of studies.¹⁰

The WCRF CUP Breast SLR reported inconsistent results from individual studies for Mediterranean diet score—with and without alcohol—and overall risk of breast cancer and risk of premenopausal breast cancer. For postmenopausal breast cancer (eight cohort studies), there was decreased risk associated with Mediterranean diet score, with and without alcohol, except for one pooled study from the United Kingdom. In analysis by hormone receptor subtype, one cohort study reported decreased risk of oestrogen receptor negative/ progesterone receptor negative (ER–PR–) postmenopausal breast cancer associated with highest compared with lowest Mediterranean diet score. There were no other associations with other subtypes of postmenopausal breast cancer.¹⁰

Recent evidence

A meta-analysis by³⁷⁷ on Mediterranean diet and breast cancer risk included one randomised controlled trial (RCT), seven prospective cohort studies, 16 observational studies and nine case-control studies. The RCT included was the PREDIMED trial from Spain,³⁸⁰ which is described separately below. In the meta-analysis, high adherence to Mediterranean diet pattern was associated with decreased risk of breast cancer in cohort studies (RR 0.94, 95% CI 0.90-0.99; seven studies with low heterogeneity) and also case-control studies (RR 0.89, 95% CI 0.85-0.94; nine studies with low heterogeneity).³⁷⁷ This meta-analysis included the cohort study by van den Brandt & Schulpen³⁷⁸ described separately below, which was not included in the WCRF CUP Breast SLR.¹⁰

A meta-analysis by³⁷⁹ included trials and cohort studies on Mediterranean diets with no restriction on fat intake. Meta-analysis of 13 cohort studies indicated no association between breast cancer risk and the highest versus lowest levels of adherence to a Mediterranean diet (RR 0.96, 95% CI 0.90–1.03).³⁷⁹

In a cohort study of over 62,000 postmenopausal women from the Netherlands with 20 years follow–up, high versus low adherence to a Mediterranean diet (excluding alcohol) was associated with decreased risk of ER– postmenopausal breast cancer (HR 0.60, 95% CI 0.39– 0.95).³⁷⁸ A meta–analysis of these results with those from other cohort studies also indicated association of Mediterranean diet adherence with decreased risk of ER– postmenopausal breast cancer (HR 0.73, 95% CI 0.57–0.93) and with ER–PR– postmenopausal breast cancer (HR 0.77, 95% CI 0.63–0.94), for high versus low adherence.³⁷⁸

The PREDIMED cardiovascular disease prevention trial from Spain randomised 4,282 postmenopausal women at high cardiovascular disease risk to a Mediterranean diet supplemented with extra-virgin olive oil or to a Mediterranean diet supplemented with mixed nuts, or to a control diet (with advice to reduce dietary fat).³⁸⁰ In a pre-specified secondary analysis after median 4.8 years follow-up, risk of breast cancer was lower in the Mediterranean diet with extra-virgin olive oil group compared with the control group (HR 0.32, 95% CI 0.13–0.79). However, this trial was not powered for breast cancer as a primary end point and there were only 35 confirmed incident cases of breast cancer.³⁸⁰

Table D.47 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.14 Diet-phytoestrogens

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between intake of phytoestrogens and risk of breast cancer is inconclusive. The evidence is inconsistent. However, meta-analyses of the higherquality prospective cohort studies show no association with breast cancer risk for intake of any specific groups of dietary phytoestrogens including 'isoflavones' and 'soy and soy products'.

Background

Phytoestrogens are naturally occurring plant-derived compounds, the molecules of which have structural similarities to oestrogens. The major classes of phytoestrogens include isoflavones (from soy beans, soya products and vegetables), flavanoids (from red and yellow fruits and vegetables), lignans (from flaxseed, whole grains, fruits and vegetables), coumestans (from peas, beans, alfalfa and sunflower seeds), and stilbenes (from red wine).³⁸¹

Phytoestrogens have been investigated primarily as protective agents for breast cancer. The hypothesis that soy isoflavones and other phytoestrogens could reduce risk of breast and

endometrial cancer comes from the low incidence of breast and endometrial cancer in Asian countries where soy products are prevalent in the diet, and from certain animal models.³⁸² Phytoestrogens bind weakly to oestrogen receptors and therefore have weak (anti)oestrogenic effects, which is a potential mechanism for reducing breast cancer risk.^{381, ³⁸³ Other effects of phytoestrogens that may be involved in potential mechanisms for reducing cancer risk include inhibiting cell growth and proliferation, interacting with growth factor and cytokine signaling pathways, regulating cell cycle and apoptosis pathways, and antioxidant and anti–inflammatory effects.^{381, 383}}

The (anti)oestrogenic properties of phytoestrogens have also raised concern in relation to increased risk of breast cancer because they might act as endocrine disruptors.³⁸⁴

WCRF/AICR

The World Cancer Research Fund/American Institute of Cancer Research (WCRF/AICR) judged the evidence for any association between breast cancer risk and 'phytoestrogens', 'isoflavones', and 'soya and soya products' as 'Limited-no conclusion' for both premenopausal and postmenopausal breast cancer.¹¹ One study was identified on total phytoestrogens which found no association with breast cancer risk. For isoflavones, seven cohort studies were identified, with inconsistent findings. A dose-response meta-analysis of six of these seven studies, with high heterogeneity, showed no association of dietary isoflavones with postmenopausal breast cancer risk (RR per 3 mg/day 0.99, 95% CI 0.98–1.00). There were insufficient data for meta-analysis of intake of isoflavones with risk of (any) breast cancer or with premenopausal breast cancer. Three cohort studies of lignans were included in the review and no associations were found with breast cancer risk.¹⁰ No association was identified between intake of soy products (including soy milk) overall (five cohort studies), miso soup intake (three cohort studies), or tofu intake (three cohort studies) and risk of breast cancer.

Recent evidence

A review by Grosso et al.³⁴⁹ included 16 prospective studies and 23 case–control studies on the relationship between dietary phytoestrogens and risk of breast cancer. As per the WCRF Continuous Update Project systematic literature review (CUP Breast SLR),¹⁰ there were generally small numbers of studies, particularly prospective studies, for intake of the various types of phytoestrogens. A meta–analysis of the 39 studies showed no association between highest versus lowest intakes of total dietary flavonoids and risk of breast cancer (RR 0.96, 95% CI 0.89–1.0). In addition, there were no associations with breast cancer risk for any of the individual dietary flavonoids investigated using prospective studies, including total flavonoids (three studies), flavonols (four studies), flavanones (three studies), isoflavones (eight studies), proanthocyanidins (three studies), or lignans (four studies).

A meta-analysis by Wu et al.³⁶⁰ on breast cancer risk and dietary protein sources such as soy food included only prospective studies. There was no association with breast cancer risk for highest versus lowest intake of soy food (RR 0.92, 95% CI 0.84–1.00) in 10 studies, or in dose-response analysis per serving increase (RR 0.91, 95 % CI 0.84–1.00) in seven studies.³⁶⁰

Baglia et al.³⁸⁵ have reported extended follow–up results from the Shanghai Women's Health Study cohort, for which earlier results were included in the WCRF CUP Breast SLR analysis.¹⁰ In this cohort of 70,578 women after median 13 years follow–up, adult soy intake was associated with decreased breast cancer risk (HR for fifth versus first quintile soy protein intake 0.78, 95% CI 0.63–0.97) and with decreased risk of premenopausal breast cancer (HR 0.46, 95% CI 0.29–0.74).³⁸⁵

Table D.48 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.15 Diet-glycaemic index

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between glycaemic index and risk of breast cancer is inconclusive. Although there is an indication of a possible association between glycaemic index and increased risk of postmenopausal breast cancer, the evidence is currently heterogeneous. Meta-analyses by the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) and others, and more recent cohort studies, indicate no associations between glycaemic index and overall risk of breast cancer or premenopausal breast cancer. There is no evidence for an association between glycaemic load and risk of breast cancer.¹¹

Background

Glycaemic index (GI) is a relative ranking of the carbohydrate in foods according to how the carbohydrate affects blood glucose levels. Gl indicates the extent to which a carbohydrate food raises blood glucose levels after it is eaten, compared with glucose as a reference. Foods with a high GI are quickly broken down during digestion and produce a higher peak in blood glucose and a larger overall blood glucose response after eating, than do foods with a low GI.³⁸⁶ Glycaemic load (GL) incorporates the effect of the amount of carbohydrate consumed and is calculated as the product of a food's GI and the weight of consumed carbohydrate. The GL of a mixed meal or diet is the sum of the GL values for all the carbohydrate foods consumed and is a measure of the total glycaemic effect of the diet.³⁸⁶

Sieri & Krogh³⁸⁶ hypothesised that the underlying mechanism for any association between GI or GL with increased cancer risk is chronically high blood glucose resulting in chronically elevated blood insulin. Increased insulin results in increased bioactivity of insulin–like growth factors, such as IGF–1, which can promote tumour development. Cancer risk may also be increased via other conditions associated with chronically high blood sugar, such as insulin resistance, obesity and diabetes.³⁸⁶

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) judged the evidence for any association between GI and GL with breast cancer risk as 'Limited—no conclusion', for both premenopausal and postmenopausal breast cancer.¹¹

For GI, dose-response meta-analyses undertaken in the WCRF Continuous Update Project systematic literature review (CUP Breast SLR) showed an association between GI (per 10 GI

units/day) and increased risk of postmenopausal breast cancer (RR 1.06, 95% CI 1.02–1.10; 10 studies with moderate heterogeneity)¹⁰ No associations were identified for (any) breast cancer (RR 1.02, 95% CI 0.96–1.10; five studies with high heterogeneity) or for premenopausal breast cancer (RR 1.01, 95% CI 0.93–1.10; six studies with moderate heterogeneity). There were no associations of GI with risk of breast cancer subgroups defined by hormone receptor status.¹⁰

The WCRF CUP Breast SLR identified no associations between GL and risk of breast cancer in dose-response meta-analyses. For meta-analysis per 50 units GL/day, the relative risk for breast cancer was RR 1.02 (95% CI 0.93–1.11; six studies with high heterogeneity); for premenopausal breast cancer RR 1.07 (95% CI 0.92–1.24; seven studies with high heterogeneity); and for postmenopausal breast cancer RR 1.02 (95% CI 0.92–1.24; solven studies with high heterogeneity).¹⁰ There were no associations of GL with risk of breast cancer defined by hormone receptor status.¹⁰

Recent evidence

Schlesinger et al.³⁸⁷ conducted meta–analyses by menopausal status, hormone receptor status and body mass index (BMI) of the studies also identified in the WCRF CUP Breast SLR. GI was associated with increased risk of postmenopausal breast cancer, consistent with the WCRF CUP Breast SLR. No significant differences in relative risks for GI were identified between hormone receptor subtypes or between groups stratified by BMI. GL was associated with increased postmenopausal breast cancer for oestrogen receptor negative (ER–) tumours (RR 1.28, 95% CI 1.08–1.52), compared with oestrogen receptor positive (ER+) tumours (RR 0.99, 95% CI 0.95–1.03). No significant differences in relative risks for GL were identified between groups stratified by BMI.

Sieri et al.³⁸⁶ found no association of either GI or GL with risk of breast cancer, using the European Prospective Investigation into Cancer and Nutrition (EPIC) Italian prospective cohort study of over 30,000 women after median 15 years follow-up. However, in a subgroup analysis that excluded participants who reported that they were dieting at recruitment, high GL was associated with increased breast cancer risk (HR 1.34, 95% CI 1.02–1.76 highest versus lowest quintile; P trend 0.049).

Makarem et al.³⁸⁸ found no association for GI or GL with breast cancer risk in age- and multivariate-adjusted models (non-significant HR ranged from 0.54 to 0.91; study of 1,689 women from the prospective Framingham Offspring cohort).

Table D.49 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.16 Diet—total energy

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between total energy intake and risk of breast cancer, and of any association between dietary energy density and risk of breast cancer, is inconclusive. There are inconsistent findings across studies.

Background

Total energy intake refers to the total dietary intake of energy (expressed as kcal/day) from all food types, including carbohydrate, fat and protein, and alcohol intake. Total energy intake can be challenging to assess, and methods used (such as food frequency questionnaires) have measurement errors and often differ across studies.³⁸⁹

Dietary energy density is a related measure of diet quality: it is the amount of energy per unit of food consumed (kcal per gram).³⁹⁰

There may be a complex interplay of total energy intake with other correlated and confounding factors, such as body mass index (BMI) / obesity / body fatness and physical activity.³⁹⁰ In addition, different total energy intakes may be associated with different dietary patterns—for example, high energy intake may be associated with high fat consumption and low fruit and vegetable consumption—and these dietary components may have independent effects on breast cancer risk.³⁹⁰

Potential biological mechanisms for any association between breast cancer risk and total energy intake may include insulin insensitivity, elevated levels of insulin–like and other growth factors, elevated levels of sex steroid hormones, chronic inflammation and altered adipokines.³⁹⁰

WCRF/AICR

The World Cancer Research Fund / American Institute for Cancer Research (WCRF/AICR) judged the evidence for any association between breast cancer risk and energy intake as 'Limited—no conclusion', for both premenopausal and postmenopausal breast cancer.¹¹

A dose-response meta-analysis by the WCRF Continuous Update Project systematic literature review (CUP Breast SLR) found no association between total energy intake (500 kcal/day increments) and risk of postmenopausal breast cancer (RR 1.02, 95% CI 0.97– 1.06) in nine studies with moderate heterogeneity.¹⁰ Meta-analyses were not conducted for any breast cancer (16 studies identified with inconsistent results) or for premenopausal breast cancer (five studies identified with inconsistent results), because there were not enough new studies with sufficient data.¹⁰

Recent evidence

Two prospective cohort studies published since the WCRF Continuous Update Project systematic literature review investigated dietary energy density and breast cancer risk.^{390, 391}

Hartman et al.³⁹⁰ studied over 56,000 postmenopausal women from the Cancer Prevention Study II Nutrition Cohort. They found an increased risk of postmenopausal breast cancer associated with total dietary energy density for the highest compared with the lowest quintile of intake (RR 1.17, 95% CI 1.03–1.33), after multivariable adjustment, including BMI. They found no association between the quantity of high energy density foods consumed and risk of breast cancer.³⁹⁰

Thomson et al.³⁹¹ studied over 90,000 postmenopausal women from the Women's Health Initiative. They also found no association between dietary energy density and postmenopausal breast cancer risk (age-adjusted sub-hazard ratio 1.06, 95% CI 0.97–1.10 for the highest compared with the lowest quintile of intake).

Table D.50 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.17 Diet—sugar

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between dietary sugar intake and risk of breast cancer is inconclusive. Meta-analyses of a small number of prospective studies indicate no association between total sugar intake, fructose intake or consumption of sugar-sweetened beverages and risk of breast cancer.

Background

Sugar intake can refer to the dietary intake of sucrose (which is commonly referred to as 'sugar'), the dietary intake of all simple sugars (such as glucose, sucrose, fructose, maltose and lactose), or the intake of sugary drinks. The mechanisms for any association between sugar intake and breast cancer risk may be similar to the mechanisms suggested for any association with glycaemic index or glycaemic load (section 4.7.15). These mechanisms include elevated insulin levels and increased bioactivity of insulin–like growth factors such as IGF–1. They also include other conditions associated with chronically high blood sugar, such as insulin resistance, obesity and diabetes.³⁸⁶

WCRF/AICR

The World Cancer Research Fund / American Institute for Cancer Research (WCRF/AICR) judged the evidence for any association between breast cancer risk and sugar (sucrose), other sugars, sugary drinks and foods as 'Limited—no conclusion', for premenopausal and postmenopausal breast cancer.¹¹ The evidence was previously considered too limited to draw conclusions in the 2007 WCRF/AICR Second Expert Report and was not updated as part of the Continuous Update Project.¹¹

Recent evidence

Schlesinger et al.³⁸⁷ undertook a meta–analysis of prospective studies of sugar intake (total sugars and specific sugars) and breast cancer risk, using searches used by the WCRF Continuous Update Project systematic literature review (CUP Breast SLR). The number of studies was limited, however, and the authors could not perform a stratified analysis by either

menopausal status or hormone receptor status.³⁸⁷ In four studies with moderate heterogeneity, no association was found between breast cancer risk and total sugar intake (for increments of 10 g/day, RR 0.99, 95% CI 0.98–1.01). In three studies with moderate heterogeneity, there was no association with breast cancer risk and fructose intake (for increments of 10 g/day, RR 0.99, 95% CI 0.96–1.01). For other specific sugars (sucrose, glucose, lactose and maltose), there were not enough studies to conduct meta–analyses, and none of the individual studies reported a statistically significant association between intake and breast cancer risk.³⁸⁷

A recent large cohort study in Australia³⁹² showed a borderline significant dose-response association between consumption of sugar-sweetened soft drinks and risk of postmenopausal breast cancer (HR 1.26, 95% CI 1.00–1.58; linear model). No association was observed for consumption of artificially sweetened soft drinks and risk of postmenopausal breast cancer (HE 0.92, 95% CI 0.71–1.18).

A meta-analysis by Boyle et al.³⁹³ on associations with sweetened, carbonated beverage consumption had identified only two retrospective studies on breast cancer risk which found no association between consumption of colas or sugar-sweetened beverages and breast cancer risk (no risk estimate provided).

Table D.51 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.18 Diet—fat

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between dietary fat intake and risk of breast cancer is inconclusive. Findings are inconsistent across studies but randomised trials and cohort studies that adjusted for known confounders have shown no association between total fat intake and risk of breast cancer.

Background

Total fat intake can be measured as absolute intake (grams per day) and is often expressed as intake relative to total energy intake (percentage of energy). Suggested mechanisms for any association between total fat intake and breast cancer risk include the increased production of endogenous oestrogens or other hormones, or the regulation of immune function.³⁹⁴ Established breast cancer risk factors such as body mass index (BMI), family history and reproductive factors may confound any association between total fat intake and breast cancer risk.³⁹⁴

WCRF/AICR

The World Cancer Research Fund / American Institute for Cancer Research (WCRF/AICR) judged the evidence for any association between breast cancer risk and total fat intake as 'Limited—no conclusion', for both premenopausal and postmenopausal breast cancer.¹¹

Total dietary fat had previously been classified in the 2010 WCRF/AICR Breast Cancer Report as 'Limited—suggestive' for postmenopausal breast cancer risk, but in the updated 2018 report the evidence was judged to be less consistent.^{11, 368}

The WCRF Continuous Update Project systematic literature review (CUP Breast SLR) included two randomised dietary intervention trials and 34 cohort studies.¹⁰ Dose-response metaanalyses found no association with breast cancer risk for either total fat intake (RR per 20 g/day 1.02, 95% CI 0.97–1.07; 12 studies) or fat as a percentage of energy (RR per 5% of energy 1.01, 95% CI 0.99–1.02; 13 studies), with low heterogeneity across studies. In four studies that analysed by hormone receptor subtype, total fat was associated with increased risk of ER+ breast cancer and decreased risk of ER- subtype.¹⁰

Recent evidence

A meta-analysis of prospective cohort studies by Cao et al.³⁹⁵ did not include any cohort studies additional to those included in the WCRF CUP Breast SLR. The 20 studies with moderate heterogeneity determined an association between the highest versus the lowest category of total fat intake and risk of breast cancer (RR 1.10, 95% Cl 1.02–1.19).³⁹⁵ No association was observed in studies adjusting for risk factors of breast cancer, such as family history of breast cancer, BMI and reproductive factors.³⁹⁵

Chlebowski et al.³⁹⁶ reported on extended follow–up from the Women's Health Initiative Dietary Modification trial. Earlier results from this randomised controlled trial of dietary intervention were included in the WCRF CUP Breast SLR.¹⁰ The trial randomly assigned over 48,000 postmenopausal women to either a low–fat diet that had the goal of reducing fat intake to 20% of energy and increasing fruit, vegetable and grain intake, or to no intervention. After a median of 16.1 years of cumulative follow–up, postmenopausal breast cancer incidence was not found to be associated with the low–fat dietary intervention compared with the usual diet control group (HR 0.97, 95% CI 0.90–1.04).³⁹⁶

Table D.52 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.19 Diet—processed meat

Evidence summary

Evidence classification: Suggestive.

There is suggestive evidence of an association between processed meat intake and increased risk of breast cancer. Although earlier evidence was inconsistent, several recent meta-analyses of good-quality studies have reported a positive association between high versus low levels of processed meat consumption and risk of breast cancer. This association is observed for breast cancer overall, and for postmenopausal breast cancer, but possibly not for premenopausal breast cancer.

Background

Processed meat refers to meat that has been transformed through salting, curing, fermentation, smoking or other processes to enhance flavour or improve preservation (for example, ham, sausages, corned beef, biltong, beef jerky, canned meat).^{397, 398} Processed meats predominantly contain pork or beef but can include other red meats, poultry, offal or meat by–products such as blood.^{397, 398}

There is no established mechanism for a link between the consumption of processed meat and breast cancer risk.³⁹⁸ Processing meat can result in the formation of carcinogenic chemicals, including N-nitroso-compounds (NOC) and polycyclic aromatic hydrocarbons (PAH).³⁹⁹ Cooking processed meat, particularly at high temperatures can also produce known or suspected carcinogens, including heterocyclic aromatic amines (HAA) and PAH.³⁹⁹ Other potential mechanisms for a carcinogenic effect relate specifically to red meat (section 4.7.20).

IARC

The International Agency for Research on Cancer³⁹⁷ (IARC) concluded that consumption of processed meat is 'carcinogenic to humans (Group 1)', noting sufficient evidence in humans that the consumption of processed meat causes colorectal cancer. The IARC Working Group considered the human epidemiological evidence from 10 cohort studies (including case-control studies nested in the cohorts) and 16 case-control studies. The cohorts had large sample sizes, accurate exposure assessment and adequate adjustment for confounding.³⁹⁷ Four of the 10 cohort studies reported a statistically significant positive association for the consumption of red and processed meat combined. The case-control studies provided inconsistent evidence. There were insufficient data to evaluate the association separately for premenopausal and postmenopausal breast cancer, or by hormone receptor status.³⁹⁷

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) judged the evidence for any association between processed meat and risk of breast cancer as 'Limited—no conclusion', for premenopausal and postmenopausal breast cancer.¹¹ The WCRF Continuous Update Project systematic literature review¹⁰ (CUP Breast SLR) evaluated 15 studies and a single meta–analysis⁴⁰⁰ reporting on the association between processed meat consumption and breast cancer risk. Thirteen studies were included in a dose–response meta–analysis, which reported a null association (summary RR per 50 g/day increment 1.08, 95% Cl 0.96–1.22), but with evidence of significant heterogeneity. In subgroup dose–response analyses, no association was observed for premenopausal (four studies) or postmenopausal (eight studies) breast cancer (summary RR 1.02, 95% Cl 0.84–1.24 and 1.13, 95% Cl 0.99–1.29, respectively). There was substantial overlap in studies included in the IARC³⁹⁷ evaluation and the WCRF CUP Breast SLR.¹⁰

Recent evidence

In a meta-analysis of prospective cohort, nested case-control and clinical trial studies, Farvid et al.⁴⁰¹ showed high compared with low intake of processed meat was associated with

overall breast cancer risk (RR 1.09, 95% Cl 1.03–1.16; 15 studies) and postmenopausal breast cancer risk (RR 1.10, 95% Cl 1.03–1.17; 10 studies), but not with premenopausal breast cancer risk (RR 1.09, 95% Cl 0.95–1.25; seven studies). The non–significance of the latter association was considered possibly attributable to lack of statistical power.

Data from the UK Biobank cohort study were combined with data from 10 previous cohort studies, involving 40,257 incidence breast cancers among 1.65 million women in a meta– analysis by Anderson et al.⁴⁰² In congruence with the findings by Farvid et al.,⁴⁰¹ processed meat consumption was associated with overall breast cancer (RR 1.06, 95% CI 1.01–1.11) and postmenopausal breast cancer (RR 1.09, 95% CI 1.03–1.15), but not premenopausal (RR 0.99, 95% CI 0.88–1.10) breast cancer.

An earlier meta–analysis by Wu et al.³⁶⁰ included 14 cohort studies. A summary RR of 1.07 (95% CI 1.01–1.14) for the highest category of processed meat consumption compared with the lowest category of consumption, and a statistically significant dose–response relationship (summary RR per 50 g/day increment 1.09, 95% CI 1.02–1.17), with low heterogeneity; was reported. In subgroup dose–response analyses, no association was observed for premenopausal breast cancer (four studies) or postmenopausal breast cancer (six studies) (summary RR 1.09, 95% CI 0.94–1.26 and summary RR 1.10, 95% CI 0.97–1.26, respectively). All cohort studies included in the dose–response meta–analysis were also evaluated by the IARC³⁹⁷ Working Group and included in the WCRF CUP Breast SLR.¹⁰

Diallo et al.⁴⁰³ reported no association between processed meat consumption and risk of breast cancer overall, or for premenopausal or postmenopausal breast cancer in the French NutriNet–Santé cohort of adult women. Processed meat consumption was relatively low in this study, however, which decreased the ability to detect any association.

Table D.53 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.20 Diet-red meat

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between red meat intake and risk of breast cancer is inconclusive. There is a substantial amount of evidence from a large number of cohort studies and meta-analyses. The findings are inconsistent in effect, and differential in their evidence of a dose-response and/or comparison of lowest versus highest consumption categories.

Background

Red meat refers to all mammalian muscle meat, including, beef, veal, pork, lamb, mutton, horse and goat.^{397, 398} There is no established mechanism for a link between the consumption of red meat and breast cancer risk.³⁹⁸ One hypothesis is a link though the carcinogenic effect of byproducts formed when red meat is cooked at high temperatures—for example, heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons.³⁶⁰ A second hypothesis

relates to a carcinogenic effect of certain components of red meat—including fat, haem iron and the animal sugar molecule *N*–glycolylneuraminic acid—that individually or collectively may promote inflammation and oxidative stress.³⁶⁰ Hormone residues in beef cattle may increase risk of oestrogen receptor positive (ER+) tumours.^{401, 402}

IARC

The International Agency for Research on Cancer (IARC)³⁹⁷ concluded that consumption of red meat is 'probably carcinogenic to humans (Group 2A)'. IARC also concluded that there is 'limited evidence in humans for the carcinogenicity of consumption of red meat' and that 'positive associations have been observed between consumption of red meat and cancers of the colorectum, pancreas, and prostate'. A large number of cohort and case-control studies examining the association between consumption of red meat and risk of breast cancer were included in the human epidemiological evidence considered by IARC but breast cancer was not mentioned in the overall evaluation.

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) judged the evidence for any association between breast cancer risk and red meat consumption as 'Limited—no conclusion', for premenopausal and postmenopausal breast cancer.¹¹

The WCRF Continuous Update Project Systematic Literature Review (CUP Breast SLR)¹⁰ evaluated 12 studies (nine cohort and three nested case–control studies) reporting on the association between red meat consumption and breast cancer risk. Six studies were included in a dose–response meta–analysis, which reported a 12% increase in breast cancer risk for each 100 g/day increment of red meat intake (RR 1.12, 95% CI 1.01–1.24). There was no evidence of significant heterogeneity or publication bias. In subgroup dose–response analyses, no association was observed for premenopausal (three studies) or postmenopausal (five studies) breast cancer (RR 1.04, 95% CI 0.84–1.29 and RR 1.11, 95% CI 0.97–1.27 respectively). In a meta–analysis of highest versus lowest consumption categories, no significant associations were observed for breast cancer overall, or for pre– or postmenopausal breast cancer.

Recent evidence

In a meta–analysis of prospective cohort, nested case–control and clinical trial studies, Farvid et al.⁴⁰¹ found red meat consumption was not associated with risk of overall breast cancer (RR for highest versus lowest category of consumption 1.06, 95% CI 0.99–1.14; 13 studies). The studies had moderate inconsistencies. There was similarly no significant association for risk of premenopausal breast cancer (RR 1.07, 95% CI 0.97–1.18; six cohort studies) or postmenopausal breast cancer (RR 1.08, 95% CI 0.99–1.17; nine studies). Further, consumption of red meat was not associated with either the fast or slow NAT2 acetylator genotypes. This finding does not support the hypothesis on the carcinogenic HCAs formed in red meat during cooking in the aetiology of breast cancer, although Farvid et al.⁴⁰¹ noted the limitations of the findings of the included studies.

Data from the UK Biobank cohort study were combined with data from 10 previous cohort studies, involving 40,257 incidence breast cancers among 1.65 million women in a metaanalysis by Anderson et al.⁴⁰² In line with the findings reported by Farvid et al.,⁴⁰¹ red meat consumption was not associated with premenopausal (RR 1.02, 95% CI 0.92–1.11) or postmenopausal (RR 1.03, 95% CI 0.97–1.08) breast cancer.

Earlier, Wu et al.³⁶⁰ examined consumption of 'fresh red meat', and included 12 cohort studies (23,667 women with breast cancer) in a highest versus lowest category analysis. Seven of the 12 cohort studies were also included in the WCRF evaluation.¹⁰ The summary RR was 1.07 (95% CI 0.98–1.17), with evidence of significant heterogeneity but not of publication bias. Eight studies were included in a dose–response meta–analysis, and the summary RR for breast cancer per 120 g/day was 1.13 (95% CI 1.01–1.26) with significant heterogeneity.

Diallo et al.⁴⁰³ reported on more recent data on risk of breast cancer associated with red meat consumption in a cohort of 45,930 adult French women (the French NutriNet–Santé study). Compared with women in the lowest category of consumption, women in the highest category had an increased risk of breast cancer (HR 1.83, 95% Cl 1.33–2.51). The association was observed for both premenopausal (HR 2.04, 95% Cl 1.03–4.06) and postmenopausal breast cancer (HR 1.79, 95% Cl 1.26–2.55). The significantly raised risk remained in sensitivity analyses excluding breast cancer cases that occurred in the first year of follow–up, and in analyses restricted to invasive breast cancers. There was no evidence of a significant dose–response relationship.

Table D.54 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.21 Environmental tobacco smoke

Evidence summary

Classification: Inconclusive.

The evidence for any association between exposure to environmental tobacco smoke and risk of breast cancer is inconclusive. The evidence is inconsistent. Some case-control studies have reported positive associations between exposure to environmental tobacco smoke and breast cancer risk. However, the more robust evidence from cohort studies does not support an association.

Background

Environmental tobacco smoke (ETS; also referred to as secondhand smoking/smoke, passive smoking/smoke or involuntary smoking/smoke) is the combination of 'mainstream' and 'sidestream' smoke; that is, the smoke exhaled by a smoker and the smoke given off by a burning tobacco product.³³³ ETS contains the same carcinogens that are inhaled by smokers, although the concentrations of individual components vary according to how easily the smoke can be dispersed into the environment.⁴⁰⁴

IARC

Although secondhand tobacco smoke is classified by the International Agency for Research on Cancer (IARC) as a Group 1 carcinogen,³³³ the evidence for an association between ETS and breast cancer was considered to be inconsistent for breast cancer overall and for premenopausal breast cancer. IARC examined an additional 16 studies (three cohort studies and 12 case–control studies) published since the prior IARC evaluation conducted in 2002.⁴⁰⁴ In the previous evaluation, IARC⁴⁰⁴ also concluded that the evidence was inconsistent, highlighting that the findings of large cohort studies did not support a causal association.

However, IARC noted that there have been concerns expressed regarding inherent biases in the data, because the information on exposure to secondhand tobacco smoke relies heavily on recall of past exposures outside the home.³³³ Concerns were also raised that lifetime exposure to tobacco smoke may have been ignored or underestimated in cohort studies and that these women were included in the referent group, diluting the contrast between exposed and 'non-exposed' women.³³³

Recent evidence

Five systematic reviews with meta–analysis examining the association between ETS and breast cancer risk have been published since 2012. The most recently published review included 47 studies conducted between 1985 and 2015 (15 cohort studies, 30 case–control studies and two nested case–control studies).⁴⁰⁵ Definitions of ETS exposure varied markedly across studies. The summary estimate for breast cancer risk associated with ETS (all studies) was 1.15 (95% Cl 1.07–1.23), with evidence of significant heterogeneity between studies. However, the increased risk was restricted to case–control studies (RR 1.26, 95% Cl 1.13–1.41). There was no evidence of an association for the meta–analysis of 15 prospective studies (RR 1.02, 95% Cl 0.97–1.07). Various exposures to ETS were examined including spouse, home, workplace, adulthood, and childhood, and the findings were consistent with the primary analysis of a suggestion of an increased risk only in case–control studies. Seven cohort studies presented effect estimates stratified by menopausal status, showing an increased risk of breast cancer among premenopausal (RR 1.36, 95% Cl 1.15–1.60) but not postmenopausal women.

A meta-analysis published in 2015 included 31 studies,⁴⁰⁶ most of which were included in the meta-analysis by Lee & Hamling.⁴⁰⁵ The analysis reported an increased risk of breast cancer associated with ever having passively smoked among 11 prospective studies (RR 1.07, 95% Cl 1.02–1.13; no heterogeneity) and among 20 retrospective studies (RR 1.30, 95% Cl 1.10–1.54). The authors noted that the evidence for a moderate increase in risk with passive smoking was more substantial than in previous years.

Two meta-analyses were restricted to Chinese populations. Chen et al.⁴⁰⁷ included eight case-control studies published between 2001 and 2011 and reported a summary OR of 1.67 (95% CI 1.27–2.21). Chen et al.⁴⁰⁷ included studies published between 2010 and 2013 (two cohort studies and 25 case-control studies) and reported an overall summary estimate associated with passive smoking of 1.60 (95% CI 1.39–1.82). As observed in the other meta-analyses, the increased risk was observed only in case-control and not in cohort studies. This study was the only one to analyse by dose, noting a possible but not statistically significant increased magnitude of effect for heavy versus light passive smoking.

A meta-analysis of 10 prospective studies published in 2013⁴⁰⁸ reported a null association; all of these cohorts were included in the meta-analysis by Lee & Hamling.⁴⁰⁵

Table D.55 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.22 Tobacco smoking

Evidence summary

Evidence classification: Suggestive.

The evidence is suggestive of an association between tobacco smoking and risk of breast cancer. The evidence from a large number of cohort studies is generally consistent in showing a positive association between current or former tobacco smoking versus never having smoked tobacco and risk of breast cancer. There is some evidence to indicate that starting smoking at a young age or before first birth is associated with an increased risk of breast cancer. However, the evidence for a dose–response effect is inconsistent.

Background

Tobacco smoking is the practice of burning tobacco and inhaling the smoke (consisting of particle and gaseous elements). Tobacco is prepared by curing the leaves of the tobacco plant, which is of the family Solanaceae and genus Nicotiana. Tobacco smoke is a complex mixture of over 5,300 compounds, including toxicants and known carcinogens. To date, the International Agency for Research on Cancer (IARC) has found sufficient evidence for the carcinogenicity (in either animals or humans) of over 70 components of tobacco smoke. There are other likely carcinogens that are yet to be evaluated, including polycyclic aromatic hydrocarbons (PAHs), tobacco-specific N-nitrosoamines, aromatic amines, aldehydes and certain volatile organic compounds.⁴⁰⁴

The exposure includes inhalation of tobacco smoke through smoking cigarettes, cigars and pipes but excludes chewing tobacco and e-cigarettes. It also excludes environmental exposure to tobacco smoke (section 4.7.21).

There are a number of potential biological mechanisms through which tobacco smoking may influence breast cancer risk. Several fat-soluble compounds found in tobacco smoke have been found to induce mammary tumours in rodents,⁴⁰⁹ including PAHs and aromatic amines, and some of these compounds have been found in human breast milk.⁴¹⁰ Conversely, there is evidence that tobacco smoke may exert an antioestrogenic effect,⁴¹¹ and can alter oestrogen metabolism⁴¹² such that potential carcinogenic effects may be attenuated or offset. Tobacco smoking is also inversely associated with obesity,⁴¹³ and may influence risk indirectly through the association between obesity and increased risk of postmenopausal breast cancer (section 4.7.1).

IARC

The International Agency for Research on Cancer³³³ concluded that, although there is sufficient evidence in humans of the carcinogenicity of tobacco smoking (Group 1

carcinogen), breast cancer is not on the list of cancers for which there is sufficient evidence for causality. A positive association between tobacco smoking and female breast cancer was acknowledged.

For breast cancer, IARC examined the findings from over 130 epidemiological studies, including seven reports on cohort studies and 12 on case-control studies published since the previous IARC evaluation.⁴⁰⁴ Three of the seven cohort studies included in the more recent review reported increased risk of breast cancer associated with current smoking, with risk estimates ranging from 1.12 to 1.32. Former smoking was significantly associated with breast cancer in one cohort study only. In general, longer time since smoking cessation did not result in lower risk estimates. However, longer duration of smoking compared with shorter duration was associated with a significantly higher incidence of breast cancer in five of seven cohort studies. Across all studies considered, the association between age at initiation of smoking and breast cancer risk was inconsistent. Findings were inconsistent for the 19 case-control studies.

Recent evidence

A large pooled analysis of individual data from 14 international cohort studies (36,060 women with breast cancer) participating in the National Cancer Institute (NCI) Cohort Consortium⁴¹⁴ showed a summary hazard ratio for breast cancer associated with current smoking of 1.07 (95% CI 1.04–1.10), with moderate heterogeneity between included studies. The hazard ratio for former smoking was 1.06 (95% CI 1.04–1.09), with low heterogeneity between included studies and after adjusting for alcohol consumption, neither longer duration nor higher intensity of smoking was associated with breast cancer incidence. That is, a dose–response relationship was not observed. Those who started smoking more than 10 years before their first birth had the highest risk of breast cancer compared with those who had never smoked (HR 1.18; 95% CI 1.12–1.24).

A meta-analysis published in 2015 which included 71 studies (27 cohort studies and 44 casecontrol studies) reported summary RRs for breast cancer associated with ever having smoked versus never having smoked of 1.10 (95% Cl 1.09–1.12) for 27 cohort studies (no heterogeneity) and 1.08 (95% Cl 1.02–1.14) for case-control studies (significant heterogeneity).⁴⁰⁶ Summary RRs for current active smoking were 1.13 (1.09–1.17) and 1.08 (0.97–1.20) for 27 prospective and 22 retrospective studies, respectively.

An earlier meta-analysis published in 2013 included only cohort studies⁴¹⁴ some of which were also included in the pooled analysis by Gaudet et al.⁴¹⁴ Fifteen cohort studies contributed to the meta-analysis. The summary HR for breast cancer associated with current smoking was 1.12 (95% CI 1.08–1.16), and 1.09 (95% CI 1.04–1.15) for former smokers compared with those who had never smoked. Stronger associations were observed in women who started smoking before their first birth.

A single cohort study, the UK-based Generations Study Cohort, published subsequent to the meta-analyses and pooled analysis, included 102,927 women who were followed for an average of 7.7 years.⁴¹⁵ The HR for invasive breast cancer in relation to ever having smoked versus never having smoked was 1.14 (95% CI 1.03–1.25), after adjusting for attained age, alcohol consumption and other potential confounders. The HR was 1.24 (95% CI 1.08–1.43) and 1.23 (95% CI 1.07–1.41) for starting smoking at ages <17 years and for starting smoking 1–

4 years after menarche, respectively. A significant linear trend of increased magnitude of risk was observed with increasing pack-years of smoking and number of cigarettes smoked per day, but not with duration of smoking; with an effect only observed after 10+ years' duration of smoking versus never having smoked.

Data from the E3N–EPIC prospective cohort study involving 67,634 participants and 497 cases of premenopausal and 3,138 cases of postmenopausal breast cancer showed no association between smoking and risk of breast cancer among current or previous smokers;⁴⁴ although the E3N population is not representative of the general population and is prone to a healthy cohort effect.

Table D.56 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.23 Physical activity

Evidence summary

Evidence classification-vigorous physical activity: Probable.

Vigorous physical activity is probably associated with a decreased risk of premenopausal and postmenopausal breast cancer (RR 0.83, 95% Cl 0.73–0.95 for premenopausal and RR 0.90, 95% Cl 0.85–0.95 for postmenopausal breast cancer for the highest versus lowest levels of vigorous physical activity).¹¹

Evidence classification—physical activity (including vigorous, occupational, recreational, walking and household activity) and postmenopausal breast cancer: Probable.

Total physical activity is probably associated with a decreased risk of postmenopausal breast cancer (RR 0.87, 95% Cl 0.79–0.96 for the highest versus lowest levels of physical activity).¹¹

Evidence classification—physical activity (including occupational, recreational, walking and household activity) and premenopausal breast cancer: Suggestive.

The evidence is suggestive of an association between physical activity and risk of premenopausal breast cancer.

Background

Physical activity is defined as any bodily movement produced by skeletal muscle that requires energy expenditure.³²³ Evaluating the association between physical activity and cancer is hampered by differences in exposure definition across studies. Physical activity can be categorised into occupational, recreational or other types of activity, and measured in terms of frequency, duration and intensity. Different types of activity are commonly equated through metabolic equivalents (MET); one MET is considered to represent resting energy expenditure.

The World Health Organization defines moderate–intensity physical activity as any activity with an MET value between 3 and 5.9 and vigorous–intensity physical activity as ≥6 MET.⁴¹⁶ Physically inactive people are those who are performing insufficient amounts of moderate– and vigorous–intensity activity.⁴¹⁷ Sedentary behaviour is not the same as physical inactivity

and is defined as any waking behaviour characterised by an energy expenditure \leq 1.5 METs while in a sitting, reclining or lying posture.⁴¹⁷

There are a number of potential mechanisms through which physical activity may influence breast cancer risk. These include through alterations in levels of circulating sex hormones, metabolic hormones, and adipokines, or via an effect on oxidative stress and immune function.⁴¹⁸ Regular physical activity has been shown to lower the levels of biologically available oestrogen, progesterone, and androgens.^{419, 420}

IARC

The International Agency for Research on Cancer³²³ concluded there was 'sufficient evidence' for a cancer-protective effect of physical activity for cancers of the breast. The conclusion was based on the findings of 14 cohort and 24 case-control studies published up to 2001.

WCRF/AICR

The World Cancer Research Fund/American Institute of Cancer Research (WCRF/AICR)¹¹ concluded that there was 'Strong-probable' evidence that being physically active (including vigorous activity) decreases the risk of postmenopausal breast cancer. For premenopausal breast cancer, the Working Group concluded there was 'Limited-suggestive' evidence that being physically active decreases risk, but 'Strong-probable' evidence that undertaking vigorous physical activity decreases risk. The conclusions were based on a review of over 40 cohort studies and meta-analyses published up to 2014¹⁰ and a meta-analysis of 31 prospective studies.⁴²¹ There was substantial overlap between the cohort studies included in the WCRF Continuous Update Project systematic literature review (CUP Breast SLR)¹⁰ and the meta-analysis by Wu et al.⁴²¹

Due to heterogeneity between studies in the way in which physical activity was reported for some physical activity domains, dose-response meta-analyses were only possible for recreational physical activity (MET-hours/week) and vigorous physical activity (minutes/day). Other analyses included in the WCRF CUP Breast SLR¹⁰ compared the highest versus lowest physical activity categories, noting the comparison categories varied across component studies.

Total physical activity

Seventeen studies contributed to the analysis of total physical activity and breast cancer risk. A significant protective effect was seen for postmenopausal breast cancer risk (highest versus lowest levels of physical activity; RR 0.87, 95% CI 0.79–0.96) but not for premenopausal breast cancer or breast cancer overall.¹⁰

Vigorous physical activity

Nineteen studies contributed to the dose-response meta-analysis of vigorous physical activity (VPA; per 30 minutes/day) and breast cancer risk. Non-significant inverse associations were reported for breast cancer overall (RR per 30 mins VPA per day 0.95, 95% CI 0.91–1.00; 6 cohort studies), and both premenopausal and postmenopausal breast cancer, with no evidence of significant heterogeneity. An association was observed for an analysis of 'per 10 MET hours/week' of 0.95 (95% CI 0.92–0.99).¹⁰

In the 'highest' versus 'lowest' meta-analysis, the inverse associations were significant (RR 0.83, 95% CI 0.73–0.95 for premenopausal and 0.90, 95% CI 0.85–0.95 for postmenopausal breast cancer).¹⁰

Occupational physical activity

Seventeen studies contributed to the analysis of occupational physical activity and breast cancer risk. A significant protective effect was seen for breast cancer overall (highest versus lowest levels of physical activity; RR 0.93, 95% CI 0.87–0.99) and for postmenopausal (RR 0.89, 95% CI 0.83–0.96) but not premenopausal breast cancer. Again, there was no evidence of significant heterogeneity.¹⁰

Recreational physical activity

Thirty-six studies examined recreational physical activity and breast cancer risk. A significant protective effect was observed for breast cancer overall (RR per 10 MET-hour/week 0.95, 95% CI 0.92–0.99) and for postmenopausal (RR 0.98, 95% CI 0.97–0.99) but not premenopausal breast cancer. There was evidence of significant heterogeneity in the association with breast cancer risk overall, but not with postmenopausal breast cancer risk.¹⁰

Walking

Eleven studies contributed to the meta-analysis of the association between walking and breast cancer risk. In the highest versus lowest comparison, a significant protective effect was seen for breast cancer risk overall (RR 0.88, 95% CI 0.81–0.96; no significant heterogeneity), but not postmenopausal breast cancer risk. No studies reported on premenopausal breast cancer risk only.¹⁰

Household activity

Five studies contributed to an examination of household activity and meta-analyses were not conducted. Generally inverse associations between higher levels of household activity and breast cancer risk were reported.¹⁰

Physical inactivity

Eight studies examined physical inactivity in relation to breast cancer risk. It was associated positively, but not significantly, with breast cancer overall and postmenopausal breast cancer (no studies had reported on premenopausal breast cancer).¹⁰

Sedentary behaviour

Evidence was too limited for any analyses or conclusions.

Recent evidence

Three meta-analyses⁴²²⁻⁴²⁴ and one pooled analysis⁴²⁵ examining the association between physical activity and breast cancer risk published since the WCRF CUP Breast SLR¹⁰ were identified. All but one was restricted to prospective studies,⁴²² and there was substantial overlap of included studies in these analyses with those of the WCRF/AICR¹¹ and Wu et al.⁴²¹

Neilson et al.⁴²² included 36 case–control and 13 cohort studies and reported a significant protective effect of 'moderate–vigorous' physical activity in relation to premenopausal (RR 0.80, 95% CI 0.74–0.87) and postmenopausal (RR 0.79, 95% CI 0.74–0.84) breast cancer risk. Kyu et al.⁴²³ included 35 prospective studies and reported a significant dose–response relationship between any physical activity (measured in MET–minutes/week) and risk of breast cancer overall. Compared with women with insufficient activity levels (less than 600

MET minutes/week), the risk of breast cancer in women with low activity (600–3,999 MET minutes), moderate activity (4,000–7,999 MET minutes), and high activity (≥ 8,000 MET minutes) levels was estimated as 0.967 (95% CI 0.937–0.998), 0.941 (95% CI 0.904–0.981) and 0.863 (95% CI 0.829–0.900), respectively.

A meta-analysis by Pizot et al.⁴²⁴ included 38 prospective studies and reported similarly protective effects of physical activity with evidence of a dose-response association and no threshold effect. Comparison of highest versus lowest levels of physical activity were associated with a decreased risk of breast cancer (RR 0.88, 95% Cl 0.85–0.90). For vigorous physical activity, a meta-analysis of 11 prospective studies showed a significantly decreased risk of breast cancer for more than or equal to 5 hours/week of vigorous physical activity versus no or limited vigorous physical activity (RR 0.82, 95% Cl 0.77–0.96). Pizot et al.⁴²⁴ provided evidence of effect modification by menopausal hormone therapy (MHT) use, such that the protective effect was only significant for women who had never used MHT.

The collaborative analysis by Moore et al.⁴²⁵ included 10 studies (35,178 breast cancer cases) and reported 'leisure-time' physical activity was protective against breast cancer overall (HR for 90th percentile versus 10th percentile 0.90, 95% CI 0.87–0.93). This association was not modified by either body mass index (BMI) or smoking status.

Recently published data from an occupational cohort study conducted in Sweden (29,524 women) showed a significantly increased risk of breast cancer associated with sedentary occupations (HR 1.20, 95% CI 1.05–1.37). After stratifying by age (<55/≥55 years), the effect was only evident for women younger than 55 years of age.⁴²⁶

In another Swedish cohort (31,514 women), Harris et al.⁴²⁷ provided an estimate of breast cancer risk associated with meeting the WCRF/AICR recommendations for physical activity (that is, to be moderately active for at least 30 minutes/day), reporting a protective effect that did not reach statistical significance (HR 0.86, 95% CI 0.73–1.01).

Table D.57 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.7.24 Shift work disrupting circadian rhythm

Evidence summary

Evidence classification: Suggestive.

The evidence is suggestive of an association between shift work that involves a disruption of circadian rhythm and increased risk of breast cancer. However, the supportive evidence is mostly from case-control studies rather than the more robust cohort studies. There is some evidence of a dose-response relationship. The evidence is stronger for an increased risk of breast cancer either after more than 20 years of night shift work or after shorter periods with many consecutive shifts.⁴²⁸

Background

Shift work is defined in the scientific literature as any arrangement of daily working hours other than the standard daylight hours (7/8 am—5/6 pm).⁴²⁹ Shift work can be permanent

(regular work on one shift only), continuous (all days of the week), discontinuous (interruption on weekends) and can variously include night work.⁴²⁹ Definitions of the period of night work vary internationally⁴²⁹ and the variety in assessment of exposure in epidemiological studies has been highlighted.⁴²⁸

Proposed mechanisms through which shift work may influence breast cancer risk are related to disruption of the circadian system and associated hormonal effects⁴²⁹⁻⁴³¹ hence studies are focused mainly on night shift work. Melatonin is regarded as a reliable measure of circadian dysregulation.⁴²⁹ It has been shown to have anti–proliferative effects on human cancer cells cultured in vitro, with some evidence of an anti–oestrogenic effect.⁴²⁹ There is also evidence from animal models that melatonin inhibits or reduces the induction of DNA damage by free radicals.⁴²⁹ Despite the experimental evidence from animal studies supporting a role for melatonin in lowering risk of breast cancer, data from clinical trials are lacking.⁴³²

IARC

The International Agency for Research on Cancer (IARC)⁴²⁹ concluded that shift work that involves circadian disruption is 'probably carcinogenic to humans (Group 2A carcinogen)'. IARC indicated that there was 'sufficient evidence in experimental animals for the carcinogenicity of light at night' and 'limited evidence in humans for the carcinogenicity of shift work that involves night work'.

The evidence assessed by IARC⁴²⁹ for risk of breast cancer included eight epidemiological studies: two prospective cohort studies, one national census-based cohort study, three nested case-control studies and two retrospective case-control studies. The definition of shift work varied across studies and, although six of the eight studies showed modestly increased risks, there was considerable heterogeneity regarding dose metrics and dose-response relationships.

In 2014, the IARC advisory group listed shift work (light at night) as a high priority for updating,⁴³³ in light of new evidence from observational studies in humans (including in relation to disease subtypes and according to genetic variation), new mechanistic insights, and the consequent potential implications for public health and regulatory authorities. The advisory group noted that consideration should be given to the evaluation of shift work versus circadian disruption generally and in occupationally exposed groups separately to the general population.

Recent evidence

Since the IARC evaluation,⁴²⁹ at least six systematic reviews with meta–analyses have examined the association between night shift work and breast cancer risk.⁴³⁴⁻⁴³⁹ Two included only prospective studies.^{434, 435}

The most recently published review included the latest data from three large cohort studies (the Million Women Study, the EPIC–Oxford cohort and the UK Biobank), combined in a meta–analysis with data from seven independent cohort studies.⁴³⁴ The meta–analysis of the 10 prospective studies included 4,660 breast cancer cases and the pooled RRs were 0.99 (95% CI 0.95–1.03) for any night shift work, 1.01 (95% CI 0.93–1.10) for 20 or more years, and 1.00 (95% CI 0.87–1.14) for 30 or more years of shift work.⁴³⁴ The largest contributing study was

the Million Women Study, which reported a null effect that was not modified by sleep patterns or established breast cancer risk factors.

The meta-analysis by Lin et al.⁴³⁵ included data from 16 prospective studies (four of the largest of these were also included in the review by Travis et al.⁴³⁴ with a total of more than 10,000 incident breast cancer cases. The pooled RR for night shift work versus daytime work was 1.09 (95% CI 1.02–1.17), with evidence of a dose-response trend. The pooled RR for 5year incremental risk was 1.03 (95% CI 1.01–1.04), and the highest risk was seen in women with more than 20 years of exposure (pooled RR 1.09, 95% CI 1.01–1.17). The increased risk was apparent for rotating night shift work but not fixed-night shift work.

He et al.⁴³⁶ reported that their meta–analysis of shift work included 15 studies, although only 14 were listed in the text (four cohort studies, three nested case–control studies and seven case–control studies). Three of the four cohort studies were also included in the review by Lin et al.,⁴³⁵ and there was substantial overlap in the included case–control studies. The pooled RR for shift work was 1.19 (95% CI 1.08–1.32), with evidence of significant heterogeneity. A positive dose–response relationship was reported among the case–control (pooled RR per 10 years of shift work exposure 1.16, 95% CI 1.06–1.27), but not cohort studies (pooled RR per 10 years of shift work exposure 1.03, 95% CI 0.95–1.11) or overall (pooled RR per 10 years of shift work exposure 1.06, 95% CI 0.98–1.15).

Earlier reviews with meta-analyses included a subset of studies included in the later reviews and all reported increased risks for case-control but not cohort studies.⁴³⁷⁻⁴³⁹

A recent report from the Nurses' Health Study (NHS) I and II cohorts included new data (longer follow–up) regarding the timing of exposure (9,541 breast cancer cases).⁴⁴⁰ For women recruited in the 1988 to 2012 cohort, the HR for breast cancer associated with 30 or more years of rotating shift work was 0.95 (95% CI 0.77–1.17) but for women recruited in the 1989–2013 cohort, who were younger at recruitment, the HR for breast cancer associated with 20 or more years of rotating shift work was 2.15 (95% CI 1.23–3.73). A second report from NHS II examined the association between outdoor light at night (LAN) and breast cancer incidence, reporting a significant association among premenopausal but not postmenopausal women (HR for incident premenopausal breast cancer with an interquartile range [IQR] increase in cumulative average outdoor LAN 1.07, 95% CI 1.01–1.14).⁴⁴¹ The association was stronger in women who had worked night shifts (HR per IQR increase in LAN 1.09, 95% CI 1.01–1.18) compared with those who had never worked night shifts (HR 1.03, 95% CI 0.97–1.09).

Table D.58 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.8 Medical factors

4.8.1 Aspirin

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between use of aspirin and risk of breast cancer is inconclusive. The evidence is limited by marked heterogeneity between studies in the doses, frequencies and durations of aspirin use, and limited available data to enable dose–response analyses. A large randomised controlled trial (RCT) with a long follow–up period and meta–analyses of cohort studies suggests no association between aspirin use and risk of breast cancer. A small protective effect of aspirin use on risk of breast cancer has mainly been observed in case–control studies.

Background

Aspirin, or acetylsalicylic acid, is one of a group of anti-inflammatory medications called non-steroidal anti-inflammatory drugs (NSAIDs) that are used to treat pain, fever and inflammation. Aspirin has a similar mode of action to other NSAIDs, but additionally inhibits platelet aggregation and is therefore also used in the prevention of cardiovascular disease.⁴⁴²

The mechanism through which aspirin might influence cancer risk is unclear, but is thought to be through the inhibition of cyclooxygenase (COX), notably COX-2, enzymes.⁴⁴³ The expression of COX-2 is increased in breast cancer, and is known to play a role in carcinogenesis, apoptosis, and angiogenesis.⁴⁴⁴ Anti-inflammatory agents with selective activity or non-selective activity such as aspirin against COX-2 are thought to have potential for the chemoprevention of some cancers.⁴⁴⁵ Aspirin has been recommended in the primary prevention of colorectal cancer under certain circumstances.⁴⁴⁶

Recent evidence

Regular use of low dose aspirin and risk of breast cancer was examined in a large randomised controlled trial (RCT), the Women's Health Study. Aspirin use of 100 mg every other day for 10 years was compared with placebo in 39,876 female health professionals aged 45 years or older.⁴⁴⁷ After 18 years of follow–up, aspirin use was not associated with risk of breast cancer (HR 0.98, 95% CI 0.90–1.07).

In addition to the RCT, nine meta-analyses published since 2008 that reported on the association between aspirin use and breast cancer risk were identified. There was marked heterogeneity in the doses, frequencies and durations of aspirin use examined across the studies. Evidence of publication bias was noted in at least one meta-analysis.⁴⁴⁸ These meta-analyses were generally based on observational studies (case-control and cohort studies) and, for one meta-analysis,⁴⁴⁹ some small RCTs. There was varied but often considerable overlap in the included studies.

Five of eight meta-analyses found a small protective effect of aspirin use (various exposures mainly including 'users versus non-users') when all study types were included or among only case-control studies.⁴⁴⁹⁻⁴⁵³ Three of the four meta-analyses that analysed the data according to study type, however, did not find an association between aspirin use and risk of breast cancer for cohort studies.^{444, 449, 452} The most recently published meta-analysis, which included only large prospective cohort studies (13 studies), also reported a null association between overall use of aspirin and risk of breast cancer (pooled RR 0.94, 95% CI 0.87–1.01) with significant heterogeneity among the included studies.⁴⁵⁴

The data on duration of aspirin use and risk of breast cancer are limited. A marginally significant dose-response relationship was reported in the meta-analysis by Zhong et al.⁴⁵¹ and Lu et al.⁴⁵⁴ noted a potential dose-response relationship for frequency and duration of aspirin use and risk of breast cancer, but could not perform a dose-response analysis due to the data limitations. Duration of aspirin use was not associated with risk of breast cancer in the meta-analyses by Bosetti et al.⁴⁴⁴ or Zhao et al.⁴⁵²

After 10 years of follow–up in the California Teachers Study, current use of three or more tablets per week of low–dose aspirin (81 mg) compared with women not taking any NSAIDs was marginally protective against breast cancer (HRR 0.84, 95% CI 0.72–0.98). The protective effect was limited to breast cancer of the hormone receptor positive/human epidermal growth factor receptor negative subtype. There was no association between current use of regular dose aspirin (325 mg) at three tablets per week and breast cancer risk overall.⁴⁵⁵

Bardia et al.⁴⁵⁶ reported on follow-up data^x from the Iowa Women's Health Study. They showed aspirin use was associated with a lower incidence of breast cancer for women with a family history of the disease (HR for 6+ per week versus never use 0.62, 95% CI 0.41–0.93) and a personal history of benign breast disease (HR 0.69, 95% CI 0.50–0.95) among postmenopausal women aged 55–69 years. Inverse associations were also observed in low risk (but not high risk) subgroups for age at menarche, age at menopause, parity/age at first live birth or body mass index.

Table D.59 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.8.2 Cardiac glycosides

Evidence summary

Evidence classification: Suggestive.

The evidence is suggestive of an association between use of cardiac glycosides from the plant genus *digitalis*, predominantly digoxin, and increased risk of breast cancer. There is consistent evidence from cohort and case–control studies of a positive association; however, there is a lack of adjustment for confounders in many of the studies.

[×] Earlier data were reported by Bardia et al. (2011); these data were included in the meta-analysis by Lu et al. (2017).
Background

Digoxin belongs to the family of cardiac glycosides used in the treatment of congestive heart failure and heart arrhythmias. It is an extract of the plant foxglove (*Digitalis lanata*), and there are three other isolated compounds in the market place: digitoxin, β -acetyldigoxin and methyldigoxin.³⁰⁵ Digoxin represents at least 90% of the world market for digitalis glycosides but the literature can be non-specific about which of the four glycosides is the exposure in studies.³⁰⁵

The chemical structure of digoxin is similar to that of oestradiol and there has been concern that digoxin may promote the development of breast cancer through an oestrogen– receptor mediated mechanism.419 Digoxin use is primarily in elderly populations, and thus these concerns are most relevant when considering postmenopausal breast cancer risk.

IARC

The International Agency for Research on Cancer (IARC) concluded that digoxin is 'possibly carcinogenic to humans (Group 2B)'.⁴⁵⁷ As part of this overall evaluation, IARC noted the compelling nature of the human epidemiological data associating increased risk of cancer of the breast with use of digoxin.⁴⁵⁷ IARC cited evidence from three cohort studies and four case–control studies in the narrative; however, a lack of other supportive evidence was noted.

Recent evidence

Two meta-analyses published subsequent to the IARC monograph (Karasneh et al.⁴⁵⁸; Osman et al.⁴⁵⁹) indicated an increased risk of breast cancer among digoxin users. An additional meta-analysis reported a significantly increased risk of the same magnitude for 'digitalis use'.⁴⁶⁰ Five of the same cohort studies were included in each of the meta-analyses, three of which had been considered by IARC⁴⁵⁷, and, overall, eight studies were included in all three meta-analyses.

The summary estimates for these three meta-analyses were similar: users compared with non-users of cardiac glycosides had 1.33–1.35 times the risk of breast cancer overall, with no evidence of significant heterogeneity among the included studies. The summary estimate for cohort studies was generally higher than for case-control studies. The findings were limited by lack of adjustment for potential confounders, such as body mass index (BMI), in several of the included studies.

The meta–analysis by Osman et al.⁴⁵⁹ examined other cardiac glycoside exposure, as well as digitalis and digoxin separately. The summary HRs for breast cancer overall were of similar magnitude for all three exposures—approximately 1.30. A more recently published cohort study of 4,161 heart failure patients in Taiwan reported a similarly increased magnitude of risk of breast cancer among digoxin users compared with non–users (HR 1.30, 95% Cl 1.05–1.62).⁴⁶¹

Two of the three meta-analyses reported on the association between digoxin and breast cancer risk according to oestrogen receptor (ER) status (Karasneh et al.⁴⁵⁸; Osman et al.⁴⁵⁹), using data from two cohort studies (Ahern et al.⁴⁶²; Biggar et al.⁴⁶³). The analyses reported that digoxin use was significantly associated with ER+ (summary RR 1.33, 95% Cl 1.25–1.42) but not ER- breast cancer (summary RR 0.98, 95% Cl 0.61–1.58).

Table D.60 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.8.3 HPV

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between infection with the human papillomavirus (HPV) and risk of breast cancer is inconclusive. The quality of the evidence is too poor to determine any association. There is a lack of biological plausibility for a causal association.

Background

HPVs are small, non-enveloped, double-stranded DNA viruses that infect mucosal and cutaneous epithelia in humans and induce cellular proliferation.⁴⁶⁴ More than 100 types of HPV have been identified, and more than half of them infect the genital tract.⁴⁶⁴ They can be classified into two main types: low-risk HPVs that can cause skin warts, and high-risk HPVs that can cause cancer (cervical, anal and head and neck cancers).³³³

The immune system clears most HPV infections within one to two years.⁴⁶⁴ Persistence, which is 'long duration of detectable HPV infection', is uncommon compared with clearance. However persistence of infection with certain high-risk HPV types can lead to changes in cell functions that normally prevent cell proliferation and lead to carcinogenesis.⁴⁶⁴ HPV DNA load may be an important determinant of pathogenicity. The mode of transmission of HPV to the breast is not known, and any mechanism by which HPV may cause breast cancer is unclear.⁴⁶⁵ There are compelling arguments against an aetiologic link between HPV and breast cancer. Breast cancer incidence is not higher in immunosuppressed women, while cervical and head and neck cancers are raised two to six-fold compared with immunocompetent women⁴⁶⁶ and HPV viral load in breast cancer is very low.⁴⁶⁷

IARC

The International Agency for Research on Cancer (IARC)⁴⁶⁴ concluded that there was 'inadequate evidence in humans for the carcinogenicity of HPV in the breast'. The IARC Working Group based its evaluation on a review of studies conducted up to 2005, reporting the prevalence of HPV, as detected by polymerase chain reaction (PCR), in breast cancer biopsies. Only one of the studies also reported on the presence of HPV in biopsies of normal breast tissue. In 2012, the IARC ³³³ reviewed a further four studies conducted up to 2009 that examined the prevalence of HPV in breast cancer tissue. The working group concluded there was contradictory evidence for the role of HPV in breast cancer.

Recent evidence

The most recently published systematic review included a meta-analysis of 22 case-control studies reporting on the association between HPV DNA-positivity in tissues and breast cancer risk.⁴⁶⁸ The study reported a summary OR of 4.02 (95% CI 2.42–6.68), with evidence of

significant heterogeneity. No information on the method used to detect HPV DNA in the individual studies was included. In analyses according to HPV subtype (HPV 16, HPV 33, HPV 18), the highest summary OR was observed for HPV 16 (summary OR 5.67, 95% CI 2.21–14.52), but significantly raised risks were reported for all three HPV types. The funnel plot showed asymmetry (that is, fewer than expected small studies with negative findings); however, the test for publication bias was not significant.

Zhou et al.⁴⁶⁹ included a subset of 16 case–control studies that were included in the more recent review by Bae & Kim.⁴⁶⁸ Zhou et al.⁴⁶⁹ reported a summary OR of 3.24 (95% Cl 1.59–6.57), again with evidence of significant heterogeneity. The magnitude of the summary estimate varied according to method of HPV DNA detection (broad–spectrum primers, type–specific primers and combined primers) and tissue type (fresh/fixed).

A smaller meta–analysis of nine studies, of which eight were included in the other two meta– analyses, reported a higher summary OR of 5.90 (95% CI 3.26–10.7), with no evidence of significant heterogeneity.⁴⁷⁰ A meta–analysis by Li et al.⁴⁷¹ included a subset of nine case– control studies included in the other three meta–analyses and reported a summary OR of 3.63 (95% CI 1.42–9.27).

Of the studies included in the meta–analyses, there was notable heterogeneity in HPV detection and identification techniques. Before 2000, only type–specific PCR primers were used to detect HPV in breast tissue; after 2000 the use of broad spectrum PCR and broad–spectrum primers became more common.⁴⁷¹ Many PCR–based studies do not meet the molecular criteria for verifying causality.⁴⁷² Of note, the more powerful next generation sequencing technologies do not support an aetiologic link between HPV infection and breast cancer despite demonstrated sensitivity and specificity in detecting viruses in known viral–caused cancers.⁴⁷²

Two recently published studies examined the prevalence of high-risk HPV types in breast tissue.^{467, 473} Lawson et al.⁴⁶⁵ reported on a retrospective cohort of 41 Australian women who had benign breast biopsies and later developed breast cancer, compared with 21 women with normal breast specimens. PCR was used for HPV detection in the samples. The prevalence of high-risk HPV types was significantly higher in benign breast biopsies (55%) and breast cancer biopsies (66%), compared with normal breast biopsies (29%). The authors reported the prevalence of high-risk HPV types in The Cancer Genome Atlas (TCGA) Breast Cancer Cohort (855 breast cancers) was 2.3%. A second study examined the prevalence of high-risk HPV types in 110 fresh breast tissue samples using PCR and Sanger sequencing. This study reported a prevalence of 42%, of which viral activity was confirmed in only five of 26 invasive breast cancer samples.⁴⁷³ A low viral load of HPV in the breast cancer samples was reported.

Table D.61 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.8.4 Hysterectomy

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between having had a hysterectomy and risk of breast cancer is inconclusive. There is inconsistent evidence from three large cohort studies. Two of these studies showed no association between hysterectomy without bilateral oophorectomy (hysterectomy alone) and risk of breast cancer. One study showed a decreased risk of breast cancer associated with hysterectomy alone.

Background

Hysterectomy is surgery to remove the uterus. Most hysterectomies are performed for noncancerous conditions such as uterine fibroids, menstrual disorders and endometriosis.⁴⁷⁴ Removal of one or both ovaries and the fallopian tubes (salpingo-oophrectomy) may also be undertaken at the time of hysterectomy. This evidence summary considers hysterectomy alone, that is, with conservation of at least one ovary.

The potential mechanism for any association between hysterectomy and risk of breast cancer may involve a reduction in ovarian blood supply following hysterectomy, resulting in compromised ovarian function and decreased levels of sex steroid hormones.^{474, 475}

Recent evidence

A prospective cohort study by Altman et al.⁴⁷⁴ investigated hysterectomy alone and cancer risk using nationwide health-care registers in Sweden between 1973 and 2009. The cohort included data from 111,595 women who had undergone hysterectomy and 5,379,843 women without a hysterectomy, with over 120 million person-years follow-up.⁴⁷⁴ There was no association with risk of breast cancer after adjustment for age, calendar year, parity and education level (HR 0.97, 95% CI 0.93–1.01). Adjustment was not made for other potential confounders, including hormone therapy, alcohol or body mass index (BMI).⁴⁷⁴

Approximately 68,065 women aged 45–75 years from the Multiethnic Cohort study in the United States (recruited in Hawaii and Los Angeles) were followed for an average (median) of 7.7 years to examine any association between hysterectomy alone and risk of breast cancer.⁴⁷⁶ Hysterectomy was not associated with breast cancer risk, compared with no hysterectomy among all women (RR 0.98, 95% CI 0.86–1.11), after multivariate adjustment, including age, BMI, family history, alcohol, reproductive factors and menopausal hormone therapy. Age at hysterectomy was not associated with risk of breast cancer. Hysterectomy status was self–reported, which could have resulted in misclassification of exposure.

The Gaudet et al.⁴⁷⁵ study of the effect of hysterectomy alone on breast cancer risk included 66,802 postmenopausal women from the Cancer Prevention Study–II Nutrition Cohort in the United States. After a median follow–up period of 13.9 years, hysterectomy was associated with decreased risk of breast cancer overall (RR 0.86, 95% CI 0.76–0.96), compared with no surgery, after multivariate adjustment for age, reproductive factors, BMI, family history of breast cancer, hormone therapy and other factors.⁴⁷⁵ Surgery was self–reported through regular follow–up questionnaires, and the authors acknowledged possible misclassification of bilateral salpingo–oophorectomy, but considered it would have minimal influence on the findings.

Table D.62 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.8.5 Pregnancy termination

Evidence summary

Evidence classification: Evidence of no association.

There is evidence of no association between having had a pregnancy termination and risk of breast cancer. A meta-analysis and a pooled analysis of large numbers of cohort studies and record-linkage studies, which are not prone to measurement bias, have shown that pregnancies that end as a spontaneous or induced abortion are not associated with risk of breast cancer.

Background

Pregnancy termination (or induced abortion) is a medical procedure performed to end a pregnancy. A spontaneous miscarriage (or spontaneous abortion) is the loss of a baby before 20 weeks gestation.

Concern about a possible link between pregnancy termination or spontaneous miscarriage and breast cancer has been raised because of the interruption in the normal cycle of hormones that occurs during a full term pregnancy. The main potential mechanism postulated to link pregnancy termination or spontaneous miscarriage and breast cancer is that women who experience these events are exposed to high hormone levels in early normal pregnancy, but then do not experience the terminal differentiation that occurs in late pregnancy.⁴⁷⁷ Breast epithelial cells undergo changes in late pregnancy in preparation for lactation, and the more highly differentiated cells are thought to be less vulnerable to DNAdamage.^{12, 225}

Recent evidence

A meta-analysis of prospective studies published up to April 2014 reported on the association between abortion (spontaneous and induced) and breast cancer risk.⁴⁷⁸ The meta-analysis included 15 prospective studies involving 31,816 cases, and included some of the studies included in the pooled analysis by the Collaborative Group on Hormonal Factors in Breast Cancer (CGHFBC)⁴⁷⁹ (see below), together with more recent data from several large cohort studies. These included the Nurses' Health Study,⁴⁸⁰ the European Prospective Investigation into Cancer and Nutrition (EPIC),⁴⁸¹ the California Teachers' Study⁴⁷⁷ and a large Scottish record linkage study.⁴⁸² The pooled RR for breast cancer risk from associated with induced abortion was 1.00 (95% CI 0.94–1.05; 14 studies) and with spontaneous miscarriage was 1.02 (95% CI 0.95–1.09; 12 studies). Significant heterogeneity was evident for both analyses. No associations were found in subgroup analyses: among nulliparous women, women exposed before and after a first full term pregnancy, women with one or two or more abortions, and women who experienced a first abortion after the age of 30 years.

The CGHFBC conducted a pooled analysis of 53 studies undertaken in 16 countries (83,000 women with breast cancer) and reported no significant overall increase in breast cancer risk associated with having had one or more pregnancies that ended either as a spontaneous miscarriage or as an induced abortion.⁴⁷⁹ For the studies with prospective reporting of exposure (44,000 cases), the pooled RRs were 0.98 (95% CI 0.92–1.04; 12 studies) for

spontaneous miscarriage and 0.93 (95% CI 0.89–0.96; 13 studies) for induced abortion. For studies with retrospective reporting of exposure, the pooled RRs were 0.98 (SE 0.018; 40 studies) for spontaneous miscarriage and 1.11 (SE 0.025; 39 studies) for induced abortion. The study authors noted the following about the retrospective risk for induced abortion: 'collectively, the studies of breast cancer with retrospective recording of induced abortion yielded misleading results, possibly because women who had developed breast cancer were, on average, more likely than other women to disclose previous induced abortions'.

Table D.63 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.8.6 Previous cancer other than breast cancer

Evidence summary

Evidence classification: Suggestive.

The evidence is suggestive of an association between having had a previous cancer, other than breast cancer, and risk of breast cancer.

The cancers that have been most studied in relation to previous diagnosis or history and subsequent risk of breast cancer in the same woman are Hodgkin lymphoma (HL), non– Hodgkin lymphoma (NHL) and thyroid cancer. There is some evidence a personal history of HL and thyroid cancer may be associated with an increased risk of breast cancer independent of radiation treatment effects. Although the two identified cohort studies did not show a significant association between a previous diagnosis of ovarian cancer and risk of breast cancer, this may have been due to sample size issues; risks of ovarian cancer and breast cancer are increased if a woman carries a *BRCA1* or *BRCA2* mutation. There have been too few studies to make a classification regarding an association between previous history of other cancers and risk of breast cancer, although the various identified studies are indicative of an association across a range of cancers.

Background

An increased risk of breast cancer among women with a previous history of another cancer may be due to genetic susceptibility (including hereditary cancer syndromes—see section 4.3), cancer treatment-related effects or shared risk factors, depending on the site of the first cancer.^{483, 484} Increased surveillance/screening of cancer survivors may also play a role.⁴⁸⁵

Recent evidence

Any other cancer diagnosis

A retrospective cohort study conducted in Queensland, Australia, reported women with a personal history of cancer other than breast had a significantly increased risk of developing breast cancer (SIR 1.32, 95% CI 1.27–1.37) compared with the incidence of breast cancer in the general population.²¹⁰

Colorectal cancer

Four cohort studies that examined the association between a history of colorectal cancer and subsequent breast cancer reported inconsistent findings. Two studies reported significantly increased risks of breast cancer compared with the general population (SIR 1.21 for both studies).^{210, 486} The remaining two studies reported a null association⁴⁸⁷ and a nonsignificantly raised risk (SIR 1.22, 95% CI 0.97–1.47).⁴⁸⁸ Two of the studies examined the risk separately for colon and rectal cancer, and the SIRs did not differ materially across sites.^{486, 488}

Gastric cancer

Only two studies were identified that examined the association between history of gastric cancer and risk of breast cancer. Both studies were population–based and reported null findings. One was conducted in Taiwan⁴⁸⁹ and the other in northern Portugal.⁴⁹⁰

Hodgkin lymphoma

A large meta-analysis and five cohort studies have examined the association between a history of Hodgkin lymphoma (HL) and breast cancer risk and shown a consistent positive association. A meta-analysis of 24 cohort studies (prospective, retrospective and linkage studies) reported a pooled RR of 8.23 (95% CI 5.43–12.47) with an absolute excess rate of 22.9/10,000 person-years.⁴⁹¹ The magnitude of risk varied across studies; however, 23 of 24 studies reported an increased risk. Importantly, the level of risk varied according to treatment therapy, with increased risk observed only for women treated with radiation therapy (with or without chemotherapy). This result suggested radiation therapy for HL accounts for the increased risk of breast cancer (section 4.10.6).

Radiation therapy's contribution to the increased risk of breast cancer among women with a previous diagnosis of HL is mixed in more recent cohort studies. Two studies reported estimates according to whether or not HL was treated with radiation therapy.^{492, 493} Consistent with the meta-analysis, both reported higher risks for the radiation therapy group. Risk of breast cancer was increased in the non-radiation treated group in one study (SIR 1.4, 95% CI 1.1–1.8).⁴⁹³ but not the other (SIR 1.0, 95% CI 0.3–2.2).⁴⁹²

Five cohort studies not included in the Ibrahim et al.⁴⁹¹ meta–analysis reported SIRs ranging from 1.39 to 17.2.⁴⁹²⁻⁴⁹⁶ Dörffel et al.⁴⁹⁵ and Schaapveld et al.⁴⁹² reported absolute risks of 14.9 and 54.3 per 10,000 person years, respectively.

The Ibrahim et al.⁴⁹¹ meta–analysis reported breast cancer risk was inversely related to age of diagnosis of HL, with the highest rate observed in young patients (<15 years old; RR 68.7, 95% CI 28.1–168.1). Risk was not significantly increased in women aged over 40 years.⁴⁹¹ Three cohort studies also reported inverse associations between age at HL diagnosis and risk of subsequent breast cancer.^{493, 494, 496}

Non-Hodgkin lymphoma

A meta-analysis of 12 cohort studies examining the association between a history of non-Hodgkin lymphoma (NHL) and risk of subsequent breast cancer showed no association (1.10, 95% CI 0.88–1.37).⁴⁹⁷ Two studies not included in the meta-analysis reported an increased risk of breast cancer among women with a NHL diagnosis, compared with the general population: SIRs of 1.13 (95% CI 1.05–1.22)⁴⁹⁴ and 2.27 (95% CI 1.97–2.61).⁴⁹⁶ The study by Baras et al.,⁴⁹⁴ involving a large retrospective cohort of German women, reported a bi-directional relationship between NHL and breast cancer. That is, women diagnosed with breast cancer were at increased risk of subsequent NHL, suggesting the existence of shared risk factors.

Lymphohaematopoietic neoplasm

One Australian study reported a significantly raised risk of breast cancer following a diagnosis of lymphoid leukaemia, myeloid leukaemia and plasma cell tumours, compared with the general population. An approximate twofold increased risk for all three types of first primary cancer was observed (SIR 1.89, 95% CI 1.52–2.33; SIR 2.24, 95% CI 1.53–3.16; SIR 2.18, 95% CI 1.68–2.79, respectively).⁴⁹⁶

Oesophageal cancer

Two cohort studies showed no association with risk of breast cancer, compared with the general population.^{498, 499} Chuang et al.⁴⁹⁹ examined the histological subtypes of oesophageal cancer, adenocarcinoma and squamous cell carcinoma, separately. There was no statistical difference in the SIRs for breast cancer associated with the two histological subtypes.

Ovarian cancer

Two cohort studies observed non-significantly increased breast cancer incidence following a diagnosis of ovarian cancer, compared with the general population.^{488, 500}

Other prior cancer types

A retrospective cohort study involving 355,966 cancer survivors in Japan reported SIRs for breast cancer subsequent to a first cancer of the stomach, liver, lung, uterus, kidney/urinary tract/bladder and blood. Compared with incidence in the general population, the study observed a significantly increased risk of breast cancer for women with a previous diagnosis of lung (SIR 1.66, 95% CI 1.10–2.21), stomach (SIR 1.63, 95% CI 1.34–1.91) and uterine cancers (SIR 1.40, 95% CI 1.10–1.71).⁴⁸⁸

Skin cancer

Two studies reported significantly increased risks of breast cancer, compared with the general population, among women with a history of melanoma (SIRs 1.07 and 1.19, respectively).^{210, 501} A third study found no association.⁵⁰² Levi et al.⁵⁰² also found no association with risk of breast cancer following a diagnosis of keratinocyte skin cancer (basal cell carcinoma and squamous cell carcinoma).

Table D.67 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

Thyroid cancer

Five cohort studies reported on the association between past history of thyroid cancer and subsequent breast cancer, all reporting positive associations.^{488, 503-506} Women who have had a thyroid cancer diagnosis have an increased risk of developing breast cancer, compared with the general population: SIRs ranging from 1.13 (95% CI 1.06–1.20)⁵⁰⁵ to 1.97 (95% CI 1.34–2.61).⁴⁸⁸

Four of the studies were conducted in populations of Asian women,^{488, 503, 504, 506} and the fifth study was a large record linkage study conducted in the United States,⁵⁰⁵ hence it is uncertain whether the findings can be generalised to the Australian population. The association did not appear to vary materially by age at diagnosis of thyroid cancer,⁵⁰⁶ year of diagnosis (between 1973 and 2008),⁵⁰⁵ histologic subtype of thyroid cancer⁵⁰⁵ or by treatment with radioisotopes/external beam radiation therapy.^{503, 505} Lu et al.⁵⁰⁶ reported the

increased risk was significant only up to five years after thyroid cancer diagnosis (SIR 4.44, 95% CI 3.24–5.95), but not beyond a five-year latency period.

Table D.64 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.8.7 Silicone breast implants

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between silicone breast implants and risk of breast cancer is inconclusive.

Two meta-analyses have indicated that silicone-filled breast implants used for cosmetic augmentation are associated with decreased breast cancer risk, although the quality of these studies was limited by inadequate adjustment for confounders and a limited description of the types of implants employed.^{507, 508}

Breast implants with a textured or polyurethane, rather than smooth surface, are associated with the rare lymphoma—anaplastic large cell lymphoma (ALCL)—which is likely a causal association.^{509, 510} The risk of ALCL for women with breast implants has been estimated at between 1 in 1,000 and 1 in 10,000.⁵¹⁰

Background

Breast implantation may be undertaken for cosmetic augmentation, reconstruction after breast cancer surgery, or for prophylactic mastectomy. There are different types of breast implants with different fillings (for example, silicone gel or saline), different surfaces or shell types (for example, textured, smooth, or polyurethane-coated), and different shapes (round or anatomical).⁵⁰⁷

Potential mechanisms underlying associations between breast implants and breast cancer include enhancement of the immune system due to the implant or the surgery, compression of glandular tissue—resulting in a decreased blood supply that may reduce cell proliferation, and a metabolic rate reduction resulting from a lower temperature of the breast tissue.⁵⁰⁷

IARC

Evaluation of the evidence by the International Agency for Research on Cancer (IARC)⁵¹¹ indicated that there is a 'lack of evidence for carcinogenicity of silicone breast implants for breast cancer'. The overall evaluation was that silicone breast implants are 'not classifiable as to their carcinogenicity in humans (Group 3)'.

Recent evidence

Two meta-analyses have been undertaken of associations between breast implants and breast cancer. Both were restricted to women who received implants for cosmetic reasons.

The studies were limited by inadequate adjustment for possible confounders, such as raised body mass index (BMI), excess body weight/obesity, reproductive factors, alcohol consumption, and family history. In addition, women who undergo breast implantation may have other underlying differences such as socioeconomic factors, breast size and lifestyle factors, that may confound statistical associations with breast cancer.⁵⁰⁷

A meta-analysis by Balk et al.⁵⁰⁷ included 11 longitudinal studies of primary breast cancer in women who had breast implants for augmentation. In each od the included studies, women with implants were at decreased risk of breast cancer. In the meta-analysis of studies with direct comparisons, implants were associated with decreased risk of breast cancer of 0.63 (95% CI 0.54–0.73; six studies with no heterogeneity). Also, in meta-analysis of studies reporting SIRs, implants were associated with a reduced risk (SIR) of 0.76 (95% CI 0.64–0.91; seven studies with high heterogeneity). Most studies did not adjust adequately for possible confounders. Other limitations included limited descriptions of: the type of implant (for example, silicone gel, double lumen, or saline); generation of the implant, manufacturer or brand; shell type (for example, textured, smooth, or polyurethane–coated); and shape (round or anatomical).⁵⁰⁷

A meta-analysis by Noels et al.⁵⁰⁸ also reported a decreased risk of breast cancer associated with cosmetic breast implants. This meta-analysis included seven cohort studies and there was major overlap in the included studies with the meta-analysis by Balk et al.⁵⁰⁷ Risk estimates for use of cosmetic breast implants and risk of breast cancer were: RR 0.63 (95% CI 0.56–0.71) among four cohort studies with no heterogeneity; and, SIR 0.69 (95% CI 0.56–0.85) among six cohort studies, with high heterogeneity.

Breast implants and anaplastic large cell lymphoma

An association of breast implants with increased risk of the rare lymphoma—anaplastic large cell lymphoma (ALCL)—has been observed across a number of studies and the evidence supports the likelihood of a causal association.⁵¹⁰ Breast implant–associated ALCL (BIA–ALCL) is a rare form of T–cell derived lymphoma (a cancer of the immune system) that can develop near breast implants.^{509, 512, 513} It usually involves swelling of the breast due to accumulation of fluid or effusion near the implant. BIA–ALCL is not breast cancer. A potential mechanism for its development is a chronic bacterial biofilm infection on textured implants, which can increase lymphocyte activation and T–cell transformation.^{509, 510}

BIA-ALCL has occurred in women with implants used for cosmetic reasons and for reconstruction after surgery. It typically presents 3–14 years after implant surgery.^{509, 512} Cases of BIA-ALCL have been associated with breast implants that have a textured or polyurethane surface but not with implants with smooth surfaces.^{509, 513, 514} The risk of ALCL for women with breast implants has been estimated at between 1 in 1,000 and 1 in 10,000.⁵¹⁰

A recent case-control study from the Netherlands by de Boer et al.⁵¹⁴ reported 43 patients with BIA-ALCL, of whom 32 had ipsilateral breast implants. Breast implants were associated with increased cumulative risks of BIA-ALCL of 29 per million at age 50 years and 82 per million at age 70 years.⁵¹⁴

The Australian Therapeutic Goods Administration is undertaking ongoing monitoring of the association between breast implants and ALCL and has provided expert advisory panel advice.⁵¹⁰ Up to May 2018, 72 cases of ALCL were reported in Australia.⁵¹⁰ A paper by Hopper et al.⁵⁰⁹ indicated numbers of reported cases of ALCL in Australia to date and the role of the Australian Breast Device Registry in prospectively monitoring breast devices.

Table D.65 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.8.8 Stress

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between stress and risk of breast cancer is inconclusive. The evidence from meta-analyses which included both case-control studies and cohort studies is inconsistent. When cohort studies are considered, adjusted for important potential confounding factors, there is no association between various exposures of psychological stress and risk of breast cancer. Case-control studies of stress have inherent limitations since studies that ask women about stress after cancer has been diagnosed, in other words retrospectively, are likely to be affected by recall bias. Other limitations to interpreting the available evidence include difficulty in quantifying exposures to psychological stress, and heterogeneity in exposure definition across studies.

Background

In the medical context, stress is defined as a state of mental or emotional strain or tension resulting from adverse or demanding circumstances. The body responds to stress by releasing stress hormones (such as epinephrine and norepinephrine) that increase blood pressure, heart rate and blood sugar levels. Stress can be caused by internal factors (for example, illness, psychological affect or personality type) and external factors (for example, bereavement, job loss or strain, and relationship breakdown).

Several biological pathways via which stress might influence breast cancer risk have been proposed, including an effect on oestrogen synthesis⁵¹⁵ and through alterations in immune function.⁵¹⁶ Stress may influence breast cancer risk indirectly through associations with other lifestyle factors that are known risk factors, including alcohol consumption. A person who experiences stress because of a cancer diagnosis in a relative may be at higher risk of cancer due to inherited genetic risk factors rather than as a result of the stress associated with the family member's diagnosis. In assessing the evidence for an association, therefore, the potentially confounding influence of other lifestyle factors as well as family history of disease must be considered.

Recent evidence

Four systematic reviews with meta-analyses have reported on the association between stress and breast cancer risk, and three cohort studies provide additional evidence. Exposure definitions varied across studies. In this report, stressful exposures reported in the literature have been classified into four broad areas: perceived stress/stressful life events; death of a partner/family member/friend; job strain/loss; and divorce/separation.

Perceived stress/stressful life events

Three systematic reviews with meta-analyses and three more recently published cohort studies have reported on perceived stress/stressful life events and risk of breast cancer. Lin et al.⁵¹⁷ examined stress related to 'striking life events', where a stress disorder was classified as an 'acute anxiety disorder'. This in turn was characterised by 'adverse anguishing experiences and physiological responses that develop after exposure to stressful life events'. The meta-analysis included four case-control and three prospective studies. The summary estimate for risk of breast cancer associated with 'striking life events' was OR 1.51 (95% Cl 1.15–1.97) with evidence of significant heterogeneity between studies. Summary estimates were not provided according to study design, however individual study risk estimates ranged from 0.91 to 7.08 for case-control studies, and from 1.07 to 2.1 for prospective studies; factors adjusted for in individual studies were not reported. Six studies also reported on 'severe striking life events' and breast cancer risk; the summary estimate was OR 2.07 (95% Cl 1.06–4.03) with significant heterogeneity among included studies.

An earlier meta-analysis published in 2009 examined 'high intensity stress' in relation to breast cancer risk.⁵¹⁸ The two cohort studies and three of the six case-control studies were also included in the review by Lin et al.⁵¹⁷ The summary estimate of breast cancer risk associated with 'high intensity stress' was RR 1.73 (95% CI 0.98–3.05) in six studies with no significant heterogeneity. No information about adjustment of factors in individual studies was reported. Similarly, a meta-analysis of 'stressful life events' and risk of breast cancer⁵¹⁹ reported a summary OR 1.77 (95 % CI 1.31–2.40) from 11 studies, including one prospective study also included in the more recent meta-analyses and four independent case-control studies.

Three cohort studies published subsequent to the inclusion dates of the meta-analyses have reported on the association between 'perceived stress' and breast cancer risk. Schoemaker et al.⁵²⁰ and Sawada et al.⁵²¹—after adjusting for known breast cancer risk factors including family history, alcohol consumption and body mass index—did not find any associations between 'perceived stress' and breast cancer risk. Similarly, the association between perceived stress over the previous 10 years and risk of breast cancer was null in the European Prospective Investigation into Cancer and Nutrition (EPIC)–Norfolk cohort of 11,467 women in the United Kingdom, after adjustment for known risk factors.⁵²²

Death of a partner/family member/friend

The meta-analysis by Santos et al.⁵¹⁸ found no association between 'widowhood' and breast cancer risk with three studies (one cohort, two case-control studies) contributing to the summary estimate. The earlier meta-analysis by Duijts et al.⁵¹⁹ reported significantly increased risks of breast cancer associated with both 'death of a spouse' (four studies; no heterogeneity and no publication bias) and 'death of a relative or friend' (11 studies) of 37% (OR 1.37, 95% CI 1.10–1.71) and 35% (OR 1.35, 95% CI 1.09–1.68), respectively. Two cohort studies reported no association between loss events either collectively (deaths of first degree relatives)⁵²² or separately defined by type of loss (husband, close relative, close friend).⁵²⁰ For both cohort studies, RRs were adjusted for important potential confounding factors.

Divorce/separation

Two of the systematic reviews^{518, 519} and one of the cohort studies⁵²⁰ examined the association between divorce/separation and breast cancer risk, all reporting no association.

Job loss/strain

A pooled analysis of individual participant data from 12 European cohort studies (Heikkila et al.⁵²³) reported no association between work stress and breast cancer risk after adjusting for BMI, alcohol consumption and other potential confounding factors. Similarly, Schoemaker et al.⁵²⁰ reported no association in the UK cohort study between job loss and breast cancer incidence.

Table D.66 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.8.9 Trauma to the breast

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between trauma to the breast and risk of breast cancer is inconclusive. Only a limited amount of poor quality evidence is available. The most reliable of the available studies indicates no association between trauma to the breast and risk of breast cancer. There is no plausible biological mechanism linking trauma to the breast and risk of breast cancer.

Background

Concerns have been raised about potential links between physical trauma to the breast and subsequent risk of breast cancer. A proposed mechanism is that tissue injury to areas containing in situ carcinoma might promote the dissemination of malignant cells.⁵²⁴ There is, however, no research evidence to support this theory.⁵²⁵ Song et al.⁵²⁶ noted a hypothesised direct link between physical breast trauma and breast cancer⁵²⁷ but indicated this theory is not widely accepted.

Trauma to the breast can lead to scarring that may show up on screening mammography and be difficult to differentiate from a neoplastic lesion. This could lead to a false positive diagnosis of breast cancer. Further, a visit to the doctor for an injury could lead to detection of a pre-existing breast cancer. Similarly, increased surveillance during recovery from physical trauma might disclose pre-existing breast cancer.

Recent evidence

Three very low quality studies have investigated a potential association between physical trauma to the breast and breast cancer risk.⁵²⁶⁻⁵²⁸

In a retrospective cohort study of 500 women presenting for breast examinations, of whom 102 were found to have breast cancer, women were asked about prior trauma to the breast.⁵²⁸ No association was found between reported breast trauma and risk of breast cancer (OR 0.84, 95% CI 0.41–1.75).

A small retrospective case-control study (67 cases, 134 controls) reported that women with breast cancer were more likely to report physical trauma to the breast in the preceding five

years than women without breast cancer (OR 3.3, 95% CI 1.3–10.8).⁵²⁷ These findings are unreliable, however, because they would have been vulnerable to recall bias, with women with breast cancer potentially recalling past trauma to the breast differently to those without breast cancer.

A systematic review of case reports, including 43 women who had breast injury from seat belt wearing in a road traffic accident, reported that five of 29 women who presented in a period between 3 weeks and 5 years from the time of the accident, had breast cancer.⁵²⁶ This is not regarded as representing a causal relationship, particularly due to the short period of time between breast cancer diagnosis and time of the accident and the likelihood that increased observation as a result of the physical trauma led to the detection of the cancers in the short period post-injury.

Table D.67 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.8.10 Type 2 diabetes

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between having type 2 diabetes and risk of breast cancer is inconclusive. Several meta-analyses have shown a small positive association, particularly among postmenopausal women. The evidence is limited however by large heterogeneity between studies, a lack of adjustment for potential confounders, particularly adiposity, and a lack of differentiation between exposure to type 1 and type 2 diabetes. The few studies reported to be on type 1 diabetes show no association with breast cancer risk.

Background

Type 2 diabetes mellitus is a long term metabolic disorder characterised by high blood sugar, insulin resistance, and relative lack of insulin.⁵²⁹ The major risk factors for type 2 diabetes are obesity and lack of physical activity, although genetic predisposition can also play a role.⁵²⁹

Mechanisms by which type 2 diabetes may be associated with breast cancer risk are not established.⁵³⁰ Among the proposed mechanisms, the dysregulated glucose metabolism is suggested to play a major role. This factor concurs with a chronic pro-inflammatory condition and an associated oxidative stress to promote tumour initiation and progression.⁵³¹ Hyperinsulinaemia—both endogenous due to insulin-resistance and drug-induced—appears to promote tumour cell growth through a number of pathways. Other postulated mechanisms include hormonal pathways such as the signalling of insulin, the insulin-growthfactor system, and endogenous steroid hormones.⁵³² Type 2 diabetes may also be a marker of the adiposity-breast cancer association, as body mass index (BMI) is associated with type 2 diabetes and postmenopausal breast cancer.⁵³³

Alternative mechanisms have been postulated for a potential link between type 1 diabetes and breast cancer.⁵³⁴

Recent evidence

Four systematic reviews with meta–analyses^{530, 534-536} have examined the association between type 2 diabetes and breast cancer risk, although the most recent and the oldest of these did not differentiate between type 1 and type 2 diabetes. There was significant overlap of studies included in the four meta–analyses.

Boyle et al.⁵³⁰ included 14 studies and the summary risk estimate (for breast cancer incidence and mortality) was RR 1.16 (95% CI 1.04–1.29) with evidence of significant heterogeneity but not publication bias. The authors noted effect size was similar for incidence and mortality. For studies reporting on the association between type 2 diabetes and postmenopausal breast cancer, the summary risk estimate was RR 1.12 (95% CI 1.03–1.21). Hardefeldt et al.⁵³⁵ included 10 studies (three cohort studies involving 152,503 cases; seven case–control studies involving 3,294 cases) reporting on the association between type 2 diabetes and breast cancer risk and reported a pooled estimate of OR 1.22 (95% CI 1.07–1.40). The largest of the included cohort studies by Bowker et al.⁵³⁷ showed evidence of detection bias and no overall association between type 2 diabetes and breast cancer risk (RR 1.00, 95% CI 0.91–1.10; 84,506 cases).

The four meta-analyses showed similar summary risk estimates for women with either type 1 or type 2 diabetes and risk of breast cancer: HR 1.23 (95% CI 1.12–1.34);⁵³⁴ RR 1.24 (95% CI 1.12–1.36);⁵³⁰ OR 1.20 (95% CI 1.13–1.29);⁵³⁵ and RR 1.23 (95% CI 1.18–1.27.⁵³⁶ Analysis of studies that adjusted for family history, age and BMI resulted in a smaller effect size, although the association remained significant (OR 1.11, CI 95% 1.01–1.22).⁵³⁵

More recent data from two population-based cohort studies conducted in Italy⁵³⁸ and China⁵³⁹ reported increased risks of breast cancer in women with type 2 diabetes compared with the general population (SIR 1.24, 95% CI 1.00–1.52 and SIR 1.66, 95% CI 1.38–1.95 respectively). Contrary to the finding by Bowker et al.⁵³⁷ the significant finding in the study by Gini et al.⁵³⁸ was only among women where at least three years of latency was considered. Median follow-up time was less than four years for both studies. Both studies were retrospective record linkage studies, and the analyses were not able to account for the potentially confounding influence of BMI or other potential or known breast cancer risk factors.

Table D.68 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.9 Chemical exposures

4.9.1 Bisphenol A (BPA)

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between exposure to bisphenol A (BPA) and risk of breast cancer is inconclusive. There is only a very limited amount of low level evidence available.

Background

Bisphenol A is an industrial chemical that has been used since the 1960s to produce certain plastic and resins.⁵⁴⁰ It is found in polycarbonate plastics that are used to store food and beverages, such as water bottles, bottle tops and the coating inside food cans.⁵⁴⁰ Consumer exposure via food can occur through migration of BPA from food and beverage contact materials.⁵⁴⁰

BPA is a synthetic oestrogen, and thus concerns have been raised about a potential link between exposure to BPA and breast cancer risk through a mechanism relating to endocrine disruption.⁵⁴¹ Experimental studies in animals have demonstrated BPA's endocrine disrupting potential. There is, however, controversy about whether the concentration of BPA detected in human blood is above the level required for biological activity.⁵⁴² Most experimental animal studies used higher doses of BPA.⁵⁴²

Recent evidence

No cohort studies were identified and only two case–control control studies were identified.^{543, 544} An analysis of data from a population–based case–control study conducted in Poland did not find an association between urinary BPA measured at the time of diagnosis and postmenopausal breast cancer.⁵⁴³ Yang et al.⁵⁴⁴ similarly reported a null association between blood level of BPA measured at diagnosis and breast cancer risk in a smaller case–control study conducted in Korea.

A third case–control study did not examine BPA exposure specifically, but rather occupations including food canning and plastics manufacturing.⁵⁴⁵ A significant association was observed between occupations in food canning and in the automotive plastics manufacturing sector and breast cancer risk. These occupations may involve exposure to other potentially carcinogenic compounds, however, and the findings should be interpreted accordingly.

Table D.69 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.9.2 DDT exposure

Evidence summary

Evidence classification: Evidence of no association.

Large numbers of epidemiological studies overall show no association between exposure to DDT/DDE and risk of breast cancer. There is very limited evidence on early–life exposure to DDT/DDE and risk of breast cancer.

Background

Dichlorodiphenyltrichloroethane (pp'-DDT) is a non-systemic, broad-spectrum organochlorine pesticide that was used worldwide to control insects in agricultural systems, and to control mosquitoes to help prevent the transmission of malaria and other diseases.⁵⁴⁶ DDT was used from the early 1940s, then phased out from the 1970s and 1980s in most countries.⁵⁴² The World Health Organization still recommends its use, however, for malaria control under specified conditions.⁵⁴⁷

DDT is a common and highly persistent environmental contaminant, found in foods, soils and sediments.⁵⁴⁶ Exposure to DDT may occur during its production and application, or from ingestion of contaminated water and food.⁵⁴⁶ pp'-DDT and its metabolites have been detected in breast milk and cord blood, and have been found to transport across the placenta to the foetus (studies cited by IARC).⁵⁴⁸

Dichlorodiphenyldichloroethylene (DDE or p,p'–DDE) is the main metabolite of p,p'–DDT, and DDT is rapidly converted to DDE in biological systems.⁵⁴⁹

There is strong experimental evidence in animals that DDT/DDE may influence cancer risk by suppressing immune function and disrupting endocrine pathways.⁵⁵⁰ Experimental studies have shown DDT/DDE has oestrogenic properties⁵⁵¹ and specific effects on the development of breast tissue in rats when they are exposed in utero or during puberty.⁵⁴²

IARC

The International Agency for Research on Cancer (IARC)⁵⁴⁸ classified DDT as 'probably carcinogenic to humans (Group 2A)', based on sufficient evidence that DDT/DDE causes cancer in experimental animals but *limited evidence* of its carcinogenicity in humans. Positive associations were noted between DDT and cancers of the liver and testis, and non-Hodgkin lymphoma.

IARC⁵⁴⁸ summarised more than 40 epidemiological studies conducted in North America, Latin America, Asia and Europe since 1993 that assessed the relationship between DDT exposure and risk of cancer of the breast. Almost all the studies used p,p'-DDE measurements in blood or adipose tissue as an exposure indicator, and some reported results for p,p'-DDT. Biological measurements of exposure were made at diagnosis or several years before. No association overall was found between p,p'-DDE or p,p'-DDT levels and breast cancer. Stratification by hormone-receptor status of the breast tumour, or menopausal status, did not modify the results. Several meta-analyses on p,p'-DDE exposure found the available studies supported the view that DDE is not associated with an increased risk of breast cancer in humans. However, the potential influence of age at exposure to DDT remains of interest in relation to risk of breast cancer, as suggested by two studies that reported an increased risk of breast cancer in women highly exposed to DDT early in life.

Recent evidence

Four meta–analyses were cited by IARC⁵⁴⁸ as having evaluated the association between cancer of the breast and DDT and/or DDE.^{549, 551-553}

The most recently published meta-analysis included 10 nested case-control studies, 11 population-based case-control studies, and 16 hospital-based case-control studies examining DDT/DDE exposure (as measured in serum and plasma) and risk of breast cancer.⁵⁴⁹ No association was found between DDT exposure and breast cancer (OR 1.03, 95% CI 0.95–1.12), although there was evidence of significant heterogeneity between studies and methodological limitations to the evidence base.

The meta-analysis by Ingber et al.⁵⁵¹ included 46 case-control or nested case-control studies, most of which had been included in the review by Park et al.⁵⁴⁹ It was indicated to be an update of the review by Lopez-Cervantes et al.,⁵⁵³ which found no association between DDE exposure and risk of breast cancer. Ingber et al.⁵⁵¹ examined the highest versus lowest levels of DDT or DDE in blood or adipose tissue. They reported no associations for exposure to either DDT (OR 1.02, 95% CI 0.92–1.13) or DDE (OR 1.05, 95% CI 0.93–1.18) and risk of breast cancer. Significant heterogeneity was not explained by study design, type of biological sample, study period or other factors, including menopausal status.

Table D.70 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.9.3 Deodorant/antiperspirant

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between deodorants or antiperspirants and risk of breast cancer is inconclusive. The evidence is limited in amount and quality. Two case–control studies and narrative reviews of biological studies indicate no association between use of deodorants or antiperspirants and risk of breast cancer.

Background

Deodorants are topical products used to prevent body odour that is caused by the bacterial metabolism of the exudates of apocrine (sweat) glands (or perspiration).⁵⁵⁴ Antiperspirants are a subgroup of deodorants that additionally prevent sweating by blocking the apocrine glands via the action of astringent agents such as aluminum salts.⁵⁵⁴

A link between the use of deodorants and antiperspirants and breast cancer risk has been proposed, mostly relating to the anatomic location of tumours (that is, in the upper right quadrant where there is more breast tissue)⁵⁵⁵ and the demonstrated potential oestrogenic

activity of parabens (esters of p-hydroxybenzoic acid) in vitro.⁵⁵⁵ Deodorants and antiperspirants contain parabens, which act as antimicrobial preservatives in many cosmetic products.⁵⁵⁶ While parabens do mimic the activity of oestrogen, they lack the potency to cause genetic mutations unless at considerable concentrations.^{535, 557} Further, Namer et al.⁵⁵⁸ indicated that parabens are generally not present in deodorants/antiperspirants. Parabens as an exposure have been reviewed separately (see section 4.9.8).

In addition to parabens, antiperspirants contain aluminium salts, and other active non-ionic and ionic agents.⁵⁵⁹ Limited experimental evidence has demonstrated a genotoxic potential of aluminium-containing compounds. Aluminium has been found in human breast cancer cells, although there is no direct evidence to suggest that it originated from antiperspirants.⁵⁵⁹

Recent evidence

There are limited data from studies in humans, with the bulk of relevant literature consisting of in vitro and in vivo experimental studies, narrative reviews⁵⁶⁰ and opinion pieces.⁵⁶¹

Two meta-analyses of the same two case-control studies^{562, 563} reported null findings.^{564, 565} Hardefeldt et al.⁵⁶⁴ reported a summary odds ratio for use of deodorants and breast cancer of 0.81 (95% CI 0.51–1.28), while Allam⁵⁶⁵ reported a summary odds ratio for use of antiperspirants and breast cancer of 0.40 (95% CI 0.35–0.46). Of the two case-control studies included in both meta-analyses, only one was population-based and adjusted for potential confounding factors, and found no effect modification according to underarm shaving with a razor.⁵⁶³

A systematic review of 19 studies included both biological or human data relevant to the association between antiperspirants containing aluminium and risk of breast cancer and concluded there was no evidence to support the hypothesis that aluminium–containing antiperspirants increases the incidence of breast cancer of the upper outer quadrant.⁵⁵⁸

An additional case–control study with major methodological limitations was identified in the literature.⁵⁶⁶ The only exposure that showed an association with breast cancer was for women who reported using underarm cosmetic products several times daily under the age of 30 years (OR 3.88, 95% CI 1.03–14.66). However, the poor study design and wide confidence intervals means this estimate is not reliable.

Table D.71 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.9.4 Dioxin

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between exposure to dioxin and risk of breast cancer is inconclusive. There are limited, poor-quality studies available. None of the available studies show any association.

Background

Dioxins are environmental contaminants produced by the incomplete combustion of materials containing chlorine. This combustion occurs in numerous industrial processes, including the production of pesticides and bleached paper.⁵⁴² The most toxic dioxin is 2,3,7,8–tetrachlorodibenzo–p–dioxin (TCDD).⁵⁴² It is fat soluble and accumulates in the food chain,⁵⁴² with a half–life in humans of 7–9 years.⁵⁶⁷ One of the main sources of exposure in humans is dietary, through consumption of animal fats in dairy products, eggs, fish and meat.^{568, 569} Dioxins are also present in human breast milk, although levels in children are similar regardless of method of infant feeding.⁵⁷⁰

The World Health Organization⁵⁷¹ indicated the omnipresence of dioxins means all people have background exposure and a certain level of dioxins in the body. Normal background exposure is not expected to affect human health on average.

Dioxins can mimic the activities of oestrogen, and exposure to these compounds has been suggested to increase the risk of some hormone-related diseases via 'endocrine disruption'.⁵⁷² TCDD is not 'genotoxic' and is thought to influence cancer risk via oxidative damage,⁵⁴² most likely related to an ability to bind to the aryl hydrocarbon receptor (AhR).⁵⁷³ In vitro studies have demonstrated AhR plays an important role in the development of breast cancer via the suppression of apoptosis.^{574, 575}

IARC

In 1997, the International Agency for Research on Cancer (IARC) classified TCDD as a Group 1 carcinogen on the basis of animal studies and mechanistic information focusing on the aryl hydrocarbon receptor (AhR), but noted there were limited human data from observational studies.⁵⁷³ In 2012, IARC summarised the findings of observational studies in humans, noting sufficient evidence for all cancers combined and limited human evidence for lung cancer, soft tissue carcinoma and non–Hodgkin lymphoma.⁵⁷³ Breast cancer was mentioned only briefly in relation to exposure at Seveso (see below).

Recent evidence

A meta-analysis, published in 2015, of the association between external exposure to TCDD and breast cancer risk included three studies with 3,768 breast cancer cases. A pooled RR for breast cancer of 0.99 (95% CI 0.93–1.06), with no evidence of significant heterogeneity, was reported.⁵⁷⁶ It is not clear from the meta-analysis which three studies contributed to the summary estimate, although studies in the reference list were Warner et al.,⁵⁷⁷ Reynolds et al.⁵⁷⁸ and Viel et al.⁵⁷⁹

Warner et al.⁵⁷⁷ examined the association between individual serum TCDD levels and breast cancer risk in women residing around Seveso, Italy, in 1976, when an industrial explosion resulted in the highest known population exposure (10–fold) to TCDD. The cohort comprised 981 females aged from infancy up to 40 years in 1976. At follow–up in 1996, there was a two–fold increased risk of premenopausal breast cancer (HR 2.1, 95% CI 1.0–4.6), proposed to be related to a window of susceptibility as a tumour promoter.⁵⁷⁷ Follow–up of the cohort in 2008 revealed no increased risk of breast cancer (HR 1.44, 95% CI 0.89–2.33).⁵⁷⁷

Viel et al.⁵⁷⁹ examined modelled ground–level air dioxin levels across census blocks in France, finding no association with risk of breast cancer. Reynolds et al.⁵⁷⁸ conducted a hospital– based case–control study among 79 women diagnosed with invasive breast cancer and 52 controls diagnosed with benign breast conditions. Breast cancer risk was not associated with adipose levels of polychlorinated dibenzo–p–dioxins.

Additional studies include Dai et al.,⁵⁸⁰ who examined breast cancer risk across 22 zip codes in the United States with dioxin contamination based on soil samples, and who found no evidence of an association. More recently, Danjou et al.⁵⁸¹ examined dietary exposure to dioxin among 63,830 women in the E3N cohort who completed dietary questionnaires in 1993 and were followed until 2008. Overall, no association was found between estimated dietary dioxin exposure—estimated by combining diet history information with food dioxin contamination data from the French national monitoring program—and breast cancer risk.

Table D.72 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.9.5 Ethylene oxide

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between occupational exposure to ethylene oxide and risk of breast cancer is inconclusive. It is limited in amount and inconsistent. There is some evidence of a dose-response relationship.

Background

Ethylene oxide is an organic compound used primarily to produce other chemicals.⁵⁷⁴ It is a flammable, colourless gas at room temperature.⁵⁷⁴ Human exposure to ethylene oxide occurs predominantly when sterilising medical equipment.⁵⁸² The average concentration of ethylene oxide in hospitals in North America and Western Europe has been declining over time.⁵⁸²

Ethylene oxide is an alkylating agent that can cause direct damage to DNA.⁵⁸² Studies in animal models have shown that it can cause heritable mutations in germ cells.⁵⁸² It also causes chromosomal aberrations in the lymphocytes of exposed workers,⁵⁸³ which can increase risk of cancer.⁵⁸⁴

IARC

The International Agency for Research on Cancer (IARC)^{574, 582} has classified ethylene oxide as a Class 1 carcinogen, based on studies in animal models and in vitro studies demonstrating a genotoxic mechanism of carcinogenicity. Evidence from epidemiological studies was deemed limited, and the Working Group concluded that there was limited evidence in humans for a causal association of ethylene oxide with breast cancer.⁵⁷⁴ The IARC examined three studies relating to occupational exposure to ethylene oxide and risk of breast cancer.⁵⁸⁵⁻⁵⁸⁷ Two studies observed no increased risk;^{585, 586} the third study reported an excess risk of approximately 60%, which was of borderline significance⁵⁸⁷ An internal analysis of data from the National Institute for Occupational Safety and Health study (NIOSH)⁵⁸⁵ showed a significant increased risk in the highest compared with the lowest category of exposure to ethylene oxide among 7,576 women working in commercial sterilisation facilities (OR for >11620 parts per million–days, 15–year lag 1.87, 95% CI 1.12–3.10). A significant dose–response relationship after controlling for parity and family history of breast cancer was observed (p=0.002).

Recent evidence

Longer term follow-up data of the Swedish cohort of 1,309 exposed female workers reported on by Hagmar et al.⁵⁸⁶ were published in 2011.⁵⁸⁸ Compared with the general public, workers exposed for at least one year did not have an increased risk of breast cancer, with SIRs close to unity, and independent of lag period or follow-up time. However, compared with women in the first two quartiles of exposure, women in the third and fourth quartiles of exposure had a higher incidence of breast cancer (IRR 2.76, 95% Cl 1.20–6.33 and 3.55, 95% Cl 1.58–7.93, respectively); although these analyses were based on a small number of breast cancer cases overall (41 cases).

Table D.73 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.9.6 Land contamination

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between exposure to land contamination and risk of breast cancer is inconclusive. There is limited evidence from mainly ecological studies.

Background

Land contamination can result from industrial activity and industrial and uncontrolled waste sites.⁵⁸⁹ These sites can contain numerous hazardous substances, including known carcinogenic compounds such as organic pesticide residues, which can leach from the soil and contaminate groundwater and overland waterways. Human exposure to these compounds can arise from drinking contaminated water, consuming contaminated food or inhaling dust from contaminated sites.⁴³³ Identifying and measuring exposure to diverse types of land contamination is complex, and an inherent limitation of epidemiological studies that evaluate associations between these environmental exposures and cancer risk.

Some compounds found in contaminated sites are reviewed as separate risk factors for breast cancer in this report, including polychlorinated biphenyl and dioxins.

IARC

An internal report from the International Agency for Research on Cancer (IARC)⁴³³ listed contaminated land and groundwater as a low priority for review. IARC noted limited evidence from epidemiological studies in humans and experimental studies in animals, and on the contamination site-specific nature of exposure.

Recent evidence

Several ecological studies^{589, 590} examined geographic variation in breast cancer incidence according to residential proximity to contaminated or potentially contaminated sites. Ecological studies are useful for hypothesis generation, but not for determining causal associations. Their findings should be interpreted accordingly.

Benedetti et al.⁵⁸⁹ reported on the incidence of breast cancer in regions contiguous with Italian National Priority Contaminated Sites (NPCSs), at which compounds with known or suspected endocrine disrupting properties have been detected. The principal source of contamination was listed as polychlorinated biphenyls, dioxins, heavy metals and solvents.⁵⁸⁹ Compared with the general population (northern central Italy or southern central Italy, depending on site location), excess incidence of breast cancer was reported for eight of the 14 sites, with SIRs ranging from 1.10 to 1.45 (Taranto site = SIR 1.45, 95% CI 1.34–1.56). No excess risk was observed in five sites, and a 10% lower incidence of breast cancer was reported for the remaining site (SIR 0.90, 95% CI 0.85–0.96). A separate report on the Taranto NPCS was published four years earlier.⁵⁹⁰ A lower magnitude of increased risk of breast cancer among women at the Taranto NPCS relative to the population of the remainder of the Taranto province (SIR 1.24, 95% CI 1.13–1.36) was reported.

Guajardo & Oyana⁵⁹¹ assessed the spatial relationship between previously determined geographic clusters of breast cancer incidence among residents living near the two major river systems in Michigan in the United States. They reported an increased breast cancer risk in regions close to these major rivers (that is, on the floodplains). The spatial analysis confirmed a significant positive association between 'possible exposure to environmental pollution' and risk of breast cancer. The study could not determine the contribution of contamination from different industrial facilities.

Two studies reported specifically on exposure to dioxin in the soil and breast cancer risk.⁵⁹² Pesatori et al.⁵⁹² reported on breast cancer incidence in a cohort of women exposed to 2,3,7,8–tetrachlorodibenzo–p–dioxin (TCDD) through a 1976 industrial accident in Seveso, Italy. Levels of TCDD in the soil were recorded, and exposure zones were classified as low, medium and heavily contaminated. Although limited by a small number of breast cancer cases, an increased risk of breast cancer in the highly contaminated zone 15 years after the accident compared with a non–contaminated reference zone was observed (RR 2.57, 95% Cl 1.07–6.20). There was no increased risk in the 'low' and 'medium' contamination zones. The other study⁵⁸⁰ was conducted in the same Michigan area as the study by Guajardo & Oyana.⁵⁹¹ A spatial association between soil dioxin contamination and breast cancer incidence was reported, with a higher incidence of breast cancer in areas close to dioxin– contaminated areas.⁵⁹¹

Table D.74 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.9.7 Outdoor air pollution

Evidence summary

Evidence classification: Inconclusive.

The evidence of any association between exposure to outdoor air pollution and risk of breast cancer is inconclusive. There are inconsistent findings across studies. Interpretation of the evidence is hampered by differences in exposure definition across studies. Cohort studies show no evidence of an association between exposure to outdoor air pollutants, particularly nitrogen dioxide, and risk of breast cancer.

Background

Air pollution is when the air contains one or more substances at a concentration or for a duration above natural levels, and with the potential to produce an adverse effect.⁵⁹³ It is caused by natural processes such as volcanic eruptions and wildfires, as well as human activities such as transportation, construction, mining and other industrial activities.

Air pollution is ubiquitous, and human exposure to outdoor air pollutants occurs continuously.⁵⁹³ There is no standardised method to measure exposure to outdoor air pollution. Air pollutants are classified as being gaseous or particulate matter, which contains suspensions of very small particles that can be liquid or solid.⁵⁹³ Gaseous compounds include nitrogen oxide (NO) and nitrogen dioxide (NO₂), sulphur dioxide (SO₂) and volatile organic gases (for example, formaldehyde, ketones, alkanes and aromatics such as benzene).⁵⁹³ Levels of air pollution are monitored using measures of PM_{2.5} and PM₁₀ (particulate matter of different sizes), and levels of NO₂ and SO₂.⁵⁹³

There is strong mechanistic evidence for the ability of air pollution (and many of its components) to induce genetic and related effects in humans.⁵⁹³ Genotoxic effects are well documented, as well is oxidative stress and sustained inflammation.⁵⁹³ There are no established mechanisms for a link between outdoor air pollution and breast cancer risk.⁵⁹⁴ One proposed mechanism is the effect of NO₂ on DNA damage.⁵⁹⁴

IARC

The International Agency for Research on Cancer (IARC)⁵⁹³ classified air pollution and particulate matter in outdoor air pollution as carcinogenic to humans (Group 1), citing sufficient evidence in humans and experimental animals that they cause lung cancer. The IARC⁵⁹³ working group evaluated the evidence of an association between air pollution levels and breast cancer, reviewing seven studies (four cohort and three case-controls studies). Overall inconsistent findings were noted.

Recent evidence

The most recently published data on exposure to hazardous air pollutants and risk of breast cancer come from the Nurses' Health Study II.⁵⁹⁵ Among 109,239 members of the cohort, no consistent pattern of association was found between exposure and risk of breast cancer.

Suggestive, non-significant increased risks of breast cancer were found only for the highest versus lowest exposures to 1, 2-dibromo-3-chloropropane.

A systematic review with meta-analysis on the association between NO₂ from outdoor air pollution and breast cancer risk included five studies: three ecological studies, one cohort study and one case-control study.⁵⁹⁶ The two non-ecological studies were included in the IARCevaluation.⁵⁹³ A pooled analysis of the three ecological studies reported a significant correlation between NO₂ exposure and breast cancer risk (RR 1.38, 95% Cl 1.11–1.59).

Andersen et al.⁵⁹⁷ examined the association between exposure to fine particulate matter and breast cancer incidence in the Danish Nurse Cohort Study (22,877 nurses). They reported null associations for exposure to $PM_{2.5}$ (HR 1.00, 95% CI 0.91–1.09), PM_{10} (HR 1.02, 95% CI 0.94– 1.11) and NO₂ (HR 1.00, 95% CI 0.94–1.07), with no differences according to menopausal status or menopausal hormone therapy use.

Shmuel et al.⁵⁹⁸ examined residential exposure to vehicular traffic–related air pollution during childhood and breast cancer risk in a large prospective cohort of 50,884 women from the United States and Puerto Rico. They found no associations between individual traffic–related characteristics and risk of breast cancer. They observed, however, modest and suggestive associations between a combined measure of higher potential exposure to traffic–related pollutants (close proximity, presence of median/barrier, multiple lanes and heavy traffic) and breast cancer risk overall, and for postmenopausal and oestrogen receptor negative (ER–) disease. An earlier report from the same cohort study reported null associations with PM_{2.5} (HR 1.03, 95% CI 0.96–1.11), PM₁₀ (HR 0.99, 95% CI 0.98–1.10) and NO₂ (HR 1.02, 95% CI 0.97–1.07).⁵⁹⁹ In subgroup analyses according to hormone receptor status, a modest positive association between NO₂ exposure and ER+PR+ (but not ER–PR–) breast cancer was observed.

An earlier report from the Nurses' Health Study II cohort by Hart et al.⁶⁰⁰ found no significant associations between PM exposures and incidence of breast cancer overall, or by menopausal status or hormone receptor subtype. A non–significant positive association with residential proximity to major roadways (for women living <50 m from the two largest road types compared with those living \geq 200 m away, HR 1.60, 95% CI 0.80–3.21) was reported.⁶⁰⁰

Garcia et al.⁶⁰¹ examined the association between 24 different components of outdoor air pollution shown to be mammary gland carcinogens (MCGs, such as benzene, hydrazine and ethylene oxide) and breast cancer risk in the California Teachers Study cohort (112,378 women). Exposure was modelled using annual average ambient air concentrations of the various compounds, so any findings should be interpreted with caution. Most hazard ratios for the individual compounds were not statistically significant. The authors concluded that the results for propylene oxide and vinyl chloride were significant, but observed significantly increased risk for only the middle quintile of exposure versus the lowest quintile of exposure for both compounds, and not for higher levels of exposure. An aggregated variable for all 24 mammary gland carcinogens (MGCs) was not associated with breast cancer risk.

Table D.75 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.9.8 Parabens

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between exposure to parabens and risk of breast cancer is inconclusive. There is no epidemiological evidence available in humans.

Background

Parabens are esters of p-hydroxybenzoic acid (PHBA), used since the 1920s as antimicrobial preservatives in pharmaceuticals, foods and cosmetics.⁵⁵⁶ Most major brands of deodorants and antiperspirants do not contain parabens. They are also common environmental contaminants⁶⁰² Human exposure can result from ingestion, absorption through the skin or inhalation of products containing parabens.⁵⁵⁶ Parabens have been found in a wide variety of human tissues⁶⁰³ and are common in normal breast tissue.⁶⁰⁴

Concerns arose about a link between parabens and breast cancer risk largely as the result of findings from a small number of experimental studies that detected parabens in breast cancer cells,⁶⁰⁵ and reported oestrogenic effects of parabens on breast cancer cell lines.⁶⁰⁶

Parabens are considered to be 'endocrine disrupting compounds'. However, a review of the endocrine activity of parabens concluded that only three parabens (butyl–, isobutyl–, and benzylparaben) have been shown to have oestrogenic activity in vivo. Further, they have a very low binding affinity to the oestrogen receptor, many orders of magnitude lower than for oestrogen.⁵⁵⁷

Recent evidence

There have been no epidemiological studies or quantitative reviews on the association between parabens and risk of breast cancer, with the literature consisting of in vitro and in vivo experimental studies, narrative reviews^{556, 557, 560, 607} and opinion pieces (for example, Harvey et al.⁵⁶¹).

4.9.9 Phthalates

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between exposure to phthalates and risk of breast cancer is inconclusive. There is a limited amount of available epidemiological evidence. Findings from a nested case–control study indicate no association between phthalates and risk of breast cancer.

Background

Phthalates, used to render plastics soft and flexible, are found in a wide variety of common products, including plastics (for example, children's toys), cosmetics and fragrances, pharmaceuticals, vinyl flooring, and food packaging.^{7, 608} Food packaging, vinyl flooring, and plasticisers are major sources of higher molecular weight phthalates, like bis(2–ethylhexyl) phthalate (DEHP), while fragrances and cosmetics are important sources of lower molecular weight phthalates, like diethyl phthalate (DEP).⁵⁴²

Phthalates have been found in indoor air and dust, and in human urine and blood samples, amniotic fluid, human breast milk.⁷ Phthalate metabolites are found in nearly all humans, though, as with bisphenol A (BPA), phthalates are rapidly metabolised and excreted so there can be substantial intra-individual variability in levels in humans.⁵⁴²

Some phthalates are considered to be 'endocrine disrupting compounds'. Rodgers et al.⁵⁴² report several animal studies showing endocrine disruption to oestrogen and progesterone. Some phthalates have been shown to bind weakly to the androgen receptor, and others have been shown to promote cancer stem cell growth through activation of the aryl hydrocarbon receptor (AhR). Non-hormonal pathways have also been suggested.⁷

Recent evidence

There has only been one prospective study on the association between phthalates and risk of breast cancer,⁶⁰⁸ reported as a conference abstract. This was a nested case-control study within the Women's Health Initiative (WHI) prospective cohort involving 419 cases and 838 matched controls. Exposure to a panel of 13 phthalate metabolites (PMs) was measured in urine over a period of 1–3 years. No associations were found between individual PMs and risk of breast cancer. It was suggested that some phthalates may be associated with decreased risk, possibly through anti-oestrogenic actions.

Two hospital-based case-control studies were reported in the review by Rodgers et al.⁵⁴² but both studies—Lopez-Carrillo et al.⁶⁰⁹ and Holmes et al.⁶¹⁰—were of low methodological quality.

4.9.10 Polychlorinated biphenyls

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between exposure to polychlorinated biphenyls and risk of breast cancer is inconclusive. Meta-analyses of a large number of case-control studies show inconsistent findings.

Background

Polychlorinated biphenyls (PCBs) are a class of aromatic compounds with molecules that contain two benzene rings in which chlorine atoms replace hydrogen atoms.⁶¹¹ They were commonly used in electrical equipment and other industrial applications from the 1920s until

the early 1980s.⁶¹¹ PCBs are a common and highly persistent environmental contaminant found in the atmosphere in dust contaminated from PCB–containing building materials, and in water, sediments and soil.^{542, 611} They are fat soluble and accumulate in the food chain, with a half–life in humans of three to 15 years.⁵⁴² The main sources of exposure to PCBs in humans are the consumption of fish from contaminated waterways and breathing contaminated air.⁵⁴²

Various mechanisms for how PCBs and metabolites of PCBs may influence cancer have been proposed. Less chlorinated PCBs may produce oxidative stress and genotoxicity. More highly chlorinated PCBs interact with various receptors that control steroid hormone metabolism and other processes that affect cell death and proliferation, the immune system and the inflammatory response.⁶¹¹ They can act as oestrogen agonists or antagonists⁶¹² and have been commonly found in breast adipose tissue and human breast milk.⁶¹¹ There is evidence for gene–environment interactions, notably a modifying effect of a polymorphism in cytochrome P450 1A1 (CYP1A1) gene on the association between PCB levels and cancer risk.⁶¹¹

IARC

The International Agency for Research on Cancer (IARC)⁶¹¹ classified PCBs as carcinogenic to humans (Group 1), based primarily on evidence supporting a positive association for melanoma and non–Hodgkin lymphoma. For breast cancer, the working group noted an increased risk associated with exposure to PCBs, which was higher in some subgroups of the population. Biological plausibility of the association was noted.

WCRF/AICR

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR),⁶¹³ in its Second Expert Report, judged the evidence for an association between exposure to PCBs and breast cancer risk as 'Limited—no conclusion'. The evidence was not updated as part of the Continuous Update Project.¹⁰

Recent evidence

Two systematic reviews with meta-analyses examined the association between PCBs and risk of breast cancer.^{612, 614} These studies measured and reported on PBC exposure differently, however. Leng et al.⁶¹⁴ examined individual PCBs from three groups: 'potentially oestrogenic' (PCB 187); 'potentially anti-oestrogenic, dioxin-like' (PCB 118, 138, 156, 170); and 'phenobarbital, CYP1 and CYP2B inducers' (PCB 99, 153, 180, 183). Zheng et al.⁶¹² examined PCBs in total, and from the three groups defined above, but in aggregate, without distinguishing between individual PCBs.

The review by Leng et al.⁶¹⁴ included 16 case–control studies published to 2014. The pooled analysis showed an increase in the risk of breast cancer in women with higher plasma/fat levels of 'potentially oestrogenic' PCB 187 (OR 1.18, 95% CI 1.01–1.39) and two of the 'phenobarbital, CYP1 and CYP2B inducers' PCBs (PCB 99: OR 1.36, 95% CI 1.02–1.80; PCB 183: OR 1.56, 95% CI 1.25–1.95). No association was found for the 'potentially anti–oestrogenic, dioxin–like' PCBs or for PCBs 153, 180 from the 'phenobarbital, CYP1 and CYP2B inducers' group.

Zhang et al.⁶¹² included 25 case-control studies, 10 of which were included by Leng et al.⁶¹⁴ and reported no association with total PCB exposure (OR 1.09, 95% CI 0.97–1.22; with evidence of significant heterogeneity). Zheng et al.⁶¹² separately examined the same three groups of PCBs as studied by Leng et al.⁶¹⁴: 'potentially oestrogenic'; 'potentially antioestrogenic and immunotoxic, dioxin-like'; and, 'phenobarbital, CYP1 and CYP2B inducers'. The summary estimates supported an increased risk of breast cancer associated with PCBs from the latter two groups—'potentially anti-oestrogenic and immunotoxic, dioxin-like' (OR 1.23, 95% CI 1.08–1.40) and 'phenobarbital, CYP1 and CYP2B inducers' (OR 1.25, 95% CI 1.09– 1.43)—but not for the 'potentially oestrogenic' group.

More recent data from a Swedish mammography cohort of 36,777 women reported no association between dietary exposure to PCBs and risk of breast cancer.⁶¹⁵ The study authors considered the estimates of dietary exposure to PCBs did not permit assessment of individual PCB exposure, so the overall null finding may mask significant associations with individual PCBs that have differential toxicities and effects.

Table D.76 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.9.11 Occupation as a hairdresser

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between occupation as a hair dresser and risk of breast cancer is inconclusive. A substantial number of cohort studies show no association between occupation as a hairdresser and risk of breast cancer. However, there are limitations within the studies in measuring occupational exposure and potential confounders.

Background

Hairdressers are exposed to many chemicals contained in hair dyes, shampoos, conditioners and other hair products used occupationally on a daily basis. Several of these 5,000 or more chemicals (including aromatic amines, predominantly from hair dyes) are potentially carcinogenic overall.⁶¹⁶ Exposure can occur via skin contact, followed by dermal absorption, and, less commonly, though airborne exposure.⁶¹⁶

Concerns about any cancer risk due to occupational exposures of hairdressers arose following the findings from in vitro experimental studies demonstrating genotoxic effects of hair dyes and carcinogenic effects in rats after oral, but not topical, administration.⁶¹⁶ The International Agency for Research on Cancer⁶¹⁶ also reported on studies that found chromosomal aberrations in the peripheral blood lymphocytes of professional hair colourists but indicated that other studies did not find an effect on sister chromatid exchange, DNA breakage in lymphocytes or mutagenicity in urine.

Regulatory authorities across the world have restricted the number and type of chemical components permitted for use in hair dyes in recent decades,⁶¹⁶ although exposure to carcinogenic or potentially carcinogenic aromatic amines is likely still occurring, at least in

some countries (for example, Johansson et al.⁶¹⁷). Further, it is probable that hairdressers and allied occupations continue to be exposed to DNA–damaging agents other than those contained in hair dyes, such as formaldehyde, metacrylate and acetone.⁶¹⁸

IARC

The International Agency for Research on Cancer (IARC)⁶¹⁶ concluded there is limited evidence in humans for the overall carcinogenicity of occupational exposures as a hairdresser or barber. Based on a consistent but modest increase in risk for urinary bladder cancer, especially in men, occupational exposures as a hairdresser or barber was classified as 'probably carcinogenic to humans' (Group 2A).

For breast cancer specifically, IARC⁶¹⁶ concluded that many epidemiological studies, including the largest case–control studies and cohort studies, did not show any increased risk associated with professional use of hair colourants.

Recent evidence

A systematic review with meta-analysis examining incidence of breast cancer among hairdressers and related occupations compared with the general population included 12 studies (seven cohort studies and five case-control studies), 10 of which had been included in the IARC⁶¹⁶ review. No association with risk of breast cancer was observed among any of the individual studies or in the pooled analysis (pooled RR 1.03, 95% CI 0.98–1.08).⁶¹⁸ However, it was noted that the studies used information systems that may present incomplete information on confounders and occupational exposure.

An updated report from the Nordic Occupational Cancer (NOCCA) project⁶¹⁹ included data on cancer incidence between 1961 and 2005 and reported that, compared with all occupational categories, female hairdressers in Nordic countries did have a significantly elevated risk of breast cancer (SIR 1.06, 95% CI 1.01–1.10),⁶¹⁹ although this association was not observed in data from each individual country.

Data from the 'Sister Study' to NOCCA, which included 47,640 breast cancer–free sisters of women with breast cancer, found a borderline elevated risk of invasive cancer associated with workplace exposure to dyes and inks (HR 1.2, 95% Cl 1.0–1.6) but null findings were reported for a link between workplace exposure to dyes or inks and risk of premenopausal breast cancer (HR 1.4, 95% Cl 0.9–2.1) or postmenopausal breast cancer (1.0, 95% Cl 0.80–1.30).⁶²⁰ Further, there was no evidence of a linear dose–response relationship, although it was noted that a linear exposure–response model may not be the most appropriate approach for studying chemical exposures.

Table D.77 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.9.12 Personal use hair dyes/relaxers

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between personal exposure to chemical hair dyes or hair relaxers (straighteners) and risk of breast cancer is inconclusive. There are inconsistent findings across studies. Findings from the higher quality, cohort, studies do not support an association.

Background

Hair dyes and pigments are widely used in modern industrialised societies to change the appearance of hair. They can be classified as permanent (primarily aromatic amines and aminophenols with hydrogen peroxide), semi-permanent (nitro-substituted aromatic amines, aminophenols, aminoanthraquinones and azo dyes) and temporary (high-molecular-weight or insoluble complexes and metal salts, such as lead acetate).⁶¹⁶ Over the past 50 years, the number of chemical compounds approved by regulatory authorities for use in hair dyes has markedly decreased.⁶¹⁶ Personal exposure to hair dyes occurs predominantly via skin contact on the scalp, followed by dermal absorption, although airborne exposure is also possible.⁶¹⁶ Concerns about potential carcinogenic effects of hair dyes arose following the findings from *in-vitro* experimental studies demonstrating genotoxic effects of hair dyes, and carcinogenic effects in rats after oral administration (but not topical application).⁶¹⁶

Hair relaxers/straighteners variously include sodium hydroxide, calcium hydroxide and/or thioglycolic acid salts, which are not known to be carcinogenic.⁶²¹ Some include formaldehyde or components that release formaldehyde, however,⁵⁴² which is a known carcinogen.⁵⁷⁴

IARC

The International Agency for Research on Cancer (IARC)⁶¹⁶ concluded there was inadequate evidence in humans and that personal use of hair dyes was '*not classifiable as to its carcinogenicity to humans (Group 3)*'. With respect to breast cancer, the Working Group considered the findings of a systematic review with a meta-analysis of 14 studies (two cohort and 10 case-control studies) evaluating the association between use of hair dyes and risk of breast cancer. A null finding overall, and for case-control and cohort studies separately, was reported and there was significant heterogeneity between included studies.⁶²² No association was evident with use of permanent dyes or with intense exposure.⁶²²

Recent evidence

A recent meta-analysis excluded data from various cohort studies and conducted a metaanalysis of eight case-control studies published between 1980 and 2017 of an association between never versus ever use of hair dyes, reporting an increased risk of 1.19 (95% CI 1.03-1.37).⁶²³ Beyond the inherent problems associated with recall bias in case-control studies, there was significant heterogeneity between studies, no uniform adjustment for confounding factors (noting substantial confounding likely due to genetic, cultural and sociodemographic factors) and no analysis of a dose-response was possible.

One published cohort study was not included in the IARC review. Mendelsohn et al.⁶²⁴ found no association with ever use of hair dyes compared with never use in the Shanghai Women's Health Study cohort of 70,366 Chinese women (RR 0.93, 95% CI 0.78–1.09), and no evidence of a dose–response relationship with increasing duration or intensity of use.

Rosenberg et al.⁶²¹ in a cohort of 48,167 African American women examined use of chemical hair relaxers in relation to risk of breast cancer and found no association with ever use, nor with increasing frequency or duration of use, of hair relaxers and risk of breast cancer. Two more recent case–control studies^{625, 626} have reported inconsistent findings of an association between use of chemical hair relaxers and risk of breast cancer, with the latter showing no association among African American women.

Table D.78 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.10 Radiation exposure

4.10.1 Electromagnetic field radiation—low frequency

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between exposure to low frequency electromagnetic fields and risk of breast cancer is inconclusive. Exposure to extremely low frequency electromagnetic fields (ELF EMFs) is ubiquitous and difficult to quantify. There are methodological limitations to the mainly case-control studies in relation to exposure to ELF EMF and risk of breast cancer and high heterogeneity between studies. One cohort study and a nested case-control study show no association with occupational exposure to ELF EMF and risk of breast cancer. There was no evidence of a dose-response relationship in the cohort study.

Background

ELF EMFs occupy the lower part of the magnetic frequency range, 0–3000 Hertz (Hz), and are produced by both natural and artificial sources. Natural sources include the EMFs created by the earth and EMFs generated by thunderstorms, solar and cosmic activity.⁶²⁷

Artificial sources are the dominant sources of ELF EMFs and are usually associated with the generation, transmission and use of electricity at the frequency of 50 Hz in Australia or 60 Hz in some other countries.^{628, 629} Powerlines, electrical wiring and common appliances such as electric blankets, televisions, hair dryers and computers all produce ELF EMFs.⁶²⁹ Specifically, compared with background levels, readily measureable exposure to ELF EMFs occurs in the vicinity of overhead powerlines.

EMFs in the low and very low part of the electromagnetic spectrum are not able to cause direct damage to cells or DNA and there is no established carcinogenic mechanism⁶³⁰. One proposed mechanism for a link between ELF EMF and breast cancer risk is via the reduction of levels of melatonin, although there is no consistent evidence to support this hypothesis.⁶³⁰

IARC

The International Agency for Research on Cancer (IARC)⁴³⁰ classified ELF magnetic fields as 'possibly carcinogenic to humans' (Group 2B) based on evidence in relation to childhood leukaemia. ELF electrical fields (and static electrical and magnetic fields) were determined 'not classifiable as to their carcinogenicity in humans (Group 3)'. Apart from the association with childhood leukemia, for which the evidence was evaluated as 'limited' in humans, the IARC concluded that there was 'inadequate evidence in humans' for the carcinogenicity of ELF magnetic fields in relation to all cancers, including breast cancer. They also concluded that there was 'inadequate evidence in humans' for the carcinogenicity or static electric or magnetic fields and ELF electrical fields.

Recent evidence

Four systematic reviews with meta-analyses examined the association between ELF EMF exposure and risk of breast cancer.⁶³¹⁻⁶³⁴ All four meta-analyses included case-control studies only and there was substantial overlap in the included studies. Consequently, all four studies provided similar summary risk estimates for exposure to ELF EMF and risk of breast cancer: OR 1.07 (95% CI 1.00–1.15; 23 case-control studies); OR 1.10 (95% CI 1.01–1.20; 16 case-control studies); OR 1.07 (95% CI 1.02–1.13; 23 case-control studies); and, 0.99 (95% CI 0.90–1.09; 15 case-control studies), respectively. When stratified by menopausal status, an association was only observed between exposure to ELF EMF and risk of premenopausal but not postmenopausal breast cancer. One of the meta-analyses⁶³³ stratified by hormonal subtypes, and reported an increased risk of ER–positive (OR 1.11, 95% CI 1.03–1.20) but not ER–negative (OR 0.96, 95% CI 0.84–1.10) breast cancer.

Substantial limitations to the findings of the meta-analyses were noted, due to methodological differences in quantifying exposure and heterogeneity between studies.

More recent data from a large Dutch occupational cohort of 62,573 postmenopausal women showed no association between occupational exposure to ELF EMFs and breast cancer risk, with no evidence of a dose-response trend with increasing duration of exposure or cumulative exposure.⁶³⁵ Li et al.⁶³⁶ similarly reported a null association in a case-control study nested in a cohort of Chinese textile workers, with no trend according to cumulative exposure to ELF EMFs.

Table D.79 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.10.2 Electromagnetic field radiation—radiofrequency

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between exposure to radiofrequency electromagnetic fields (RF–EMF) and risk of breast cancer is inconclusive. There are only a few available studies. Two large cohort studies have shown no association between use of mobile phones and risk of breast cancer.

Background

Radiofrequency electromagnetic fields (RF–EMF) are a form of non–ionising radiation that includes low frequency (LF), medium frequency (MF), high frequency (HF), very high frequency (VHF), ultra high frequency (UHF), microwave (MW) and millimeterwave, covering all frequencies between 30 kiloHertz (kHz) and 300 gigaHertz (GHz).⁶²⁷ Exposure can come from both man–made and natural sources (earth and space) and is classified as personal, occupational or environmental. The strongest RF fields to which people are exposed come from induction heating, remote detection of objects and devices, telecommunications, medical diagnostics and medical therapy (for example, magnetic resonance imaging).⁶³⁷ The most common exposure sources are via the use of mobile phones; lower levels of

exposure arise from high–power television and radio transmitters (up to several kilometres (km) away), mobile phone base station antennas (immediate vicinity only), microwave ovens, and magnetic resonance imaging.^{627, 628}

RF-EMF radiation can heat human tissue, proportional to the rate of energy absorption, and the rate of energy absorption does not vary substantially according to frequency.⁶²⁷ lonising radiations such as X-rays are known to cause cancer in humans through enhancing cancercausing carcinogens that cause DNA damage, but non-ionising radiations, such as the radiofrequency energy produced by cell phones, have not been found to be adequate for causing DNA damage.⁶³⁸

IARC

The International Agency for Research on Cancer (IARC)⁶³⁷ evaluated the association between exposure to RF–EMF (personal, occupational and environmental exposures) and cancer, and classified them as 'possibly carcinogenic to humans (Group 2B)', based on an increased risk for glioma, a malignant type of brain cancer associated with wireless phone use.^{637, 639} IARC noted there was limited evidence in humans for the carcinogenicity of RF– EMF radiation. The human epidemiological evidence was evaluated as being *limited* among users of wireless telephones for glioma and acoustic neuroma and *inadequate* to draw conclusions for other types of cancers, including breast cancer. IARC⁶³⁷ noted that there was little information concerning mobile phone use and risk of breast cancer, but that no association was observed between mobile phone use and risk of breast cancer in a large national Danish cohort study (SIR 1.04, 95% CI 0.97–1.12; 711 cases).⁶⁴⁰

Recent evidence

One additional prospective study was identified examining exposure to ever versus never use of mobile phones and risk of brain neoplasms and other cancers.⁶⁴¹ After seven years' follow-up in a cohort of 791,710 middle-aged women in the United Kingdom, the Million Women Study of ever versus never use of mobile phones was not associated with any cancer type, including breast cancer (RR 0.99, 95% CI 0.96–1.02), nor was daily use or 10+ years of use associated with risk of breast cancer (RR 0.97, 95% CI 0.92–1.03; RR 1.02, 95% CI 0.96–1.08, respectively).

Two low quality studies examined the association between RF–EMF exposure from frequency modulation (FM) broadcasting transmitters and use of domestic electrical appliances, respectively, and risk of breast cancer.^{642, 643} Hallberg et al.⁶⁴² reported the findings of an ecological study examining an association between density of FM broadcasting transmitters and incidence of breast cancer in 23 European countries and, separately, in Sweden. A significant correlation between average density of transmitters per 10,000 km² and risk of breast cancer was observed, although ecological studies are not suitable for examining causal associations. Davis et al.⁶⁴³ conducted a population–based case–control study in Seattle (United States), examining the association between exposure to 60 Hertz (Hz) magnetic fields and breast cancer risk. Exposure was measured through self–reported use of domestic electrical appliances, 48 hour continuous measurements of magnetic field and light levels in the bedroom of the current residence, and quantification of electrical hardware and wiring from all residences occupied for at least six months. The study findings were null for all measures of exposure.

Table D.80 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.10.3 Occupation as a flight attendant (cosmic radiation)

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between exposure to cosmic radiation and risk of breast cancer among flight attendants is inconclusive. Although an increased risk of breast cancer has been observed among flight attendants/airline crew compared with the general population in several studies, the underlying reasons are uncertain as most studies did not adjust for known confounders. Any increased risk may be due to the disruption of circadian rhythms or to occupation-related lifestyle and reproductive factors. A cohort study found no association between estimated occupational cosmic radiation exposure and breast cancer risk among flight attendants.

Background

Flight attendants are exposed to higher levels of cosmic ionising radiation than the general population.⁴²⁹ Exposure level depends on various factors such as flight route, altitude and type of aircraft. Median exposure levels of 2–9 millisieverts (mSv) per year are below the International Commission on Radiological Protection guideline limits of 20 mSv per year.⁶⁴⁴

Other possible environmental hazards that may play a role in cancer risk for flight crew include disruption of circadian rhythm (see section 4.7.24) due to irregular working hours and frequently crossing time zones.⁴²⁹

Flight attendants have been considered to be a highly selected group with many specific characteristics and exposures that might also influence cancers or other health conditions.⁶⁴⁵

IARC

The International Agency for Research on Cancer (IARC) classified 'neutron radiation' (a component of cosmic radiation) as 'carcinogenic to humans (Group 1)' and 'shiftwork with circadian disruption' as a 'probable human carcinogen (Group 2A)'. However no weight was accorded to studies involving 'occupation as a flight attendant' as providing evidence of an increased risk of cancer at any anatomical site, including breast cancer.

In the IARC monographs on neutron radiation and shift work involving circadian rhythm disruption,^{333, 429} brief reference is made to studies on cancer risk among airline crew. These monographs noted nine cohort studies published between 1995 and 2003, which compared breast cancer incidence in flight attendants with that observed in the general population, with SIRs ranging between 1.0 and 2.0.
Recent evidence

A systematic review with meta-analysis that included data from 10 cohort studies was published in 2016, reporting a pooled SIR of 1.40 (95% CI 1.30–1.50).⁶⁴⁶ This finding was consistent with two previous meta-analyses.^{647, 648} The review by Liu et al.⁶⁴⁶ has been criticised, however, for including overlapping study populations.⁶⁴⁹ Moreover, most of the contributing studies were retrospective cohort studies with cancer diagnoses established through record linkage, without the ability to adjust for occupation-related lifestyle factors known to be associated with breast cancer risk, such as alcohol consumption and lower parity.

A cohort study examined exposure to cosmic radiation and circadian rhythm disruption in relation to breast cancer risk among 6,093 flight attendants.⁶⁵⁰ After adjustment for age, age at menarche, height, alcohol consumption, parity, age at first birth, hormone therapy use and family history of breast cancer (first- and second-degree relatives), exposure to cumulative cosmic radiation dose was not associated with breast cancer incidence among these flight attendants. An earlier report of the same cohort, which was included in the meta-analysis by Liu et al.,⁶⁴⁶ showed the increased incidence of breast cancer in flight attendants compared with the general population was due to differences in reproductive factors, including lower parity and later age at first birth.⁶⁵¹

A large collaborative analysis of the joint Nordic study (8507 female flight attendants) reported a higher incidence of breast cancer in flight attendants compared with the general population after adjustment for reproductive factors (SIR 1.50, 95% Cl 1.32–1.69).⁶⁵² The collaborative analysis included data from four national cohorts (Finland, Iceland, Norway, Sweden) which were individually reported previously and included in the meta–analysis by Liu et al.⁶⁴⁶ as separate reports (albeit with shorter duration of follow–up).

Table D.81 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.10.4 Sun exposure

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between sun exposure and risk of breast cancer is inconclusive. There are a limited number of prospective studies available. Findings are inconsistent and limited by differences in exposure measurement. Some evidence suggests circulating levels of the bioactive form of vitamin D (25–hydihydroxyvitamin D, or 25(OH)D) may be associated with a decreased risk of breast cancer; however the evidence is mainly from case–control and nested case–control studies rather than prospective studies.

Background

Sunlight is the major source of human exposure to ultraviolet radiation (UVR), which includes wavelengths in the range of 100–400 nanometres (nm). It is further subdivided into UVA (315–

400 nm), UVB (280–315 nm) and UVC (100–280 nm). 653 Midday sun comprises approximately 95% UVA and 5% UVB. 653

A proposed mechanism linking sunlight to breast cancer is vitamin D synthesis. The majority (80–90%) of vitamin D comes from endogenous production that requires skin exposure to UVB rays from sunlight.^{653, 654} A large number of studies have measured serum levels of the biologically active form of vitamin D (that is, 25(OH)D). The link between sun exposure and 25(OH)D level is often not explicit, however.

The effects of vitamin D are mediated through the vitamin D receptor (VDR). The VDR is a steroid hormone receptor that is expressed in many cell types, including normal and malignant breast cells.⁶⁵⁵ Vitamin D has been shown to play a role in regulating the proliferation, differentiation and survival of breast cancer cells.⁶⁵⁶ Other hypothesised mechanisms include the influence of sunlight on immune function, on the production of melatonin, and on circadian rhythm. ⁶⁵⁵

IARC

The International Agency for Research on Cancer (IARC) concluded 'solar radiation is carcinogenic to humans (Group 1)', based on evidence relating to cutaneous melanoma and the keratinocyte skin cancers (basal cell carcinoma and squamous cell carcinoma), but not breast cancer. IARC examined three case-control and two cohort studies related to breast cancer. Three studies used location of residence as a measure of ambient sun exposure. Analyses of the Nurses' Health Study for women in California did not find a geographic gradient for increasing exposure to radiation and risk of postmenopausal breast cancer. A US death certificate-based case-control study observed a significant inverse association between residential and occupational sunlight and risk of breast cancer.⁴⁵⁷ In the National Health and Nutrition Examination Survey I (NHANES I) prospective study, several measures of sunlight exposure were associated with decreased risk of breast cancer (RR 0.64–0.85).⁴⁵⁸

Recent evidence

Sun exposure

Three large cohort studies reported on different measures of sunlight in relation to breast cancer incidence.⁶⁵⁹⁻⁶⁶¹

The US Radiologic Technologists (URST) study (36,725 women) reported ambient UVR (HR for lifetime fifth versus first quintile 1.22, 95% CI 0.95–1.56), time outdoors (HR for lifetime fifth versus first quintile 0.87, 95% CI 0.68–1.10) and combined UVR (HR for lifetime fifth versus first quintile 0.85, 95% CI 0.67–1.08) were unrelated to breast cancer risk.⁶⁵⁹ Lin et al⁶⁶⁰ also reported no association between cumulative ambient sun exposure and breast cancer risk in the National Institutes of Health–American Association of Retired Persons (NIH–AARP) Diet and Health study (178,138 women).

A large Swedish cohort study (42,559 women) found an association between some but not all measures of sun exposure and breast cancer risk.⁶⁶¹ Spending more than one week per year on sunbathing vacations when aged 10–29 years was inversely associated with breast cancer risk (HR 0.56, 95% CI 0.36–0.89). The annual number of sunburns or sunbathing vacations at other ages had no association with breast cancer risk.

Serum 25(OH)D

The most recent meta–analysis of the effects of serum 25(OH)D, serum 1,25(OH)2D and vitamin D intake on breast cancer risk⁶⁶² showed a protective effect between 25(OH)D and breast cancer in four cohort studies (RR 0.85, 95% CI 0.74–0.98) and 29 case–control studies (OR 0.65, 95% CI 0.56–0.76). This effect was not observed, however, in nested case–control studies (OR 0.92, 95% CI 0.83–1.01). A protective effect was observed for both premenopausal and postmenopausal breast cancer. This protective association persisted only in the premenopausal group (OR 0.67, 95% CI 0.49–0.92), however, when the analysis was restricted to nested case–control studies. Analysis by menopausal status was not possible for cohort studies.

Estébanez et al.⁶⁶² reported on the findings of eight meta-analyses (published between 2008 and 2014) that reported on 25(OH)D and risk of breast cancer. One of these meta-analyses, Gandini et al.,⁶⁶³ provided evidence of a dose-response association with a decrease in the risk of breast cancer of 0.89 (95% CI 0.81–0.98) per 10 ng/mg increase in serum 25(OH)D. The significant protective effect was restricted to case-control studies which had many methodological limitations (RR 0.83, 95% CI 0.79–0.87) however, and was not evident for nested case-control and prospective cohort studies (RR 0.97, 95% CI 0.92–1.03).

Table D.82 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.10.5 Ionising radiation—diagnostic

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between exposure to diagnostic ionising radiation and risk of breast cancer is inconclusive. There were only two human epidemiological studies identified in the general population in relation to exposure to low dose diagnostic radiation. A record linkage study on computerised tomography (CT) scans during adolescence in Australia showed no association with breast cancer risk. An earlier study of monitoring radiaography for scoliosis did not show a significant excess risk for breast cancer.

No epidemiological studies of the radiation effects of mammographic screening on risk of breast cancer have been conducted.

Background

Diagnostic ionising radiation, or diagnostic radiation, refers to the clinical use of ionising radiation for diagnosis purposes, including X-rays, computed tomography (CT), fluoroscopy and angiography. Ultrasound and magnetic resonance imaging (MRI) do not use ionising radiation. Ionising radiation is measured in units of absorbed dose, which are Gray (Gy). Diagnostic examinations are the main source of radiation from medical use.^{653, 664} The average dose of irradiation per medical diagnostic examination is between 0.1–20 mGy;⁶⁵³ the average dose to the breast from a chest X-ray is 0.45 mGy⁶⁶⁵ and from mammographic examination is 1.5 mGy.⁶⁵³

Radiation dose is also measured in units of Sieverts (Sv), which is a derived unit of ionising radiation dose and often the radiation dose is compared in Sieverts for exposures to x-rays including mammograms, and CT scans, compared to an equivalent period of exposure to background radiation for natural sources. Australian Radiation Protection and Nuclear Safety Agency (ARPANSA)⁶⁶⁶ indicates that on average Australians are exposed to 1.5 mSv per year from natural sources. This is about the same amount of radiation received from 75 chest X-rays—one chest X-ray delivers approximately 0.02 mSv. Mammographic examination delviers 0.7 mSv. The average dose per CT procedure (1.5–25 mSv) is considerably higher than for most conventional X-ray procedures.⁶⁵³

Average levels of radiation exposure due to diagnostic use are increasing in developed countries worldwide, due to increasing use of CT, angiography, and interventional procedures;^{653, 664} although amounts of radiation used in these procedures is decreasing.^{667, 668}

lonising radiation may increase risk of cancer through the energy transfer to cells, which can cause DNA damage either directly or indirectly through ionisation of water and the formation of free radicals.⁶²⁸ Damaged DNA that is not repaired, or is misrepaired, can lead to carcinogenesis.⁶⁵³ It has been proposed that exposure to radiation may be particularly carcinogenic when it occurs during sensitive periods in breast development, such as in utero, puberty and pregnancy, which are characterised by rapid proliferation of undifferentiated cells⁶⁶⁹. Proposed mechanisms include changes in tissue composition and stem cell regulation after exposure. Evidence from the study of atomic bomb survivors over more than 64 years shows increased breast sensitivity to ionising radiation in females during puberty⁶⁶⁹. Further, there is some concern that young *BRCA* (and other) mutation carriers are particularly at risk because of their impaired ability to repair the radiation induced double-strands DNA breaks.⁶⁷⁰

While the risk of cancer from exposure to high radiation doses is relatively well quantified and risk increases linearly with dose (e.g. Berrington de Gonzalez et al.,⁶⁷¹ Brenner et al.⁶⁶⁹), for low radiation exposures such as those received through medical imaging, the scientific evidence for increased health risk is more limited; and the linearity of association at doses below 100 mSv has been disputed.^{666, 672} There is some evidence to suggest low doses of radiation might even benefit biological outcomes.⁶⁷²

IARC

The International Agency for Research on Cancer (IARC)⁶⁵³ have evaluated the association between X-radiation and (gamma)γ-radiation and breast cancer risk and determined that there is sufficient evidence for a causal association. The evaluation was based on evidence from four studies, and, importantly, for three of these the exposure was *therapeutic radiation* rather than diagnostic radiation (section 4.10.6). The study examining exposure to diagnostic radiation was by Ronckers et al..⁶⁶⁵ This retrospective cohort study was of 3010 women monitored by radiography for scoliosis between 1912 and 1965. The total breast dose received was 12 cGy and the average number of breast-exposed radiographs was 24. A non-significant excess relative risk (ERR) per Gy of exposure of 2.86 (95% CI -0.07–8.62) was observed during 118,905 woman-years of follow-up (median, 35.5 years) based on 78 cases of invasive breast cancer. A significantly larger dose-response relationship was observed for women with a family history of breast cancer in first or second-degree relatives (ERR/Gy 8.37, 95% CI 1.50-28.16) compared to women without affected relatives (ERR/Gy -0.16, 95% CI <0-4.41).

Recent evidence

Mathews et al.⁶⁷³ examined the association between exposure to ionising radiation from diagnostic CT scans during adolescence and subsequent breast cancer risk in Australians using record linkage to administrative claims data for the time period 1985-2005. Mean follow-up was 9.5 years in the exposed group and 17.3 years in the unexposed group. The IRR for the exposed group compared with the unexposed group was not increased for breast cancer (among men and women) (IRR 0.99, 95% CI 0.83–1.17), and the absolute excess incidence rate was -0.03 per 100,000 person years (95% CI -0.39–0.34).

Several modelling studies have predicted the number of radiation-induced breast cancers from mammographic screening. These have been based on a linear association between ionising radiation exposure and risk of breast cancer observed among atomic bomb survivors.⁶⁷⁴ One of these modelling studies has predicted that biennial mammographic screening among women aged around 50–75 years is associated with 27 (95% Cl 19–38) radiation-induced breast cancers per 100,000 women screened ⁶⁷⁵. In a similar type of modelling study, mammographic screening is estimated to induce 30–60 breast cancers per 100,000 women screened.⁶⁷⁶

Potential increased incidence of breast cancer through mammography screening is offset by the decreased breast cancer mortality associated with screening (e.g. Nelson et al.,⁶⁷⁷ Miglioretti et al.⁶⁷⁵). In the modelling study by Miglioretti et al.,⁶⁷⁵ it was estimated that 627 breast cancer deaths (determined from mortality rates from clinical trials and cohort studies) would be averted per 100,000 women screened; the ratio of predicted radiation-induced cancers to breast cancer deaths averted was 23 (95% Cl 16–33). Similarly, Nelson et al.⁶⁷⁷ estimated that women aged 50 to 69 years undergoing screening mammography have a 25% to 31% relative reduction in deaths from breast cancer. Mortality reduction has been estimated in two cohort studies in Australia⁶⁷⁸ and New Zealand⁶⁷⁹, to be 25%, 22% and 34% respectively.

Increased risk of breast cancer associated with mammographic screening has been shown in a dose-response relationship among women who are carriers of *BRCA1* or *BRCA2* gene mutations (e.g. Pijpe et al.⁶⁸⁰, Colin et al.⁶⁸¹), but no population estimates of risk could be determined for mammographic screening and the general population, except those derived by predictive modelling.⁶⁷⁷ The systematic review by Colin et al.⁶⁸¹ showed an association between exposure to low cumulative X-ray doses before age 30 among *BRCA* mutation carriers and risk of breast cancer but no consistent data regarding the risk of breast cancer from radiological exposure after age 30. A review by Pauwels et al.⁶⁸² more cautiously recommends that individuals at high risk of breast cancer should avoid ionising radiation as much as possible.

Table D.83 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.10.6 Ionising radiation—radiotherapy

Evidence summary

Evidence classification: Convincing (for most exposures).

There is convincing evidence that exposure of women to therapeutic ionising radiation in the chest region for Hodgkin lymphoma (HL) and various childhood cancers, including HL in childhood, is associated with an increased risk of breast cancer. The evidence is consistent. There is a linear dose response relationship which is often expressed as excess relative risk per Sievert (Sv)or per Gray (Gy). A meta-analysis of four cohort studies by Doi et al.⁶⁸³ reported an excess relative risk (ERR) of 0.31 (95% CI 0.16–0.59) for radiation therapy for childhood cancers and subsequent risk of breast cancer across study types. Most women do not know the dose of ionising radiation received. An overall increased relative risk for radiation (only) treatment for HL has been estimated as 4.70 (95% CI 3.28–6.75).⁴⁹¹ This risk is estimated to be higher among those treated at a younger age (<30 years; RR 14.08, 95% CI 9.93–19.98)⁴⁹¹ and particularly those treated close to menarche.

Background

Mantle field radiation, rarely used today, was used to treat HL in the 1960s. Radiation was delivered to a large area of the neck, chest and armpits. Other types of radiation treatment of the chest to treat childhood cancers include mediastonal irradiation, whole lung irradiation and total body irradiation. The mediastinum is the area of the chest that separates the lungs and is surrounded by the breastbone at the front, the spine at the back and the lungs on each side. Chemotherapy is now used in all patients and 'field radiation' is only delivered to a small area that initially has enlarged nodes.

Radiation exposure is measured in units of Gray (Gy). Linear dose-response and risk of breast cancer can also be given as excess relative risk per Gy (ERR/Gy); that is, increased risk is approximately proportional to the dose received.⁶⁸⁴ In studies that included the radiation exposure levels for HL treatment, dose range was 10–50 Gy.⁶⁸⁵⁻⁶⁸⁷ Within contemporary radiotherapy, chest radiation doses are generally in the range 10–19 Gy.⁶⁸⁷ These doses are considerably higher than those used in diagnostic radiation (section 4.10.5).

Ionising radiation is a genotoxic carcinogen increasing risk of multiple tumour types. Ionising radiation may increase risk of cancer through the energy transfer to cells, which can cause DNA damage either directly or indirectly through ionisation of water and the formation of free radicals⁶²⁸. Damaged DNA that is not repaired, or is misrepaired, can lead to carcinogenesis⁶⁵³. It is this nonlethal cell modification that can eventually lead to malignant disease. Susceptibility is influenced by genetic factors.^{628, 684, 688, 689}

It has been proposed that exposure to radiation may be particularly carcinogenic when it occurs during sensitive periods in breast development, such as in utero, puberty and pregnancy, which are characterised by rapid proliferation of undifferentiated cells.⁶⁶⁹ Proposed mechanisms include changes in tissue composition and stem cell regulation after exposure. Evidence from the study of atomic bomb survivors over more than 64 years shows increased breast sensitivity to ionising radiation in females during puberty.⁶⁶⁹

IARC

The International Agency for Research on Cancer (IARC)⁶⁵³ evaluated the epidemiological evidence for the carcinogenicity of X-radiation and γ (gamma)-radiation and breast cancer as 'sufficient'.

Recent evidence

Much of the evidence relates to radiation treatment for HL and childhood cancers generally.

A meta-analysis of four cohort studies by Doi et al.⁶⁸³ reported an excess relative risk (ERR) of 0.31 per Gy (95% CI 0.16-0.59) for radiation therapy for childhood cancers, including HL, and subsequent risk of breast cancer, across study types. Heterogeneity across studies was partly attributed to age at exposure.

A meta-analysis of 34 cohort studies examined the risk of breast cancer among female survivors of HL who developed HL at a median age of 23.7 years.⁴⁹¹ This study reported an increased risk of subsequent breast cancer among those treated with radiation as the sole therapeutic modality compared to all treatment modalities (with or without chemotherapy) (RR 4.70, 95% CI 3.28–6.75; 6 studies), and this risk was higher among those treated at a younger age (RR \leq 30 years 14.08, 95% CI 9.93–19.98). There was no increased risk among women treated at age 40 years or older (RR 0.55, 95% CI 0.09–3.52). The risk was slightly higher for those treated with radiation plus chemotherapy or radiation therapy plus alkylating CT. A dose-response was not observed across all studies.

Sud et al.⁶⁹⁰ have also reported no association with risk of breast cancer among women treated with radiation for HL at ages older than 35 years.

Ten cohort studies, including a nested case–control study, published 2009–2017 showed an increased risk of breast cancer following radiation treatment for HL or childhood cancers.^{685, 686, 690-693} Three articles reported data from the Childhood Cancer Survivor Study (CCSS) in the United States/Canada.^{687, 694, 695} For example, Inskip et al.⁶⁹⁶ observed an excess risk of breast cancer of 0.27 per Gy (95% Cl 0.10–0.67), equating to relative risks of 6.4 and 11.8 from radiation doses of 20 Gy and 40 Gy compared to no radiation, respectively among 5,797 female childhood cancer survivors. The slope increased to 0.34 per Gy (95% Cl 0.10–0.67) when restricted to higher quality data. First cancers were mainly HL and bone cancer. Moskowitz et al.⁶⁹⁵ showed that risk is increased after chest/absorbed doses of more than 10 Gy, with a dose-response relationship.

In particular, risk is increased with radiation treatment relative to age at menarche, with treatment closest to menarche associated with the highest risk.^{691, 694}

Risk of breast cancer varies by treatment-related factors including the area of chest irradiated. The highest risk is associated with whole lung irradiation, followed by mantle irradiation and then mediastinal irradiation.^{685, 687} Teepen et al.⁶⁹² reported treatment with total body irradiation for childhood cancers was associated with an increased risk of breast cancer of 10.6 (95% Cl 3.7–30.2), compared with no RT. The same study reported an increased risk of breast cancer associated with chest irradiation of 2.5 (95% Cl 1.3–4.9), compared with no RT.

Moskowitz et al.⁶⁹⁵ reported no association with risk of breast cancer among women treated with spinal irradiation for leukaemia and central nervous system tumours during childhood compared to expected cases in the general population (SIR 2.4, 95% Cl 0.8–7.5), although the risk was significant among those treated for childhood leukaemia (SIR 3.8, 95% Cl 1.2–11.7). This study included 363 patients and only 3 cases of breast cancer.

Table D.84 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

4.10.7 Radioactive treatment for thyroid cancer

Evidence summary

Evidence classification: Inconclusive.

The evidence for any association between receiving radioactive iodine treatment (RAI) for thyroid cancer and risk of breast cancer is inconclusive. No studies showed any association. The studies evaluating the association generally had relatively short mean/median follow-up periods, however, which may not have sufficiently covered the latent period for breast cancer development.

Background

Radioactive iodine, also known as ¹³¹I, is a radioisotope treatment that has been commonly used for radioactive ablation of benign overactive thyroid and of locally invasive or metastatic thyroid cancer for over 50 years.³³³ When ingested, it is absorbed into the blood stream but concentrates only in thyroid cells because they express a sodium iodine transporter.³³³ The radiation leads to cell death in thyroid cells that uptake the ¹³¹I, with little damage to surrounding tissues.

There are concerns that women treated with radioactive iodine for thyroid disease may have a higher risk of breast cancer, although there is no clear biological mechanism to explain a possible link.⁶⁹⁷

IARC

The International Agency for Research on Cancer (IARC)³³³ classified short-lived radioisotopes of iodine, including ¹³¹I, as 'carcinogenic to humans (Group 1)' and concluded that there is sufficient evidence in humans that exposure during childhood and adolescence to short-lived radioisotopes of iodine, including ¹³¹I, causes cancer of the thyroid. Positive associations between exposure to ¹³¹I and several other cancers were also noted, including cancer of the digestive tract and salivary gland, leukaemia, and bone and soft tissue sarcoma. The Working Group evaluated four case-control studies that examined breast cancer incidence following treatment for thyroid cancer. Two of the studies reported significantly increased risk of breast cancer, but it was noted that these increases were not related to ¹³¹I exposure, and cited a lack of detail on levels of administered ¹³¹I.⁶⁵³

Recent evidence

Two systematic reviews with meta-analyses have evaluated the association between RAI treatment for thyroid cancer and breast cancer risk.^{698, 699}

The most recent review included data from six cohort studies. Among 17,914 women treated for thyroid cancer, those treated with RAI (9,000 RAI-treated patients) had a lower risk of breast cancer, compared with women with thyroid cancer not treated with RAI (pooled RR 0.61, 95% CI 0.7–0.79).⁶⁹⁹ The mean follow–up time of the included studies ranged from 7.8 to 12 years. There was no evidence of significant heterogeneity across studies. The earlier review included two multi-centre studies, one of which⁶⁹⁸ was also included in the meta-analysis by Zhang et al.⁶⁹⁹ The pooled RR of breast cancer in women with thyroid cancer treated with RAI, compared with those not treated with RAI was 0.86 (95% CI 0.64–1.16). One of the contributing studies had a median follow–up period of 8.6 years, and the second had a mean of 13 years. These relatively short mean/median follow–up periods were a limitation of both studies.

Data from a national population-based cohort study conducted in Taiwan was published after the two meta-analyses.⁵⁰³ The study included 10,361 women with thyroid cancer, of which 7,069 received RAI treatment. After a median follow-up period of 6.5 years, the risk of breast cancer was not significantly elevated in women with thyroid cancer treated with RAI, compared with those not treated with RAI. There was no evidence of a dose-response relationship.

Table D.85 contains detailed information about the studies discussed above, including sample size, exposures, outcomes, risk estimates, and any adjustments and limitations.

5 Summary

Overview

This review provides a detailed assessment of the body of evidence for each of a large number of factors which have been considered as potentially associated with an increased or decreased risk of breast cancer.

The evidence for each factor has been classified according to an explicit framework (section 2.4.1); specifically the evidence has been classified as 'Convincing', 'Probable', 'Suggestive', 'Inconclusive' or 'Evidence of no association'. Best estimates of increased or decreased risk are provided for those factors for which the evidence is classified as 'Convincing or 'Probable'.

There are a modest number of factors for which the evidence is 'Suggestive' of an association but for which more evidence is needed before they can be considered as risk or protective factors.

Further, there are a large number of factors for which the evidence is 'Inconclusive'. These factors are the most difficult for which to communicate the evidence as they may be classified as 'Inconclusive' for a number of reasons relating to the quality of evidence, or to the quantity of evidence, or to inconsistent findings across studies, or for any combination of these reasons. For some of the factors classified as 'Inconclusive' there is indicative but not sufficient evidence that they are not associated with risk of breast cancer. Where this is so, then this is indicated in the summary text for that factor. For some of these factors there is a lack of biological plausibility but the evidence is too limited, often in amount and quality, to be more certain that they are not associated with risk of breast cancer. For a small number of factors the evidence has been considered to be sufficient to indicate that there is no association with risk of breast cancer, or at least that an association is highly unlikely, and these are classified as 'Evidence of no association'.

The classifications are indicated below, as are the best estimates of risk for factors where the evidence has been classified as 'Convincing' or 'Probable'. A brief narrative summary of the findings of this review are also presented on a 'per factor' basis.

Evidence classifications

The classification for each factor is summarised in Table 5.1.

Table 5.1 Evidence classifications

Classification	Factor
Convincing	Age
	Geographic location and residence
	Urbanisation
	High socioeconomic status
	Height

	High mammographic breast density
Family history of breast cancer	
	Family history of other cancers
	ATM gene mutation
	BRCA1 gene mutation
	BRCA2 gene mutation
	CDH1 gene mutation (lobular breast cancer)
	CHEK2 gene mutation
	PALB2 gene mutation
	PTEN gene mutation
	Polygenic risk score (single nucleotide polymorphisms)
	STK11 gene mutation (with family history PJS)
	TP53 gene mutation
	Previous benign breast disease (proliferative)
	LCIS (lobular carcinoma in situ)
	DCIS (ductal carcinoma in situ)
Convincing	Previous primary invasive breast cancer
	Later age at menarche
	Nulliparity (risk)/parity (protective)
	Later age at first birth
	Later age at menopause
	Circulating hormones—oestrogen (postmenopausal), testosterone,
	insulin–like growth factor [IGF1])
	Current use combined hormonal contraception
	Current use combined menopausal hormone therapy
	Maternal exposure to Diethylstilboestrol
	Adiposity (e.g. BMI) in adulthood (postmenopausal)
	Weight gain (postmenopausal)
	Alcohol consumption
	Ionising radiation—radiotherapy

	Birthweight (premenopausal)
Probable	Breastfeeding (protective)
	High levels physical activity (protective)

	Previous cancer other than breast cancer	
	High levels vigorous physical activity (premenopausal) (protective)	
	Diet—high in processed meat	
	Tobacco smoking	
Suggestive	Shift work disrupting circadian rhythm	
	Cardiac glycosides (digoxin)	
	Diet—high in calcium (protective)	
	Diet—high in vegetables (protective)	
	Diet—high in foods containing carotenoids (protective)	

	Birthweight (postmenopausal)
Inconclusive	Having been breastfed
	Breast size

	Bras
	Circulating hormones—oestrogen (premenopausal), sex hormone
	binding globulin [SHGB], luteal phase progesterone, prolactin
	Polycystic ovarian syndrome (PCOS)
	Hormonal contraception—progestogen only
	Menopausal hormone therapy—oestrogen only
	Hormonal infertility treatment
	DES in utero
	Adiposity—weight loss
	Coffee, tea, caffeine
	Diet—dietary fibre
	Diet—fruit
	Diet—Mediterranean diet
	Diet—phytoestrogens
	Diet—glycaemic index
	Diet—total energy
	Diet—sugar
	Diet—fat
	Diet—red meat
	Environmental tobacco smoke
	Aspirin
	Human papillomavirus (HPV)
	Hysterectomy
Inconclusive	Breast implants
	Stress
	Trauma to the breast
	Type 2 diabetes
	Bisphenol A (BPA)
	Deodorant/antiperspirant
	Dioxin
	Ethylene oxide
	Land contamination
	Outdoor air pollution
	Parabens
	Pthalates
	Polychlorinated biphenyls
	Occupation as a hairdresser
	Personal use hair dyes/relaxers
	Electromagnetic field radiation—low frequency
	Electromagnetic field radiation—radiofrequency
	Occupation as a flight attendant (cosmic radiation)
	Sun exposure
	Ionising radiation—diagnostic
	Radioactive treatment for thyroid cancer

Evidence of no association	Previous non-proliferative benign breast disease
	Pregnancy termination
	DDT exposure

Magnitude of risk

Estimated risks for those factors for which there is sufficiently strong evidence of an association with risk of breast cancer, i.e. those factors for which the body of evidence was classified as either 'Convincing' or 'Probable', are summarised in Table 5.2.

Table 5.2Summary of risk estimates for factors where the body of evidence has been classified as
either 'Convincing' or 'Probable'

Factor	Risk estimate	Reference
General & personal characteristics		-
Age 50 years vs. 30 years old	10 ^{xi}	AIHW (2017) ²⁷
Height per 10 cm increase in height	1.17 (95% CI 1.15–1.19)	Zhang et al. (2015)47
Mammographic breast density odds per standard deviation	1.53 (95% 1.44–1.64)	Pettersson et al. (2014) ⁵⁶
Family history & genetics		
Family history of breast cancer ≥ 1 second degree relatives 1 first degree relative 2 first degree relatives ≥ 3 first degree relatives	1.5 (95% CI 1.4–1.6) 1.80 (95% CI 1.69–1.91) 2.93 (95% CI 2.36–3.64) 3.90 (95% CI 2.03–7.49)	CGHFBC ^{xii} (2001) ⁷⁶ CGHFBC (2001) ⁷⁶ CGHFBC (2001) ⁷⁶ Pharoah et al (1997) ⁷⁷
ATM gene mutation mutation carrier vs. non-carrier	1.74 (95% CI 1.46–2.07)	Kurian et al. (2017) ⁹³
BRCA1 gene mutation mutation carrier vs. non-carrier	5.91(95% CI 5.25–6.67)	Kurian et al. (2017) ⁹³
BRCA2 gene mutation mutation carrier vs. non-carrier	3.31 (95% CI 2.95–3.71)×iii	Kurian et al. (2017)93
CHEK2 gene mutation mutation carrier vs. non-carrier	1.99 (95% CI 1.70–2.33)	Southey et al. (2016) ¹²⁸
PALB2 gene mutation mutation carrier vs. non-carrier	3.39 (95% CI 2.79-4.12)	Kurian et al. (2017)93
PTEN gene mutation mutation carrier vs. non-carrier	5.83 (95% CI 2.43–14.0)×iv	Kurian et al. (2017)93

^{×&}lt;sup>i</sup> Determined from age-specific incidence rates reported by AIHW in 2017

xii Collaborative Group for Hormonal Factors in Breast Cancer

xiii Cumulative risk among women with family history higher, comparable with that for BRCA1 mutation

xiv Risk estimate uncertain (wide confidence intervals) due to low frequency of gene mutation

Single nucleotide polymorphisms (SNPs) highest 1% of PRS distribution ^{xv} vs. middle quintile PRS distribution	3.36 (95% CI 2.95–3.83)	Mavaddat et al. (2015) ¹⁴¹
lowest 1% of PRS distribution vs. middle quintile PRS distribution	0.32 (95% CI 0.25–0.40)	(2010)
TP53 gene mutation mutation carrier vs. general population	5.37 (95% CI 2.78–10.4)×iv	Kurian et al. (2017) ⁹³
Breast pathology		
Proliferative benign breast disease atypical hyperplasia proliferative disease without atypia	3.93 (95% CI 3.24–4.76) ^{×vi} 1.76 (95% CI 1.58–1.95) ^{×vi}	Dyrstad et al. (2015) ¹⁶⁸
Lobular carcinoma in situ diagnosis of LCIS vs. general population	Uncertain: range 2 – 12	
Ductal carcinoma in situ diagnosis of DCIS vs. general population	3.9 (95% CI 3.6–4.2)	AIHW NBOCC (2010) ¹⁹⁹
Endogenous hormones		
Age at menarche per year younger at menarche	1.05 (95% CI 1.044–1.057)	CGHFBC (2012) ²²⁰
Age at first birth per one year older ≥ 30 years vs. 25–29 years old	1.03 (95% CI 1.02–1.05) 1.20 (95% CI 1.02–1.42)	Sisti et al. (2016) ²²⁹ Nelson et al. (2012) ²²⁶
Age at menopause per year older at menopause	1.029 (95% CI 1.025–1.034)	CGHFBC (2012) ²²⁰
Breastfeeding per 5–month increase in duration	0.98 (95% CI 0.97–0.99)	WCRF/AICR (2018)11
Nulliparity nulliparous vs. parous women	1.16 (95% CI 1.04–1.26)	Nelson et al. (2012) ²²⁶
Parity per birth	0.93 (95% CI 0.91–0.95)	CGHFBC (2002) ²²⁴
Exogenous hormones		
Exposure to DES while pregnant exposed vs. unexposed women	1.27 (95% CI 1.07-1.52)	Titus–Ernstoff et al. (2001) ³¹⁰
Combined oral contraceptive pill per 5 years of current use	1.07 (95% CI 1.03–1.11)	Zhu et al. (2012) ²⁵⁷

For 77-SNPs
 Risk estimate possibly inflated due to reference group mainly women with benign breast biopsy diagnosed with non-proliferative disease

Combined menopausal hormone therapy current use vs. never use	1.72 (95% CI 1.55–1.92)	Munsell et al. (2014) ²⁷⁶
Lifestyle factors		
Body mass index (postmenopausal women) per 5–unit increase in BMI	1.12 (95 Cl% 1.09–1.15)	WCRF/AICR (2018)11
Adult weight gain per 5 kg increase in weight	1.06 (95% CI 1.05–1.08)	WCRF/AICR (2018)11
Alcohol consumption per 1 standard drink (10 g) per day	1.07 (95% CI 1.05–1.09)	WCRF/AICR (2018)11
Physical Activity (postmenopausal women) highest vs. lowest levels	0.87(95% CI 0.79–0.96)	WCRF/AICR (2018)11
Vigorous physical activity (premenopausal women) highest vs. lowest levels	0.83 (95% CI 0.73–0.95)	WCRF/AICR (2018)11

General factors

Age is the main risk factor for breast cancer, with the majority of breast cancers occurring in women aged over 50 years. However, there are windows of susceptibility to other factors affecting long-term risk of breast cancer across the lifespan.

A number of general factors are associated indirectly with risk of breast cancer including place of birth, place of residence including geographic location and remoteness, Indigenous status, and socioeconomic status. These distal factors reflect exposures across a lifetime as well as current exposures. In Australia, interrelationships exist between socioeconomic status, remoteness and Indigenous status.

These general factors may act indirectly through differences in reproductive factors such as parity, and lifestyle factors such as alcohol consumption. These factors may be influenced by other factors, such as the physical attributes of an area that may promote or hinder exposure to breast cancer risk factors such as physical activity. Differences in breast cancer incidence across regions may also be due to differences in availability of and access to screening and diagnosis.

Personal characteristics

Birthweight is probably associated with a very small increased risk of premenopausal breast cance, but is unlikely to be directly causal. Rather, it is likely a marker for prenatal growth and a predictor of later growth and maturation, such as age at menarche—factors which are themselves determinants of breast cancer risk. The evidence for a positive association between adult-attained height and risk of breast cancer is convincing, although this factor is again unlikely to be directly causal and more likely to be a reflection of growth processes determined by genetic and environmental factors, including nutritional components. The evidence for 'Having been breastfed' and risk of breast cancer is inconclusive and this may reflect the opposing potential mechanisms that may increase and decrease risk of breast cancer, or there may indeed be no association.

There is convincing evidence that mammographic breast density is associated with risk of breast cancer but the magnitude of risk has been frequently misreported. Several metaanalyses have reported on risk for women with higher breast density compared with women with the least dense breasts. Fewer than 10% of women have breasts in the lowest and highest quartiles of breast density; and breast cancer risk among women with dense breasts is more usefully compared to women with average breast density. Accordingly women with moderately dense breasts have approximately 1.5 times the risk of breast cancer and women with moderately non-dense breasts have approximately 0.6 times the risk of breast cancer as women age.

Breast size does not appear to be related to risk of breast cancer although studies are limited methodologically.

Family history & genetic factors

Most women who develop breast cancer do not have a family history of breast cancer and/or an inherited genetic mutation, or both. However, family history of breast and several other cancers, including particularly ovarian cancer, and being a carrier of a number of genetic mutations are convincing, and established, risk factors for breast cancer. Risk is higher if the familial breast cancer is in first-degree relatives, such as mother, sister or children, than in second-degree relatives such as a grandmother or aunt. Risk is higher for younger women and for women whose relatives were diagnosed at a younger age. The mechanisms for increased risk include inherited genetic mutations, and shared exposure to environmental, reproductive and lifestyle factors. A family history of other cancers, in particular ovarian cancer, but also prostate and pancreatic cancer, similarly reflect shared genetic mutations or shared lifestyle, reproductive or environmental factors. Inherited mutations in genes such as *BRCA1*, *BRCA2*, *TP53*, *PALB2*, *PTEN* and *STK11* may increase the risk of other cancers as well as breast cancer through similar biological mechanisms. Families may have similar dietary patterns, reproductive habits, physical activity or body size that may influence risk of different cancers.⁸⁴

Although a family history of several other cancers is known to be associated with increased risk of carrying one or more of the genetic mutations associated with breast cancer; few studies have estimated the risk magnitude between familial history of these cancers and risk of breast cancer among those women with unknown inheritance of the various gene mutations.

There are a number of high-penetrance rare gene mutations associated with increased risk of breast cancer, namely *BRCA1*, *BRCA2*, *PTEN*, *PALB2*, and *TP53*. Other rare gene mutations convincingly associated with risk of breast cancer are *ATM*, *CHEK2*, *STK11* and *CDH1*. *CDH1* is associated only with increased risk of lobular breast cancer—lobular breast cancer constitutes about 10% of breast cancer. Mutations in *STK11* are very rare and generally only identified among women with familial or personal Peutz-Jeghers syndrome (PJS).

Many of the risk estimates included in the summary table (Table 5.2) for genetic risk factors are from a study by Kurian et al.⁹³ which determined risk estimates adjusted for family history

of cancer. These estimates therefore represent the magnitude of risk that is applicable to women with no family history of relevant cancers, potentially indicating the estimated risk determined from a combination of genetic and environmental and lifestyle factors. Many of the risk estimates, particularly those for *BRCA1* and *BRCA2* mutations, may be much higher among women that will be tested clinically after being assessed as 'high-risk' due to histories suggestive of hereditary breast cancer predisposition.

Breast pathology

Benign breast disease (BBD) is increasingly diagnosed as an incidental finding on mammography. BBD can be dichotomised as proliferative and non-proliferative, based upon the degree of cellular proliferation and atypia. The evidence indicates that non-proliferative disease is not associated with an increased risk of breast cancer but proliferative disease, particularly atypical hyperplasia and less so proliferative disease without atypia, is associated with an increased risk of breast cancer. A higher number of atypical foci are associated with a higher breast cancer risk. Most risk estimates for proliferative BBD have been determined among women who have had benign breast biopsies, comparing breast cancer incidence among those with proliferative disease versus those women with non-proliferative disease, and therefore the indicated risk estimates may be inflated. Proliferative breast disease is generally regarded as a marker for breast cancer susceptibility due to common risk factors, although precursor cells may exist in benign breast disease that may progress into breast cancer.

Similarly, lobular carcinoma in situ (LCIS) was thought to be a marker of increased breast cancer, but there is accumulating evidence that it may also be a precursor lesion. Although there is convincing and consistent evidence that LCIS is associated with an increased risk of breast cancer, the magnitude of risk is uncertain as studies have provided widely different estimates, ranging from around 2 to around 12. There is similarly convincing and consistent evidence that ductal carcinoma in situ (DCIS) is associated with an increased risk of breast cancer. Partly because it is more common than LCIS, the risk estimates across studies have been within a narrower range. Studies which have examined both LCIS and DCIS and risk of breast cancer show no significant differences in risk estimates between the two diagnoses. DCIS is a heterogeneous disease however, and the breast cancer risk may differ greatly between high, intermediate and low grade DCIS.

There is convincing evidence that having had a previous breast cancer is associated with an increased risk of a second primary breast cancer by a modest amount.

Endogenous hormones

There is convincing evidence that levels of circulating steroid hormones including oestrogen, testosterone and insulin-like growth factor 1 (IGF–1), are associated with an increased risk of postmenopausal breast cancer and possibly breast cancer overall. The evidence is inconclusive regarding levels of progesterone and risk of breast cancer, possibly because progesterone has proliferative and anti-proliferative effects in the body.

There is convicning evidence that various reproductive factors are associated with an increased risk of breast cancer, including age at menarche, age at menopause and parity. These factors are related to extended exposure to oestrogen which may be the mechanism by which they affect breast cancer risk. However, other mechanisms are involved. A

younger age at menarche is more strongly associated, albeit still modestly so, with risk of breast cancer than a later age at menopause as it increases the period before first full-term pregnancy during which time the breast is mitotically active. In this way, and through earlier induction of terminal differentiation of breast cells at risk, a lower age at first birth is associated with a decreased risk of breast cancer. Parity is also associated with decreased risk of breast cancer, in a dose-response manner, as cells undergo differentiation during pregnancy which is thought to make them less vulnerable to DNA damage.

Breastfeeding probably has a small protective effect on risk of breast cancer, likely through the hormonal effects of amenorrhoea in reducing exposure to steroid hormones, as well as changes to the epithelial cells.

The evidence is inconclusive regarding polycystic ovarian syndrome (PCOS) and risk of breast cancer, despite PCOS being associated with high levels of circulating testosterone and testosterone being associated with an increased risk of breast cancer. The available evidence does not show an association but is limited in quality.

Exogenous hormones

Both the combined oestrogen-progestogen oral contraceptive pill (OCP) and combined oestrogen-progestogen menopausal hormone therapy (MHT) are associated with an increased risk of breast cancer—and risk increases with increasing duration of use. There is convincing evidence that the risk of breast cancer is only associated with current use of the OCP, with the risk attenuating after stopping use; and probably only with current use of combined MHT, although persistence in risk may be associated with some formulations of combined MHT. There is an indication that triphasic preparations of the OCP containing levonorgestrel as the progestin are associated with a higher breast cancer risk than other formulations. Risk is higher among combined MHT users when use is commenced close to menopause.

The evidence is inconclusive regarding an association between progestogen-only contraceptives and risk of breast cancer. Similarly the evidence for oestrogen-only MHT and risk of breast cancer is inconclusive and there is no evidence of a dose-response effect suggesting that an association is unlikely. No association was observed in a randomised controlled trial.

The evidence is inconclusive regarding hormonal infertility treatment and risk of breast cancer, however the body of evidence does not support a positive association.

The evidence is convincing between exposure to diethylstilboestrol (DES) during pregnancy and increased risk of breast cancer. Earlier analyses of several cohort studies showed that exposure to DES in utero may have also been associated with risk of breast cancer, however longer-term follow-up of the women in these cohorts has shown no association between exposure to DES in utero and risk of breast cancer.

Lifestyle factors

There is convincing evidence that higher adiposity across adulthood and during the postmenopausal period is associated with an increased risk of postmenopausal breast cancer, but body fatness in young adulthood and during the premenopausal period is

probably protective for premenopausal breast cancer. It is suggested that higher levels of oestrogen associated with adiposity act differentially before and after menopause. Measures of adiposity positively associated with postmenopausal breast cancer risk include body mass index (BMI), waist circumference and waist-to-hip ratio. Use of MHT may mitigate the effects of breast cancer risk associated with adiposity, although findings are inconsistent.

There are methodological limitations in studies regarding the effect of weight loss on breast cancer risk.

Higher levels of most types of physical activity, including walking, household activities, occupational activities and vigorous physical activities such as running or fast cycling, are probably associated with a decreased risk of breast cancer.

There is convincing evidence that alcohol consumption is associated with increased risk of breast cancer in a dose-response manner with no threshold for increased risk. That is, there are no safe levels of daily drinking with respect to risk of breast cancer. The association may only be for oestrogen–receptor positive (ER+) breast cancer.

A large range of dietary factors have been investigated with respect to increased or decreased risk of breast cancer. The evidence from the many possible exposures have been considered at length by the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR),^{10, 11} and a group of these exposures were considered within this review. Establishing an association between dietary factors and risk of cancer is challenging due to often self-reported measures of exposure, changing dietary intakes and patterns over time, time lags between exposure and outcome and the need to account for numerous confounders, including other aspects of diet and other lifestyle factors, such as physical activity and alcohol consumption. Nevertheless, there is suggestive evidence that dietary calcium [but not supplemental calcium], dairy, non-starchy vegetables (for oestrogen-receptor negative [ER–] breast cancer), and foods high in carotenoids, are protective factors and that processed meat is a risk factor, for breast cancer.

The evidence is inconclusive of an association between intakes of red meat, fat, glycaemic index, glycaemic load, total energy, or sugar, and risk of breast cancer, although most studies show no association. A recent large cohort study in Australia provides evidence of a suggestive positive association between intake of sugary drinks and risk of breast cancer. There are possible associations with dietary fibre and risk of postmenopausal breast cancer and for soluble but not insoluble fibre intake but the evidence is still inconclusive. Recent long-term follow-up of a large cohort showed that higher levels of fruit intake may be associated with decreased risk of ER– breast cancer, however the body of evidence is inconclusive.

As phytoestrogens, including soy and soy products, have structural similarities to oestrogens it has been suggested that they may be associated with an increased risk of breast cancer. However phytoestrogens have been shown to bind only weakly to oestrogen receptors and to also have anti-oestrogenic effects. The evidence is inconclusive, with studies generally showing a lack of effect, with risk estimates close to unity and no evidence of a doseresponse.

There is suggestive evidence of a positive association between tobacco smoking and risk of breast cancer. The evidence is stronger for starting smoking at a younger age or before first

birth being associated with an increased risk. Inconsistent findings regarding a dose-response effect limit a stronger classification.

Studies examining an effect of environmental tobacco smoke, or 'passive smoking', on risk of breast cancer are limited methodologically, especially with respect to measuring exposure, therefore the evidence is inconclusive.

Various aspects of bra wearing have been considered in a number of poor quality studies which have shown no association with risk of breast cancer and there is a lack of biological plausibility to any association.

The evidence regarding shift work involving disruption to the circadian rhythm is suggestive and is limited by the measurement of different exposures and confounding variables. The evidence is strongest for a possible association between a long duration of night shift work over 20 years or more, or after shorter periods involving many consecutive shifts, and increased risk of breast cancer.

Medical factors

The evidence is inconclusive regarding regular use of aspirin and risk of breast cancer although stronger quality cohort studies do not show an association. There is suggestive evidence that use of cardiac glycosides from the plant genus *digitalis*, predominantly digoxin, is associated with an increased risk of breast cancer.

There is suggestive evidence that having had a previous cancer other than breast cancer is associated with an increased risk of breast cancer, as per familial history of other cancers, and this is related to common genetic factors, and environmental and lifestyle factors, as per familial history of other cancers.

The evidence for any association between Human Papillomavirus (HPV) and risk of breast cancer is inconclusive due to poor quality evidence. Having had an hysterectomy is possibly protective but the evidence is inconsistent and therefore classified as 'Inconclusive'. Having type 2 diabetes is unlikely to be associated with risk of breast cancer although the evidence is confounded by factors such as adiposity and diet, and is therefore also classidied as 'Inconclusive'.

Stress is unlikely to be associated with risk of breast cancer—higher quality studies have not shown an association, although studies are limited methodologically—as is 'trauma to the breast' for which there is a lack of biological plausibility, although the evidence is also methodologically poor. Both exposures are therefore classified as 'Inconclusive'.

There is good quality, consistent evidence indicating that pregnancy termination is not associated with risk of breast cancer. The evidence is inconclusive regarding an association between breast implants and risk of breast cancer. The evidence is methodologically limited and suggests a decreased rather than increased, if any, association with risk of breast cancer. There is convincing evidence, though, that textured breast implants are associated with a very small increased risk of a rare lymphoma—anaplastic large cell lymphoma.

Chemical exposures

There are only a small number of studies for exposure to Bisphenol A (BPA) and risk of breast cancer, and no studies in humans for risk of exposure to parabens and risk of breast cancer, therefore the evidence for these two factors is classified as inconclusive. For DDT exposure there are large numbers of studies which consistently show no association hence the classification of 'Evidence of no association', although exposure to DDT in early life is understudied. The evidence for occupational exposure to ethylene oxide is inconclusive.

The biological plausibility of an association between polychlorinated biphenyls (PCBs) and risk of breast cancer is higher than for BPA and parabens, and the epidemiologicl studies are indicative of a positive association but the evidence is still limited, and therefore the classification 'Inconclusive'.

Exposure to hair dyes and other hair chemicals such a chemical relaxers/straighteners has been considered in terms of personal use and in occupational use. Although the evidence is classified as 'Inconclusive' due to inconsistent findings and study methodoligcal limitations, any positive associations have been observed only in some case–control studies and no associations have been observed in more robust prospective cohort studies.

Radiation

The evidence is classified as inconclusive for any association between exposure to sources of electromagnetic radiation and risk of breast cancer as there are very few, if any, good quality studies. A limited number of studies have found no association between use of mobile phones and risk of breast cancer.

An observed higher incidence of breast cancer among air crew/flight attendants is unlikely to be due to higher exposure to cosmic radiation but there was only one study which specifically examined risk due to this exposure and the classification is inconclusive.

The evidence for an association between sun exposure and risk of breast cancer is inconclusive although no association has been observed in ecological studies. A hypothesised protective effect of sun exposure on risk of breast cancer through a vitamin D mechanism has been observed in some studies.

Although there is convincing evidence that exposure to high doses of ionising radiation through radiotherapy for cancers other than breast cancer is associated with an increased risk of breast cancer, the benefits outweigh any risks and risks are reduced by treating as small an area of the body as possible. There is no epidemiological evidence to show that exposure to low dose ionising radiation, including via mammography, is associated with risk of breast cancer, hence the evidence is classified as inconclusive.

Appendix A Acknowledgements

Cancer Australia wishes to acknowledge the many members of the Expert Reference Group and other External experts who have generously contributed their time and expertise to the development of this report.

Members of the Expert Reference Group

Professor David Whiteman (Chair)	Deputy Director and Group Leader, Cancer Control, QIMR Berghofer Medical Research Institute, QLD
Mrs Barbara Daniels	Consumer Health Forum representative, WA
Dr James G. Dowty	Senior Research Fellow, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, VIC
Professor Jon Emery	Herman Professor of Primary Care Cancer Research, Director of PC4, NHMRC Practitioner Fellow for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC
A/Professor Louise A. Keogh	Gender and Women's Health, Centre for Health Equity, Melbourne School of Population and Global Health, University of Melbourne, VIC
Dr Maarit Laaksonen	Senior Research Fellow, Cancer Epidemiology Research Unit, Centre for Big Data Research in Health, University of New South Wales, NSW
Dr Elizabeth Marles	Senior Staff Specialist, General Practice and Director, Hornsby–Brooklyn GP Unit, NSW
Ms Jebby Phillips	Health Consumers New South Wales representative, NSW
Professor Bernard W. Stewart	Head, Cancer Control Program, South Eastern Sydney Public Health Unit, NSW

Other External Experts

A/Professor Connie Johnson	Breast Cancer Research Laboratory, Garvan Institute of Medical Research. St Vincent's Clinical School, Faculty of Medicine, UNSW Australia
A/Professor Judy Kirk	Clinical geneticist, Familial Cancer Service, Crown Princess Mary Cancer Centre, Westmead Hospital, NSW
Dr Elgene Lim	Laboratory Head & Senior Medical Oncologist National Breast Cancer Foundation Endowed Chair
Professor David Roder	Cancer Epidemiologist; Chair of Cancer Epidemiology and Population Health,University of South Australia
A/Professor Kathy Tucker	Cancer Genetic Specialist, Hereditary Cancer Clinic, Nelune Comprehensive Cancer Centre, NSW

Appendix B IARC and WCRF/AICR classifications

International Agency for Research on Cancer

The International Agency for Research on Cancer (IARC) is an agency of the World Health Organization (WHO). The IARC classifies agents to which humans may be exposed, based on the strength of the scientific evidence of their potential as human cancer hazards. Each IARC monograph includes the following sections: exposure data, studies of cancer in humans, studies of cancer in experimental animals, mechanistic and other relevant data, summary, evaluation and rationale.

IARC uses standard terms to evaluate the strength of the evidence for carcinogenicity arising from human and experimental animal data. It also examines the strength of the mechanistic evidence. The evaluation categories refer only to the strength of the evidence that an exposure is carcinogenic and not to the extent of its carcinogenic activity (potency). Importantly, risk may not be present at everyday levels of exposure. The IARC monographs identify cancer hazards even when risks are very low at current exposure levels, because new or unforeseen exposures could engender risks that are significantly higher.

IARC applies specific terms to the human and experimental animal evidence, and to the overall evaluation. See details of the methods and evaluation criteria that the IARC uses, at http://monographs.iarc.fr/ENG/Preamble/CurrentPreamble.pdf. The various evaluation categories are summarised in Table C.1 (Appendix C).

For human epidemiologic evidence, in some instances, the categories may be used to classify the degree of evidence related to carcinogenicity in specific organs or tissues, such as breast tissue. In this report, although consideration is given to the overall carcinogenicity of an agent to humans if it has been considered in relation to breast cancer also, the classification as an overall carcinogen is of much less interest than the human epidemiological evidence specific to breast cancer.

In relation to breast cancer specifically, the 'List of classifications by cancer sites with sufficient or limited evidence in humans, volumes 1 to 122' indicates the following:

- Carcinogenic agents with sufficient evidence in humans:
 - Alcoholic beverages
 - o Diethylstilboestrol
 - Oestrogen-progestogen contraceptives
 - o Oestrogen-progestogen menopausal therapy
 - X-radiation, gamma-radiation
- Agents with limited evidence in humans:
 - o Dieldrin
 - o Digoxin
 - Oestrogen-only menopausal therapy
 - Ehtylene oxide
 - Polychlorinated biphenyls
 - Shift work that involves circadian disruption
 - Tobacco smoking.

IARC monographs can be found at https://monographs.iarc.fr/

World Cancer Research Fund/American Institute for Cancer Research

The World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Continuous Update Project (CUP) is a rigorous, systematic and ongoing program to present, analyse and judge the global research on how diet, nutrition and physical activity affect cancer risk and survival, and to make cancer prevention recommendations. The first and second expert reports on cancers overall were published in 1997 and 2007. Specific reports on breast cancer were published in 2010 and 2017, with the latter updated in 2018 as part of the Third Expert Report.

The WCRF/AICR makes recommendations based on independently conducted systematic reviews of epidemiological evidence, supported by experimental evidence from human and animal studies. It also considers plausible biological mechanisms and dose-response relationships in making judgements about causality. An expert panel judges and classifies the evidence as convincing, probable, limited or unlikely to affect cancer risk. Details of the judgement process and criteria can be found at

https://www.wcrf.org/dietandcancer/judging-evidence. The grading criteria are summarised in Appendix C, Table C.2.

The main reports in relation to diet, nutrition, physical activity and risk of breast cancer are:

- Diet, nutrition, physical activity and cancer: a global perspective (World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Expert Report 2018. Diet, nutrition, physical activity and breast cancer). Available at dietandcancerreport.org
- The associations between food, nutrition and physical activity and the risk of breast cancer (World Cancer Research Fund International Systematic Literature Review: the Associations between Food, Nutrition and Physical Activity and The Risk of Breast Cancer 2017). Available at https://www.wcrf.org/sites/default/files/breast-cancer-slr.pdf)
- Food, nutrition, physical activity and the prevention of breast cancer (World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Report. Food, Nutrition, Physical Activity and the Prevention of Breast Cancer. 2010). Available at https://www.wcrf.org/sites/default/files/Breast-Cancer-2010-Report.pdf
- Resources and toolkits (World Cancer Research Fund/ American Institute for Cancer Research). Available at https://www.wcrf.org/dietandcancer/resources-and-toolkit

Appendix C IARC and WCRF/AICR categories of evidence and criteria for grading carcinogenicity

Table C.1 International Agency for Research on Cancer (2015): Categories of evidence of carcinogenicity

Overall carcinogenicity

IARC considers the body of evidence from studies in humans (across cancer sites) as well as in experimental animal studies and from mechanistic and other relevant data, to reach an overall evaluation of the carcinogenicity of the agent to humans.

Group 1—carcinogenic to humans. This category is used when there is sufficient evidence of carcinogenicity in humans. Exceptionally: with less than sufficient evidence of carcinogenicity in humans but with sufficient evidence of carcinogenicity in experimental animals and strong evidence in exposed humans of a relevant mechanism of carcinogenicity.

Group 2A—probably carcinogenic to humans. Limited evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in experimental animals. In some cases: inadequate evidence of carcinogenicity in humans, sufficient in animals, and strong evidence of mechanism in humans. Exceptionally: limited evidence of carcinogenicity in humans provides the sole basis for classification.

Group 2B—possibly carcinogenic to humans. Limited evidence of carcinogenicity in humans and less than sufficient evidence of carcinogenicity in experimental animals. In some cases: inadequate evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in experimental animals. In some instances: inadequate evidence of carcinogenicity in humans and less than sufficient evidence of carcinogenicity in experimental animals. In some instances: inadequate evidence of carcinogenicity in humans and less than sufficient evidence of carcinogenicity in experimental animals and supporting evidence from mechanistic and other relevant data. In some cases there may only be strong evidence from mechanistic and other relevant data.

Group 3—not classifiable as to its carcinogenicity to humans. Inadequate evidence of carcinogenicity in humans and inadequate or limited evidence of carcinogenicity in experimental animals. Exceptionally: inadequate evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in experimental studies and strong evidence that the mechanism of carcinogenicity in experimental animals does not operate in humans. Agents that do not fall into any other group are also placed in this category.

Group 4—probably not carcinogenic to humans. Evidence suggesting lack of carcinogenicity in humans and experimental animals. A conclusion of evidence suggesting lack of carcinogenicity is inevitably limited to the cancer sites, conditions and levels of exposure, and length of observation covered by the available studies. In addition, the possibility of a very small risk at the levels of exposure studied can never be excluded.

Evidence in humans

The evidence relevant to carcinogenicity of agents from studies in humans is classified into four categories by the IARC working group.^{xvii} In some instances, the categories are used to classify the degree of evidence related to carcinogenicity in specific organs or tissues, such as breast cancer.

Sufficient evidence of carcinogenicity. The working group considers that a causal relationship has been established between exposure to the agent and human cancer. That is, a positive relationship has been observed between the exposure and cancer in studies in which chance, bias and confounding could be ruled out with reasonable confidence. A statement that there is sufficient evidence is followed by a separate sentence that identifies the target organ(s) or tissue(s) where an increased risk of cancer was observed in humans. Identification of a specific target organ or tissue does not preclude the possibility that the agent may cause cancer at other sites.

Limited evidence of carcinogenicity. A positive association has been observed between exposure to the agent and cancer for which a causal interpretation is considered by the working group to be credible, but chance, bias or confounding could not be ruled out with reasonable confidence.

Inadequate evidence of carcinogenicity. The available studies are of insufficient quality, consistency or statistical power to permit a conclusion regarding the presence or absence of a causal association between exposure and cancer, or no data on cancer in humans are available.

Evidence suggesting lack of carcinogenicity. There are several adequate studies covering the full range of levels of exposure that humans are known to encounter, which are mutually consistent in not showing a positive association between exposure to the agent and any studied cancer at any observed level of exposure.

Source: International Agency for Research on Cancer/World Health Organization. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Preamble. Lyon, France; 2015.⁷⁰⁰

x^{vii} Note that IARC also uses the same labels (i.e. sufficient, limited, inadequate, lack of) for classifying the evidence from experimental animal studies.

Table C.2 World Cancer Research Fund/American Institute for Cancer Research (2018): Criteria for grading evidence for cancer prevention

	Overall evidence strong enough to justify goals and recommendations to reduce cancer incidence
Strong—Convincing	 Causal relationship highly unlikely to be modified by new evidence in foreseeable future. Generally required: Evidence from more than one study type and at least two independent cohort studies No substantial unexplained heterogeneity within or between study types or in different populations regarding presence or absence of association, or direction of effect Good quality studies to confidently exclude the possibility that the observed association results from random or systematic error, including confounding, measurement error, and selection bias Presence of a plausible biological gradient ('dose-response') in the association (gradient need not be linear or in same direction across different levels of exposure, so long as this can be explained plausibly) Strong and plausible experimental evidence, either from human studies or relevant animal models, that typical human exposures can lead to relevant cancer outcomes
Strong—Probable	 Overall evidence strong enough to justify goals and recommendations to reduce cancer incidence, but not as strong as convincing category Generally required: Evidence from at least two independent cohort studies/at least five case-control studies No substantial unexplained heterogeneity between or within study types in the presence or absence of an association, or direction of effect Good quality studies to confidently exclude the possibility that the observed association results from random or systematic error, including confounding, measurement error, and selection bias
Limited—Suggestive	 Overall evidence too limited for probable or convincing causal judgement, but suggesting direction of effect Evidence methodologically flawed or limited in amount, but generally showing a consistent direction of effect Recommendations to reduce cancer incidence rarely justified Generally required: Evidence from at least two independent cohort studies/at least five case-control studies Direction of effect is generally consistent, although some unexplained heterogeneity may be present Evidence for biological plausibility
Limited—No conclusion	Evidence is so limited that no firm conclusion can be made This category represents an entry level and is intended to allow any exposure for which there are sufficient data to warrant Panel consideration, but where

	insufficient evidence exists to permit a more definitive grading. This does not necessarily mean a limited quantity of evidence. The evidence might be limited by the amount of evidence in terms of the number of studies available, by inconsistency of direction of effect, by poor quality of studies (for example, lack of adjustment for known confounders), or by any combination of these factors.					
Strong—Substantial effect on risk unlikely	 Evidence is strong enough to support a judgement that a particular exposure is unlikely to have a substantial causal relation to a cancer outcome. The evidence should be robust enough to be unlikely to be modified in the foreseeable future as new evidence accumulates. All of the following were generally required: Evidence from more than one study type Evidence from at least two independent cohort studies Summary estimate close to 1.0 for comparison of high versus low exposure categories No substantial unexplained heterogeneity within or between study types or in different populations Good quality studies to exclude, with confidence, the possibility that the absence of an observed association results from random or systematic error, including inadequate power, imprecision or error in exposure measurement, inadequate range of exposure, confounding, and selection bias Absence of strong and plausible experimental evidence, either from human studies or relevant animal models, that typical human exposures lead to relevant cancer outcomes 					

Source: World Cancer Research Fund, American Institute for Cancer Research. Continuous Update Project Expert Report 2018. Judging the evidence. Available at www.wcrf.org/sites/default/files/judging-the-evidence.pdf. 2018. (2018)¹³

Appendix D Data tables

Personal characteristics

Table D.1 Birthweight and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
WCRF, 2017 ¹⁰	16 cohort studies	>3,135 cases	Birthweight Dose response	Premenopausal breast cancer	RR=1.05 (1.02–1.09); p<0.05; l²=0%, p(heter)=0.846	Model: NR
Studies published to 2014	14 cohort studies	>17,981 cases	(per 500 g)	Postmenopausal breast cancer	RR=1.00 (0.98–1.02); l²=0%, p(heter)=0.48	Adjustments: Not all studies adjusted for age, alcohol intake, reproductive
Denmark, Europe, Sweden & USA						factors, and adult BMI Limitations: NR
Cohort studies						
Dartois et al., 201644	E3N-EPIC cohort	67,634 women	Birthweight	Premenopausal		Multivariate Cox proportional
	Cohort dates:		<2.5 kg	breast cancer	HR=1 (referent)	hazards regression model†
France	Retrospective study	497 premenopausal	2.5–4 kg		HR=1.72 (1.01–2.95)	Limitations.
	Age at enrolment:	Age at enrolment:	≥4 kg		HR=1.99 (1.05-3.76)	Low number of premenopaus
	42–72 y	3,138	<2.5 kg	Postmenopausal	HR=1 (referent)	breast cancer cases
	Follow–up: 15 y	postmenopausal	2.5–4 kg	breast cancer	HR=1.13 (0.96–1.33)	
		casos	≥4 kg		HR=1.03 (0.82-1.29)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Sandvei et al., 2015 ⁴⁶	St. Olav's University Hospital & Central Person Registry	22,931 women 870 cases	Birthweight (per 500 g)	Breast cancer	HR=1.02 (0.95-1.10)	Cox regression model
Norway	Cohort dates:	Median age at diagnosis: 54 y				Age, length of gestation, socioeconomic status,
	1961-2012	318 cases <50 y	Dose response (per 500 g)	Premenopausal breast cancer	HR=1.03 (0.91–1.16); p-trend=0.666	maternal age and birth order
	1920-1966		3–3.499 kg	-	HR=1 (referent)	Limitations:
			<3 kg		HR=0.9 (0.6–1.4)	gestational age in the birth
	Prospective study		3.5–3.999 kg		HR=1.1 (0.9-1.4)	records
	Age at enrolment:		≥4 kg		HR=1.0 (0.7–1.4); p-trend=0.536	
	NK	552 cases ≥50 y	Dose response (per 500 g)	Postmenopausal breast cancer	HR=1.02 (0.93–1.11); p-trend=0.738	
	51 y	il y	3–3.499 kg		HR=1 (referent)	
			<3 kg		HR=1.2 (0.9–1.5)	
			3.5–3.999 kg		HR=1.2 (1.0-1.5)	
			≥4 kg		HR=1.0 (0.8–1.4); p-trend=0.948	
Xue et al., 201645	 ⁴⁵ Nurses' Health 116,43 Study II preme Prospective study partic Cohort dates: 1991–2009 1,574 Age at baseline: preme 25–42 v cases 	116,430	Birthweight	Premenopausal		Multivariate Cox regression
USA		premenopausal participants 3.9+ kg 3.2-3.8 kg 2.5-3.1 kg premenopausal cases <	breast cancer	HR=1 (referent) HR=0.83 (0.71–0.96) HR=0.75 (0.64–0.89) HR=0.74 (0.58–0.94) p-trend<0.001	models¶ Limitations: Restriction to premenopausal women	
	Follow up: 1,133,893 person-y					Likely misclassification due to recall

Note: Risk estimates are presented with 95% confidence intervals.

Abbreviations: AICR, American Institute for Cancer Research; BMI, body mass index; E3N–EPIC cohort, Etude Epidémiologique auprès des femmes de la Mutuelle Generale de l'Education Nationale; FFTP, first full term pregnancy; g, grams; HR, hazard ratio; kg, kilograms; MET, metabolic equivalents; p, p–value; p–trend, p–value for trend; RR, relative risk or risk estimate; USA, United States of America; UVRd, ultraviolet radiation doses; WCRF, World Cancer Research Fund; y, year/s.

†Adjusted for age (as the time scale), first-degree family history of breast cancer, level of education, height at adulthood, history of benign breast diseases, age at menarche, birth weight, age at menopause (for postmenopausal women only), tobacco smoking, number of children and age at FFTP, physical activity level, body shape at menarche, breastfeeding, dietary pattern, alcohol consumption, vitamin D intake and UVRd, oral contraceptives or progesterone alone use, body mass index and menopausal hormone therapy use (for postmenopausal women only).

¶Adjusted for age (continuous), premature birth (<38, >38 weeks) and birthweight (except in the analysis of birthweight), family history of breast cancer (yes, no), history of benign breast disease (yes, no), age at menarche (10, 11, 12, 13, 14, 15 y), interaction between parity (0, 1, 2, 3, 4, 5) and age at first birth (<24, 25–30, >30 y) with nulliparous women as reference, use of oral contraceptives (never, past and <5 y, past and >5 y, current and <5 y, current and 5–9 y, current and >10 y), alcohol consumption (never, <7.5, 7.5–14, 15–29, >30 g/day), physical activity (<3, 4–8, 9–17, 18–26, 27–41, 42 MET/day) and body fatness factors earlier in life (somatotype or BMI). Since somatotype at age 5 and somatotype at age 10 were highly correlated (Spearman correlation coefficient=0.81), these two factors were not adjusted for each other when one of the factors was assessed as the main exposure of interest.

Table D.2Height and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
WCRF, 2017 ¹⁰ Studies published to	26 studies for premenopausal breast cancer	6,479 premenopausal cases	Height Dose response (per 5 cm)	Premenopausal breast cancer		Random effects model Adjustments:
2014	33 studies for	3 studies for Age: 15–81 y	Overall		RR=1.06 (1.02–1.11); l²=45.8%, p(heter)=0.021	Age, alcohol intake & reproductive factors
Asia, Europe &	postmenopausal breast cancer		Adjusted studies		RR=1.07 (1.03-1.12)	
North America			Europe	-	RR=1.04 (0.99-1.09); I ² =27%	No publication bias (p=0.11)
			North America		RR=1.08 (1.03-1.12); I2=0%	Limitations ND
			Asia		RR=1.20 (1.04–1.37); I ² =26%	
		24,975 postmenopausal	Overall	Postmenopausal breast cancer	RR=1.09 (1.07–1.11); l²=32.8%, p(heter)=0.079	_
		cases Age: 15–81 y	Adjusted studies	RR=1.08 (1.06–1.10) RR=1.10 (1.08–1.12); I ² =5%		
			Europe		RR=1.10 (1.08–1.12); I ² =5%	_
			North America		RR=1.06 (1.04–1.08); I ² =0%	
			Asia		RR=1.13 (0.93–1.38); I ² =68%	
Zhang et al., 2015 ⁴⁷ Studies published to 2014	159 prospective cohort studies from the BCAC, Discovery Biology & Risk of Inherited	5,216,302 women 113,178 cases Ethnicity: European	Height Dose response (per 10 cm)	Breast cancer	RR=1.17 (1.15–1.19); l²=61%, p(heter)<0.001	Random effects model Adjustments: No adjustment for nutritional and social factors, such as
Australia, Canada, Ca Denmark, Iceland, Netherlands, Norway, Sweden,	Cancer Project	15,439 premenopausal cases	-	Premenopausal breast cancer	RR=1.16 (1.12–1.21); p<0.001	 energy intake and social status, and personal factors such as timing of puberty since they were not reported
UK & USA		63,606 postmenopausal cases		Postmenopausal breast cancer	RR=1.17 (1.14–1.21); p<0.001	No publication bias (p=0.33)

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		7,947 ER+ cases		ER+	RR=1.18 (1.13-1.23); p<0.001	
		1,845 ER– cases		ER–	RR=1.00 (0.87-1.14)	Limitations:
		5,176 PR+ cases		PR+	RR=1.16 (1.10-1.22); p<0.001	after cancer diagnosis in case-
		1,640 PR- cases		PR-	RR=1.11 (1.02-1.20); p=0.01	control studies from BCAC,
		5,176 ER+PR+ cases		ER+PR+	RR=1.16 (1.10-1.22); p<0.001	risk estimates for the
		1,302 ER-PR- cases		ER-PR-	RR=1.08 (0.99-1.18)	association between adult height and breast cancer risk
Cohort studies						
Horn–Ross et al.,	California Teachers	46,822	Height at age 18	Premenopausal ER+		Multivariable Cox proportional
201650	study conort	women	<65 inches	breast cancer	HR=1 (referent)	nazaras model 149
USA	Recruitment date: 1995–1996	248 ER+ cases	65–66 inches		HR=1.10 (0.86–1.42)	Limitations: Collapsing subgroups based on small numbers of cases may have masked some
	End of follow–up: 31 December 2011	Median age: 41y 36.977	Height at age 18	Postmenopausal ER+		associations and reduced
		postmenopausal	(current HT use)	breast cancer		erroneous patterns
	Age at enrolment:	women using HT	<65 inches		HR=1 (referent)	Only 16 body-size phenotypes
	Νκ Follow–up: 10 y Λ	1,219 ER+ cases Median age: 57 y	≥67 inches		HR=1.19 (1.05–1.36)	included in analysis. Available data limited evaluation at several specific points in time only
		21,788 postmenopausal women not using HT 1,056 ER+ cases	Height at age 18 (no HT use) <65 inches 65–66 inches		HR=1 (referent) HR=1.20 (1.06–1.35)	Data on menopausal status and HT use were updated only at 5-year and 10-year follow- up and has some built-in imprecision
		Median age: 64 y				Anthropometric data were self-reported and can result in measurement error

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments	
Nitta et al., 2016 ⁵¹	Japan Collaborative	9,367 premenopausal	Adult attained Height	Premenopausal breast cancer		Multivariable–adjusted analysis with Cox model	
Japan	Cohort study	women	<149 cm		HR=1 (referent)		
	Cohort dates: 8 1988-2009	0.4	149–152.9 cm		HR=0.94 (0.37–2.36) Adjustments:	Adjustments:	
		es: 84 cases	153–156.9 cm		HR=1.44 (0.61-3.36)	Age at baseline survey, age at menarche, number of live births and age at first delivery	
			≥157 cm		HR=1.16 (0.48–2.80); p-trend=0.476		
	40–79 y	29,243	<149 cm	Postmenopausal	HR=1 (referent)	Limitations:	
	Mean incidence survey follow–up: 13 y	postmenopausal Mean incidence women	postmenopausal	149–152.9 cm	breast cancer	HR=1.13 (0.67-1.91)	Possible misclassification of
			153–156.9 cm		HR=1.27 (0.74–2.20) menopaus	menopausal status	
		189 cases	≥157 cm		HR=1.51 (0.83–2.74); p-trend=0.165	Self-reported information at baseline	

Note: Risk estimates are presented with 95% confidence intervals.

Abbreviations: AICR, American Institute for Cancer Research; BCAC, Breast Cancer Association Consortium; cm, centimetre; ER+/–, oestrogen receptor positive/negative; HR, hazard ratio; HT, hormone therapy; p, p-value; p(heter), p-value for the measure of heterogeneity; p-trend, p-value for trend; PR+/–, progesterone receptor positive/negative; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; WCRF, World Cancer Research Fund; y, year/s.

†Premenopausal adjusted for history of benign breast disease and family history of breast cancer in a first-degree relative; age was the time metric and the model was stratified by age at baseline.

‡Postmenopausal with current HT use adjusted for nulliparity and age at first full-term pregnancy, history of benign breast disease, family history of breast cancer in a first-degree relative, average alcohol consumption in the year prior to baseline, and neighborhood socioeconomic status; age was the time metric and the model was stratified by age at baseline.

§Postmenopausal not using HT adjusted for age at menarche, nulliparity and age at first full term pregnancy, history of benign breast disease, family history of breast cancer in a first-degree relative, and consumption of a plant-based diet; age was the time metric and the model was stratified by age at baseline.

Table D.3 Having been breastfed and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Wise & Titus, 201352				Breast cancer	RR=0.94 (0.89–0.99); l ² =37.6%, p=0.070	
Studies published to	15 studies					
2011	3 cohort studies			Premenopausal	RR=0.88 (0.78–0.98); I ² = 53.9%,	Inverse-variance fixed effects model
Countries: NR	10 case–control studies	Number of participants: NR	Ever breastfed as an	breast cancer	p=0.069	Adjustments: NR
			infant			Publication bias: NR
	1 cross-sectional study			Postmenopausal breast cancer	RR=0.98 (0.91–1.05); l²=18.4%, p=0.298	Limitations: NR
	1 case series					
Cohort studies						
Cairns et al., 2014 ⁷⁰¹	National breast					
Published as conference	screening programmes of England & Scotland					Cox regression model
absiraci	cohort	560,879 women				Adjustments:
UK	Prospective	48,610 incident	Having been	Overall cancer	RR=1.02 (0.99-1.05)	Age and 14 other known
	Cohort dates: 1996–2001	invasive cancers	breastfed			cancer risk factors
	Mean age: 60y					Limitations: NR
	Follow-up:					
	9.3 y					
Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
---------------------------------------	--	-------------------------------------	--------------------------	--------------------------------	---------------------	---
Martin et al., 2005 ⁵³	Boyd Orr cohort					Cox proportional hazard model Adjustments:
Britain	Cohort dates: 1937–2003	3,844 participants: 1,883 males				Current age, childhood socioeconomic factors and stratified by survey district
	Prospective study	1,961 females	Ever breastfed	Breast cancer	HR=1.62 (0.89-2.94)	Limitations:
	Age at enrolment: 0–19 y	74 cases				Participants were born between 1874 and 1939
	Follow-up: 1948–2003					No information on timing of breastfeeding initiation
						Confounding
Michels et al., 2001 ⁵⁴	Nurses' Health			Premenopausal breast cancer	OR=0.97 (0.78-1.20)	Pooled logistic regression
USA	Study conort (1992– 1997)					Adjustments: Age, year of birth, premature
	Nurses' Health Study II cohort (1991–1997)	121,700 female registered nurses				of breast cancer, history of benign breast disease, height, body mass index at age 18 years, weight change since
	Enrolment: 1976 (NHS) and 1989 (NHSII)	116,671 female registered nurses	Having been breastfed	Postmenopausal	OR=1.12 (0.92–1.37)	age 18 years, age at menarche, parity, age at first child's birth, total caloric intake, and alcohol
	Age at enrolment: 30–55 v (NHS).	(NHS II)		breast cancer		consumption
	25–42 y (NHS II)	1,073 cases				Limitations: Misclassification of duration of
	Prospective study					breastfeeding Confounding from generational differences in
	Follow–up: 695,655 person–y					infant feeding practices associated with socioeconomic status

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Case-control studies						
Wise et al., 200955	Population-based	9,442 women	Breastfed			Unconditional logistic regression
			All women	Invasive & in situ		model†
USA	Study duration:	4,911 cases	Not breastfed	breast cancer	OR=1.0 (referent)	
	1997-2001	4,531 controls	Breastfed		OR=0.99 (0.90-1.08)	Limitations: Inability to validate
	Age at recruitment:		Not breastfed	Premenopausal	OR=1.0 (referent)	breastfeeding reports
	20-74 y		Breastfed	breast cancer	OR=0.96 (0.83-1.11)	
			Not breastfed		OR=1.0 (referent)	Possible non–differential (random) misclassification
			Breastfed	Postmenopausal breast cancer	OR=0.98 (0.87-1.10)	Recall bias

Abbreviations: HR, hazard ratio; NHS, Nurses' Health Study; NHSII, Nurses' Health Study II; NR, not reported; OR, odds ratio; p, p-value; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; y, year/s.

*Adjusted for age, year of survey, referral base (from screening, others), area of residence, drinking, history of breast cancer in mother and sisters, occupation (professional or clerical), breastfeeding of subjects' own offspring, exogenous female hormone use, body mass index and menopausal status.

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Bae & Kim., 201672	6 studies 1 cohort study	2,157 cases in total	Increased mammographic	Postmenopausal breast cancer		Random effects dose-response meta-regression model
Publications up to 2015	5 case-control studies	26,944 controls in total	breast density Dose response (per 25% increase in		RR=1.73 (1.20–2.47); p(heter)=0.35	Adjustments: NR Publication bias: NR
Japan	RR derived from 3 case–control studies	RR derived from: 351 cases 882 controls Ethnicity: Asian	percent density)			Limitations: An overall ES reflecting information from all 6 articles was not calculated due to breast density index variations
						The subgroup analysis was performed imperfectly
						The analysis of premenopausal women was insufficient for DRMR
Pettersson et al., 2014 ⁵⁶	13 case–control studies		Increased mammographic broast depoity (one			Random effects model
Studies conducted 1980–2011 Australia, Canada,	Studies conducted 1980–2011 11 studies contributed to premenopausal Australia, Canada, breast cancer	1,776 cases 2,834 controls	standard deviation increases in the mammographic density phenotypes)	Premenopausal breast cancer		Adjustments: Age, BMI & parity (in postmenopausal breast cancer summary estimates did not change after additional
Netherlands, Singapore Sweden			Absolute NDA		OR=0.78 (0.71-0.86); p(heter)=0.2 OR=1.37 (1.29, 1.47); p(heter)=0.5	adjustment for MHT use)
UK & USA	12 studies contributed to postmenopausal		Absolute PDA		OR=1.52 (1.39–1.66); p(heter)=0.27	Publication bias: NR
	breast cancer	6,643 cases	Absolute NDA	Postmenopausal	OR=0.79 (0.73-0.85); p(heter)=<0.01	Limitations: Unable to determine the extent to which differences across
		11,187 controls	Absolute DA	- breast cancer	OR=1.38 (1.31–1.44);	studies in the associations

Table D.4 Mammographic breast density and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
					p(heter)=0.15 OR=1.53(1.44-1.64)	between the mammographic density phenotypes and breast cancer risk were explained by
			Absolute PDA		p(heter)=0.01	study differences in exposure to other factors
McCormack & dos Santos Silva., 2006 ⁷¹	42 case–control & cohort studies:		Mammographic breast density	Breast cancer		
	17 prospective	14,134 cases in total	<5%		RR=1 (referent)	Random effects model
Studies published 1976–2005	studies 17 case–control	226,871 non-cases	5–24%		RR= 1.79 (1.48–2.16); p=0.22; I ² =27%	Adjustments:
Canada, Finland,	studies 9 symptomatic		25–49%		RR= 2.11 (1.70–2.63); p=0.09; l²=46%	Individual studies adjusted for a range of factors – No effect
Israel, Italy, Japan, Netherlands, South	populations' studies	RR derived from: 4,508 cases	50–74%		RR= 2.92 (2.49–3.42); p=0.63; I²=0%	modification by age
& USA	2 studies used for BI-RADS classification RR	0,042 1101 - Cuses	≥75%		RR= 4.64 (3.64–5.91); p=0.50; I²=0%	No publication bias in studies of percentage density and breast
			Mammographic breast density (using BI–RADS classification	-		Limitations:
		1,572 cases	Fatty parenchyma		RR=1 (referent)	Unable to cinder potential
		(0.000	Scattered density		RR=2.04 (1.56–2.67); p=0.34; l2=0%	other than report findings of
		62,220 non-cases	Heterogeneously dense		RR=2.81 (2.13–3.71); p=0.46; l2=0%	individual studies
			Extremely dense		RR=4.08 (2.96–5.63); p=0.81; I ² =0%	
Cohort studies						
Moshina et al., 201861	No cohort name	107,949 women 307,015 screening	Screen-detected			Model: NR
Norway	Cohort dates: 2007–2015	examinations in total	Non-dense (VBD<7.5)		OR=1.00 (reference)	Adjustments:
	Retrospective study	Interval breast	Dense (VBD≥7.5)	Breast cancer	OR=1.37 (1.19-1.59); p<0.0001	location, and screening history
		cancer analysis:	Interval			Limitations:
	Aged 50–69 y at time of screening	96,052 women 231,998 screening	Non-dense (VBD<7.5)	-	OR=1.00 (reference)	Missing values for tumour

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	(mean 58.3 y)	examinations				characteristics and risk factors
	Follow–up: 2 y	Screen detected breast cancer: 1,791 cases 1,210 non-dense cases				Women in non-dense group differed in some characteristics other than breast density from those in dense group
		581 dense cases	Dense(VBD≥7.5)		OR=2.93 (2.16-3.97); p<0.0001	VBD determined by using non– processed images
		Interval breast cancer: 384 cases				
		199 non-dense				
		185 dense cases				
Chiu et al., 2010 ⁷³	Cohort dates: 1977–			Breast cancer	RR=1.57 (1.23-2.01)†; p<0.01	Poisson regression model
Sweden	2004	15,658 women				Adjustments:
	Prospective study	873 cases	Dense breast tissue vs non-dense breast			Age and BMI
	Age at diagnosis: 45–59 y Follow–up: 25 y		tissue			Limitations: Breast density was classified in a qualitative manner rather than a quantitative manner

Abbreviations: BI–RADS, Breast Imaging Reporting and Data System; BMI, body mass index; DA, dense area; DRMR, dose–response meta–regression; ES, effect size; MHT, menopausal hormone therapy; NDA, non–dense area; NR, not reported; OR, odds ratio; p, p–value; p(heter), p–value for the measure of heterogeneity; PDA, percent dense area; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; VBD, volumetric breast density; y, year/s. †A 95% confidence interval of 1.18–1.67 is noted in the abstract

Table D.5 Breast size and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Case-control studies	i					
Chen et al., 201475	Population-based	Postmenopausal	Bra cup size	IDC		Polytomous logistic regression
		women	А		OR=1.9 (1.0-3.6)	model
USA	Breast cancer	1,044 cases:	В		OR=1 (referent)	A -17
	alagnosea: 2000–2004		С		OR=1.0 (0.7-1.3)	Adjustments:
	2000 2004	incident cases	D or above		OR=0.9 (0.7-1.3); p-trend=0.138	reference vear, county
	Age at recruitment:		A	ILC	OR=1.8 (1.0-3.3)	
	55–74 y	469 controls	В		OR=1 (referent)	Limitations:
			С		OR=0.8 (0.6-1.1)	Self-reported data
			D or above		OR=0.9 (0.7-1.3); p-trend=0.095	

Note: Risk estimates are presented with 95% confidence intervals.

Abbreviations: BMI, body mass index; HR, hazard ratio; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; OR, odds ratio; p-trend, p-value for trend; USA, United States of America; y, year/s.

Family history and genetics

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Collaborative Group on Hormonal Factors in Breast	8 cohort studies (including NHS Iowa Women's Health,	58,209 cases 101,986 women without BC	Number of first degree (FD) relatives affected	Breast cancer (age at diagnosis)		Conditional logistic regression model
Cancer, 200176	Million Women Study)	50,713 cases 94 548 controls	No relative affected		RR=1.00 (referent)	Publication bias: NR
		6,810 cases	1 FD relative affected	All ages	RR=1.80 (1.70–1.91)	Adjustments:
1983–1999	studies with	6,998 control		<50 y	RR=2.14 (1.92–2.38)	Stratified by study, age at
	population controls			≥50 y	RR=1.65 (1.53-1.78)	number of sisters, parity and
Asia, Europe, North America, Costa	17 case-control		Relative's age at diagnosis			age at first birth
Rica, Brazil,	studies with hospital	s with hospital bls	<40y	<40 y	RR=5.7 (2.7–11.8)	Limitations: Study could not account for BRCA mutations, family history of other cancers or attained ages of all first-degree relatives
Australia, New	controls		≥60y		RR=1.4 (0.9-2.1)	
Zealand			<40y	40–49 y	RR=2.9 (1.9-4.4)	
			≥60y		RR=1.4 (1.0-2.0)	
			<40y	50–59 y	RR=2.0 (1.2–3.4)	
			≥60y		RR=1.5 (1.2-2.0)	Separate analyses of mother
			<40y	≥60 y	RR=1.4 (0.9-2.1)	and daughter could not be
			≥60y		RR=1.4 (1.2–1.7)	conducted
			2 FD relatives	All ages	RR=2.93 (2.37–3.63)	
		603 cases	affected	<50 y	RR=3.84 (2.37-6.22)	
		404 controls		≥50 y	RR=2.61 (2.03–3.34)	
			Relative's (≥1) age at diagnosis			
			<40 y	<50 y	RR=13.5 (3.4–53.9)	
			≥40 y		RR=7.8 (2.4–25.0)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		83 cases 36 controls	≥3 FD relatives affected	All ages	RR=3.90 (2.03–7.49)	
Pharoah et al., 1997 ⁷⁷	52 case-control studies	Participant details: NR	Number of FD relatives affected	Breast cancer		Model: NR
Studies published	22 cohort studies					Adjustments: NR
1935–1996	38 studies	-	1 FD relatives affected	All ages	RR=2.1 (2.0-2.2)	Publication bias: NR
Asia, Australia, Brazil, Costa Rica, Europe, Israel, New Zealand, North America & Russia	5 studies	-	Relative's age at diagnosis <50 y ≥50 y	<50 y	RR=3.3 (2.8–3.9) RR=1.8 (1.5–2.2)	Limitations: Confounding by other risk factors (e.g., age at menarche, parity, age at first
	8 studies	_	Mother affected	-	RR=2.2 (1.9–2.6)	birth, age at menopause) may
	6 studies	_	Sister affected	-	RR=3.0 (2.5–3.5)	
	5 studies	_	2 FD relatives affected	All ages	RR=3.6 (2.5–5.0)	Differential bias in the risk estimates, in that recall of
	10 studies	-	1 SD relative affected	-	RR=1.5 (1.4–1.6)	maternal history is likely to be less complete than for sister history
Cohort studies						
Beebe–Dimmer et al., 2015 ⁸²	WHI study cohort	78,171 postmenopausal	1 FD relative affected vs none affected	Postmenopausal breast cancer	HR=1.42 (1.30–1.55)	Multivariate Cox proportional hazards regression model
USA	Enrolment: 1993–1998 End of study: Aug 2009	women 3,506 cases 636 cases with first–	>1 FD relative affected vs none affected	-	HR=1.66 (1.32-2.08)	Adjustments: Age, race, benign breast disease, hormone therapy usage & hysterectomy
	Prospective	degree relative affected				Limitations: Small number of African
	Median age at enrolment: 64 y for cases & 63 y for non-cases	83 cases with >1 first-degree relative affected				American women with breast cancer in the study The reliance on self-reporting
						ine reliance en sen reporting

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Median follow–up: 132 months					of the family history of cancer
Kharazmi et al., 2014 ⁸¹	Swedish Family Cancer Database	69,248 cases	1 FD relative affected vs none affected	Breast cancer		Cox proportional hazard model
Sweden	Study duration: 1961–2008	10,040 with first– degree relative affected	Mother/sister age at diagnosis			Adjustments‡ Limitations: NR
	Prospective	Mean birth y:	Any dge <40 y >80 v		HR=1.8 (1.8–1.9) HR=2.3 (2.1–2.6) HR=1.5 (1.4–1.6)	
	Age at enrolment: 0–78 y	1972 (1932–2010)	Any age	<50 y 50–59 y 60–78 y	HR=2.13 (2.06–2.21) HR=1.8 (1.8–1.9) HR=1.6 (1.5–1.7)	
	Follow-up: 34 y (mean); 36 y (median)			,		
Colditz et al., 2012 ⁸³	The Nurses' Health Study cohort	69,805 women	Family history of breast cancer	Breast cancer		Log-incidence model
USA	Study duration:	4,327 cases 3,614 cases	No family history		RR=1.0 (referent)	Adjustments†
	1980-2006		Mother history	-		Limitations: NR
	Prospective	104 cases 331 cases	<50 y ≥50 y		RR=1.69 (1.39-2.05) RR=1.37 (1.22-1.53); p=0.06	
	Age at enrolment: 30–55 y	116 cases	Sister history <50 y	-	RR=1.66 (1.38-1.99)	
	Follow–up: 26 y	167 cases	≥50 y Mother or sister history		RR=1.52 (1.29-1.77); p=0.43	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		219 cases	<50 y		RR=1.70 (1.48-1.95)	
		467 cases	≥50 y		RR=1.40 (1.27-1.54); p=0.016	
Case-control studies						
Bevier et al., 2012 ⁷⁸	Population–wide Swedish Family	56,498 cases	Family history of breast cancer	Breast cancer		Poisson regression model
Sweden	Cancer Database	2,116,421 controls				Adjustments¶
		7,861 cases	1 FD relative affected	-	RR=1.79	
	Breast cancer diagnosis:	543 cases	2 FD relatives affected		RR=2.84	Limitations: NR
	1961–2008	64 cases	≥2 second–degree relatives affected	-	RR=1.60 (1.24–2.07); p=sig.	
	≥30 γ	198 cases	Affected maternal grandmother	-	RR=1.27 (1.09–1.47); p=sig.	
		134 cases	Affected paternal grandmother	-	RR=1.26 (1.05–1.50); p=sig.	_

Abbreviations: FD, first-degree; HR, hazard ratio; NHS, Nurses' Health Study; NR, not reported; p, p-value; RR, relative risk or risk estimate; SD, second-degree; WHI, Women's Health Initiative; UK, United Kingdom; USA, United States of America; y, year/s.

‡Adjusted for age, age at first pregnancy, number of children, calendar period, geographical region, socioeconomic status of the index case.

†Adjusted for age (grouped 30–34, 35–39, 40–44, 45–49, 50–54, 55–59, 60–64, 65–69, and 70?), calendar period (1961–1985, 1986–1990, 1991–1995, 1996–2000, and 2001–2008), region (big cities, northern Sweden, southern Sweden, and other), and socioeconomic status (agricultural worker, white–collar worker, and other worker, professional, private, and other) as well as the number of children and age at first birth.

¶Adjusted for age, duration of premenopause, menopause (type and duration), pregnancy history, benign breast disease, postmenopausal hormone therapy (type, duration and current or past use), body mass index, height, and alcohol use.

Table D.7 Family history of other cancers and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Pooled analyses						
Turati et al., 2013 ⁸⁰	Study dates: 1991–2009	>12,000 incident cases	Family history of a cancer other than	Breast cancer		Unconditional multiple logistic regression model
Italy & Switzerland	13 network case– control studies	>11,000 controls	breast cancer in cases vs family history in controls			Adjustments‡
			Colorectal cancer		OR=1.5 (1.1–1.9); p=sig.	Limitations:
			Prostate cancer		OR=1.6 (1.1–2.4)	Insufficient statistical power
			Haemolymphopoieti c cancers		OR=1.7 (1.2-2.4); p=sig.	relation is modest or the
			Uterine cancer		OR=1.4 (1.0-1.9)	cancer(s) is rare
			Stomach cancer		OR=1.2 (1.0-1.6)	
			Skin cancer		OR=3.0 (1.4–6.4)	
Cohort studies						
Beebe–Dimmer et al., 2015 ⁸²	WHI study cohort	78,171 women	Family history of cancer among first–	Postmenopausal breast cancer		Cox proportional hazards regression model
USA	End of study: Aug 2009	3,506 cases	degree relatives vs no family history			Adjustments†
	0	74,665 non–cases	Prostate cancer			
	Prospective study	Median age at	≥1 first-degree		RR=1.14 (1.02-1.26)	Limitations: Small number of African–
	Median age at baseline:	breast cancer diagnosis: 69 y	Breast & prostate	-		American women with breast cancer in the study
	64 y for cases		1 first-dearee relative		RR=1.78 (1.45-2.19)	
	63 y for non–cases		Colorectal cancer	-		Family history of cancer was
	Median follow-un:		>1 first-degree		RR=1.08 (0.99-1.19)	assessed only at the baseline
	11 v		relative	_		Reliance on self-reporting of
	,		Breast & colorectal			the family history of cancer
			Cancer First_dearee relatives		RR=1 47 (1 34-1 61)	
Sutcliffe et al	LIKCCCR Familial	Eamilies with at	Family history of	Breast cancer	KK = 1.47 (1.04 - 1.01)	Ricks were estimated by
2000 ⁸⁶	Ovarian Cancer	least 2 first-degree	ovarian cancer			comparing the number of

			_			
	Register	relatives with	<50 y		RR=3.74 (2.04–6.28); p=0.02	incident ovarian and breast
UK	Dream e etime etimelu	ovarian cancer	≥50 y	-	RR=1.79 (1.02-2.90); p=0.034	expected, based on national-,
	Prospective study	ovalian cancor	Ву 70 у		AR=15%	age-, sex- and period-specific
	First families	2,304 women	Average		RR=2.36 (1.59–3.37)	incidence rates for England and Wales
	enrolled from 1991	from 319 families 11,936 person–y at risk 30 incident breast cancer cases	BRCA1 and BRCA2 mutation–positive families	-	RR=3.32 (1.52-6.31)	Adjustments: NR Limitations: NR
Valeri et al., 2000 ⁸⁹	University Hospital of, Saint Louis–Paris,	691 patients/ families	Family history of prostate cancer	Breast cancer		Conditional logistic regression model
France	Brest & Nancy	82 patients/families	Number of prostate cancer cases			Adjustments: NR
	Retrospective study	with prostate	1		RR=1.0 (referent)	
	Prostate cancer	concernisiony	≥2	_	RR=2.3 (1.3-4.3); p=0.007	Limitations: NR
	patient selection: 1994–1997		Age at diagnosis of prostate cancer	_		
			<55 y		OR=5.5 (1.9-15.3); p=0.002	
	Follow–up: NR		≥55-<65 y		OR=1.3 (0.6-2.8); p=NS	
			≥65-<75 y		OR=1.3 (0.7-2.6); p=NS	
			≥75 y		OR=1.0 (referent)	
Case-control studies	S					
Slattery & Kerber, 1993 ⁸⁷	Population–based study (Utah	4,083 incident cases	Family history of colon cancer	Breast cancer		Conditional likelihood logistic model
USA	population database)	4,083 controls	Kinship order of colon cancer			Adjustments: NR
	Breast cancer diagnosis: 1966-1989	Controls selected from genealogy data	None ≥Fifth Fourth Third Second	-	OR=1.00 (referent) OR=1.05 (1.02-1.09) OR=1.10 (1.03-1.18) OR=1.15 (1.05-1.27) OR=1.21 (1.07-1.36)	Limitations: Database limited to Utah residents

	Age at enrolment:		First		OR=1.26 (1.08-1.45)	
	allages		Family history of	-		
	-		ovarian cancer			
			Kinship order of colon			
			cancer			
			None		OR=1.00 (referent)	
			≥Fifth		OR=1.03 (0.98-1.08)	
			Fourth		OR=1.05 (0.96-1.15)	
			Third		OR=1.08 (0.95-1.23)	
			Second		OR=1.10 (0.93-1.31)	
			First		OR=1.13 (0.91-1.38)	
Claus et al., 199388	Cancer and Steroid Hormone Study, population–based	Woman with a first– degree family history of ovarian	First–degree family history of ovarian cancer	Breast cancer by 89 y		Autosomal dominant genetic model
037		cancer	1		Cumulative risk=13.5%	Adjustments: NR
	Recruitment dates: 1980–1992	4,730 breast cancer	2		Cumulative risk=30.8%	Limitations:
	Age of participants: 20–54 y	cases 493 ovarian cancer cases 4,688 controls	First-degree family history of ovarian cancer & 1 first- degree family history of BC diagnosed in her thirties	Breast cancer by 79 y	Cumulative risk=40%	Risks presented likely to underestimate the true risks

Abbreviations: AR, absolute risk; NR, not reported; NS, not significant; OR, odds ratio; p, p-value; RR, relative risk or risk estimate; sig., significant; UK, United Kingdom; UKCCCR, Uniting Kingdom Coordinating Committee on Cancer Research; USA, United States of America; WHI, Women's Health Initiative; y, year/s.

†All models included age, race, benign breast disease, hormone replacement therapy usage, and hysterectomy. Breast or prostate cancer: models were also mutually adjusted for a family history of breast cancer among first-degree relatives. Breast or colorectal cancer: mutually adjusted for a family history of breast cancer and colorectal cancer among first-degree relatives.

‡Adjusted for age, sex (when appropriate), study centre (when appropriate), year of interview, education, body mass index, alcohol drinking, tobacco smoking, and number of brothers and sisters. Reference category: no family history of the selected discordant cancer. Odds ratios for endometrial and ovarian cancers were further adjusted for menopausal status, age at menopause, oral contraceptive and hormone replacement therapy use, and parity; odds ratios for breast cancer were further adjusted for menopausal status, age at menopause, oral contraceptive and hormone replacement therapy use, parity and age at first birth.

Table D.8 ATM and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
van Os et al., 201694	4 studies	974,710 women	ATM mutation	Breast cancer		Random effects model
studios published to	1 cobort studios	29 572 coror	heterozygotes carriers			Adjustments: NR
2014		20,372 CUSES	Californ			Publication bias: NR
_		946,138 controls	All female blood		RR=1.7 (1.4-2.1)	Limitations:
France, Scandinavia, UK & USA			relatives Obligate heterozygous relative		RR=3.0 (2.1–4.5)	Studies concerning polymorphisms in the ATM gene were disregarded
			Younger women		RR=7.0 (4.1–11.9)	Only a small number of studies
			Older women		RR=2.1 (1.2-3.6)	were included Co-variables that may play a role in the association between certain diseases and the ATM mutation were excluded
Aloraifi et al.,	15 studies	9,832 women	A–T heterozygotes	Breast cancer	OR=3.20 (2.04–5.04);	Fixed and random effects model
Studies published to	15 case–control studies	4266 cases 67 heterozvaous	camers		p-value; Heterogeneity chi-squared=13.46,	Adjustments: NR
2014		cases			p(heter)=0.413	No publication bias, p > 0.05
Czech Republic, Finland, France, Netherlands, Spain, Switzerland, UK & USA		5,566 controls 21 heterozygous cases				Limitations: Ascertainment of families and potential confounding effects from variables such as environmental risk factors and population stratification
Easton et al., 201598	Segregation	Participant details:	Relatives with A-T	Breast cancer	RR=2.8 (2.2–3.7);	Model: NR
Studies published to: NR	analysis with estimates derived	NR	ATM p.Val2424Gly		p=4.7 x 10 ⁻¹¹ RR=8.0 (2.8–22.5); p= .0005	Adjustment: NR
Denmark, France,	trom BOADICEA model		mutation			Publication bias: NR
Sweden, UK						Limitations: NR

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Case-control studies						
Couch et al.,	Population-based	41,154 cases	ATM mutation	Breast cancer		Model: NR
2017101	case-control study	52,160 controls	All ethnicities		OR=2.91 (2.41-3.50); p=4.01 x 10- 32	Adjustments: NR
USA	USA Study duration: 2012–2016	29,229 cases 274 ATM mutations	European ancestry	-	OR=2.78 (2.22–3.62); p=2.42 x 10 ⁻¹⁹	- Limitations: Public reference data set
	Age at diagnosis: 48.5 (11.1) y	26,644 controls 90 ATM mutations				Patients qualified for genetic testing included and not a population–based study
						Results from unmatched cases and controls that were sequenced on different platforms could cause inflation of ORs
Decker et al., 2017 ¹⁰²	Population-based case-control	13,087 cases 85 ATM carriers	ATM mutation	Breast cancer	OR=3.26 (1.82–6.46); p=2.1 x 10 ⁻⁵	Model: NR
		5 (00)				Adjustments: NR
UN	1991–1996	11 ATM carriers				Limitations: NR
	Median age at enrolment: 48 y					
Kurian et al., 201793	Hospital–based case–control	95,561 participants	ATM mutation	Breast cancer		Multivariable logistic regression modelling and matched case-
USA	Study datas:	26,384 cases	Multivariable logistic		OR=1.74 (1.46–2.07);	control analysis
	2013–2015	640 ATM mutations detected	regression model		p=6.5 x 10 ⁻¹⁰	Adjustments: Aae, race/ethnicity, family
	Age at enrolment:		_			- history
	median 55 y; range 18–98 y	244 women with breast cancer and				

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		ATM mutation				Limitations: Eligibility criteria of clinically tested patients was not
		19,056 cases	Case-control test	-	OR=2.02 (1.49–2.75); p=2.3 x 10 ⁻⁰⁶	accrued
		51,200 controls				Confirmation of family history was not feasible
						Potential bias of differential reporting of family history
Goldgar et al., 2011 ⁹⁵	Population-based & clinic-based	2,570 cases	ATM gene variants	Breast cancer		A mixed model and likelihood ratio test
Australia, New	31007	1,448 controls				Adjustments: NR
Zealand & USA	Study duration: NR	Ethnicity: Caucasian				Limitations: NR
	Average age at diagnosis 47.9 v	27 families (129	ATM c.7271T > G		RR=8.0 (2.3-27.4); p=0.0005	
	Average control reference age 48.4 y	family members): 15 families with ATM c.7271T > G variant	Other variants	-	RR=4.4 (0.70-28.1); p= 0.053	

Abbreviations: A–T, ataxia–telangiectasia; NR, not reported; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; y, year/s.

Table D.9 BRCA1 and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Easton et al., 201598	Segregation analysis with	Participant details: NR	Protein-truncating BRCA1 gene	Breast cancer	RR=11.4 AR by 80 y=75%	Model based on risks to age 80 years for a woman born in 1960
Studies published to: NR	from BOADICEA model		mutations			Limitations: Publication bias
Denmark, France, Finland, Norway, Sweden, UK						Potential ascertainment bias
Chen & Parmiaiani	10 studies	BRCA1 participants	BRCA1 mutation	Breast cancer		Random effects model
2007 ¹¹⁰	10 3100103	BRC/11 panicipanis		By 70v		
	Type of study NR	Breast Cancer				Adjustments: NR
No search date		Linkage				Publication bias: NR
		Consortium;	Ву 20 у		Mean risk=54% (46–63%)	
Australia, Europe,		AJ population;	Ву 30 у		Mean risk=54% (45–63%)	
North America		Registry; hospital–	Ву 40 у		Mean risk=49% (41–58%)	Limitations:
Noniti Amoneo		based AJ cancer	Ву 50 у		Mean risk=37% (30–44%)	characteristics that were not
		patients; kConFab; Italian cancer genetic clinics	Ву 60 у		Mean risk=19% (15–24%)	able to be examined
Pooled analyses		-				
Antoniou et al.,	22 cohort studies	6,965 cases	BRCA1 mutation	Breast cancer		Kaplan–Meier model
2003109	Both population &	289 BRCA 1		Ву 70 у	ACR=65% (44–78%)	Adjustments: NR
Studies published to	hospital based	participants	20–29 y		RR=17 (4.2–71)	
2002	participants		30–39 y		RR=33 (23–49)	Publication bias: NR
			40–49 y		RR=32 (24–43)	
Australia Europo			50–59 y		RR=18 (11–30)	Limitations:
Hong Kong, Israel, North America			60–69 y		RR=14 (6.3–31)	Confirmation of cancer diagnoses in relatives not always possible

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Cohort studies						
Kuchenbaecker et	EMBRACE, IBCCS,	2,276 BRCA 1	BRCA1 mutation	Breast cancer		Cox regression model (HRs)
al., 2017 ¹⁰⁸	BCFR & kConFab	kConFab women		Ву 80 у	SIR=16.6 (14.7–18.7) Adjustm ACR=72% (65–79%) multip	Adjustments:
						multiple women from the same
Australia, New Zealand Europe	Recruitment:	269 cases	21–30 y	-	SIR=73.7 (42.9-126.8)	family
North America	1777-2011	31–40 y		SIR=46.2 (37.3–57.1)	Limitations	
	Prospective		41–50 y		SIR=17.2 (14.0-21.2)	Data on tumour phenotypes of
	·		51–60 y		SIR=9.7 (7.2-12.9)	cancers were not available
	Follow–up:		61–70 y		SIR=7.0 (4.5-11.0)	
	median 5 y		71–80 y		SIR=4.8 (1.8–12.8)	the unaffected study
	Median age at		Family history of breast cancer	-		participants to all other unaffected family members
	10110w-0p. 37 y		No breast cancer		HR=1 (referent)	Number of events in some
	Median age at		1 breast cancer		HR=1.51 (1.08–2.11): p=0.02	subaroups was small
	cancer diagnosis: 44 y		≥2 breast cancers		HR=1.99 (1.41–2.82); p<0.001	Lack of information about the use of preventative hormone therapies
Mavaddat et al.,	EMBRACE study	978 BRCA1 women	BRCA1 mutation	Breast cancer		Cox proportional hazards
2013112				Ву 70 у	ACR=60% (44–75%)	regression model (HRs)
	Study established:	365 cases				Adjustments:
UK	1998	501 controls	<20 y	-	IR=0	Stratified by birth cohort
	Due ere e di ce etcelo		20–29 у		IR=8.7 (2.2–34.7)	Limitations:
	Prospective study	Mean age at	30–39 у		IR=16.9 (9.3–30.4) Potential cor	Potential contounders and underreporting of prophylactic
	Mean follow-up:	ulughosis. 41.6 y	40–49 y		IR=19.9 (11.3–35.1)	oophorectomy in women
	3.3 y		50–59 y		IR=36.1 (18.8–69.4)	without cancer
			60–69 y		IR=7.4 (1.0–52.6)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Follow–up at 2, 5 & 10 y		≥70 y		IR=0	Therapies may reduce risk rather than oophorectomy Lack of data on therapies and surgical procedures used to treat unilateral breast cancer
Suthers, 2007 ¹¹¹	Retrospective 2001 incidence in	Study sample details NR	BRCA1 mutation Australian general	Breast cancer		Model: NR
Australia & USA	(Australia)—AIHW		Age 20 v	Βν 70	v ACR=almost 60%	_ Adjustments: NR
	data		/ (gc 20 y	by / o		Limitations: NR
	2006 incidence data among BRCA1/2 carriers (USA)—Chen et al., 2006 data					
	Age at enrolment & duration of follow–up: NR					
Case-control studies						
Kurian et al., 201793	Hospital-based case-control	95,561 women enrolled	BRCA1 gene mutation	Breast cancer	OR=5.91(5.25-6.67); p=2.2×10 ⁻¹⁸⁶	Multivariable logistic regression model
USA						
	Study dates: 2013–2015	26,384 breast cancer cases				Adjustments: Age, race/ethnicity & family history
	Age range: 11–98 y	1,468 BRCA1 mutations detected				Limitations: Participants were not accrued
		739 BRCA 1 mutations detected in breast cancer cases				according to the rigorous eligibility criteria of a clinical trial Potential bias may be

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		15,826 cases	Exact McNemar's Case–Control Test		OR=5.89 (4.57-7.68); p=7.4×10 ⁻⁶¹	differential reporting of family history among cases versus
		15,826 controls				controls

Abbreviations: AR, absolute risk; BCFR, Breast Cancer Family Registry; BRCA1+, BRCA1 gene mutation carrier; BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; CR, cumulative risk; EMBRACE, Epidemiological Study of BRCA1 and BRCA2 mutation carriers; HR, hazard ratio; IBCCS, International BRCA1/2 Carrier Cohort Study; kConFab, Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer; NR, not reported; OR, odds ratio; p, p–value; RR, relative risk or risk estimate; SIR, standard incidence ratio; UK, United Kingdom; USA, United States of America; y, year/s.

Table D.10 BRCA2 and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Easton et al., 2015 ⁹⁸ Study publication	Segregation analysis with estimates derived	Participant details: NR	Protein-truncating BRCA2 gene mutations	Breast cancer By 80 y	RR=11.7 AR=76%	Model based on risks to age 80 years for a woman born in 1960
dates: NR	from BOADICEA					Limitations:
	model					Publication bias
Denmark, France, Finland, Norway, Sweden & UK						Potential ascertainment bias
Chen & Parmigiani, 2007 ¹¹⁰	10 studies	BRCA2 population	BRCA2 carriers	Breast cancer After 70 y	ACR=49% (40–57%)	Random effects model
Study publication	Type of study: NR	Breast Cancer Linkage				Adjustments: NR
dates: NR		Consortium;				Publication bias: NR
Australia, Europe,		Australian Cancer				Limitations:
Hong Kong & North		Registry; hospital–				There may be study
America		based AJ cancer				characteristics that were not
		patients; kConFab; Italian cancer				able to be examined
		genetic clinics				
Pooled analysis						
Antoniou et al.,	22 cohort studies	6,965 breast cancer	BRCA2 carriers	Breast cancer		Kaplan–Meier model
2003109	Both population 8	cases		Ву 70 у	ACR=45% (31%-56%)	Adjustments: NR
Studies published to	hospital-based	221 BRCA2		Breast cancer		Publication bias: NR
2002	participants	mutations	20–29 y		RR=19 (4.5–81)	Limitations:
A schooling Frances			30–39 y		RR=16 (9.3–29)	Confirmation of cancer
Australia, Europe, Hona Kona, Israel,			40–49 y		RR=9.9 (6.1–16)	always possible
North America			50–59 y		RR=12 (7.4–19)	Variation in techniques used for
			60–69 y		RR=11 (6.3-20)	mutation detection

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Cohort studies						
Kuchenbaeker et	EMBRACE, IBCCS,	1,610 BRCA2	BRCA 2 mutations	Breast cancer		Cox regression hazard model
al., 2017 ¹⁰⁸	BCFR & kConFab	mutations carriers	Total		SIR=12.9 (11.1–15.1) CR=69% (61–77%)	Adjustments: NR
Australia, Canada, LISA	Recruitment:	157 Cases	21–30y	-	SIR=60.8 (25.5-144.9)	Limitations:
00/1	1997-2011		31–40y		SIR=20.3 (13.5-30.5)	Data on tumour phenotypes of
	Prospective		41–50y		SIR=16.4 (12.9-20.9)	cancers were not available Selection bias
			51–60y		SIR=11.4 (8.4-15.5)	
	Follow-up:		61–70y		SIR=6.4 (3.8-10.7)	
	median 4 y		71–80y		SIR=6.6 (3.0-14.7)	The number of events in some
	Median age at start		1 relatives affected vs no relatives affected	-	HR=1.53(0.86-2.70); p=0.15	of the subgroups considered was small
	Median age at cancer diagnosis: 48 y		≥2 relatives affected vs no relatives affected	-	HR=1.91(1.08-3.37); p=0.02	Lack of information about the use of hormone therapies
Mavaddat et al., 2013 ¹¹²	EMBRACE study	909 BRCA2 mutation carriers	BRCA2 mutation	Breast cancer		Kaplan–Meier model
UK	Study established:			Ву 70 у	ACR=55% (41–70)	No adjustments
	1998	323 cases	30–39 y		IR=11.9 (5.0-28.6)	Limitations:
	Prospective study	485 controls	40–49 y		IR=41.4 (26.1–65.8)	Results may have been
	Mean follow–up: 3.3 y	Mean age at diagnosis: 45.2 y				confounded. Lack of data on tamoxifen, other therapies, & surgical procedures carried out for unilateral breast cancer.
	Follow–up at 2, 5 & 10 y		50–59 y		IR=15.2 (5.7–40.6)	Underestimation of the effect of oophorectomy on cancer risks
			60–69 y		IR=16.2 (4.1–64.8)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Case-control studies						
Kurian et al., 201793	Hospital-based case-control	95,561 women enrolled	BRCA2 gene mutation	Breast cancer	OR=3.31(2.95–3.71); p=2.7×10 ⁻⁹⁵	Multivariable logistic regression model
USA	Study dates: 2013–2015	26,384 breast cancer cases				Adjustments: Age, race/ethnicity & family history
	Age range: 11–98 y	1,539 BRCA2 mutation detected 703 BRCA2 mutations detected				Limitations: Participants were not accrued according to the rigorous eligibility criteria of a clinical trial.
		cases				Potential bias may be
		15,826 cases	Exact McNemar's Case–Control Test	-	OR=3.12 (2.56-3.83); p=1.7×10-34	history among cases versus controls
Suthers, 2007111 Australia & USA	Retrospective study 2001 incidence in general population	Population details: NR	BRCA2 mutation vs Australian general population	Breast cancer	ACR=40%-60%	Model: NR Adjustment: NR
	(Australia)—AIHW data 2006 incidence data among		Age 20 y	By age 70 y	-	Limitations: NR
	BRCA1/2 carriers (USA)—Chen et al., 2006 data					
	Follow–up: NR Age at baseline: NR					

Abbreviations: ACR, average cumulative risk; AIHW, Australian Institute of Health and Welfare; AJ, Ashkenazi Jew; AR, absolute risk; BRCA, gene mutation carrier; CR, cumulative risk; EMBRACE, Epidemiological Study of BRCA1 and BRCA2 mutation carriers; HR, hazard ratio; IR, incident rate (per 1000 person-year); kConFab, Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer; NR, not reported; OR, odds ratio; RR, relative risk or risk estimate; SIR, standardised incident ratio; UK, United Kingdom; USA, United States of America; y, year/s.

Table D.11 CDH1 and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Case-control studies						
Kurian et al., 201793	Hospital-based	95,561 participants	CDH1 gene mutation	Breast cancer	OR=1.34 (0.66-2.68); p=0.42	Multivariable logistic regression
USA	Study dates:	26,384 cases	McNemar's Case– Control Test	-	OR=4.00 (0.80-38.7); p=0.11	models Adjustments:
	2013-2015 Median age at hereditary cancer	42 mutations detected		Lobular breast cancer	OR=17.7 (7.68-40.1); p=1.4×10 ⁻¹¹	Age, race/ethnicity & family history
						Limitations:
	testing: 55 y	13 breast cancer cases & detected CDH1 mutation				Participants were not accrued according to the rigorous eligibility criteria of a clinical trial
						Potential bias may be differential reporting of family history among cases versus controls
Couch et al.,	Exome	65, 057 women with	CDH1 variants	Breast cancer	OR=5.34 (1.60–20.94);	Fisher exact test
2017101	Aggregation	breast cancer	vs no mutations		p=2.09 x10-3	
	database	hereditary cancer				Adjustments: NR
USA	Hospital-based	genetic testing				Limitations:
	Study dates:	37,277 breast cancer cases				
	2012-2010					cases & controls
	Age at recruitment: NR	23 patients with CDH1 pathogenic variants				Ascertainment bias
Case-series						
Pharoah et al.,	Segregation	11 families	CDH1 mutation	Breast cancer	RR=6.6 (SE: 0.67)	Mendel program

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
2001119	analysis	(476 individuals)			Cumulative risk to 80 y: RR=39% (12–84)	Adjustments: NR
UK	Family samples were collected by members of IGCLC Age at recruitment: NR	7 cases Mean age at diagnosis: 53 y				Limitations: Ascertainment bias
Hansford et al.,	Recruitment dates:	75 CDH1 mutation	CDH1	Breast cancer		Mendel program
2015115	2006-2013	positive HDGC families	Age 10–49 y		RR=7.7	Adjustments: NR
Italy & Portugal	Age at recruitment:		Age ≥50 y		RR=7.4	Adjusiments. NK
	NR	89 breast cancer cases			Cumulative risk to 80 y: 42% (23%–68%)	Limitations: Assay cannot detect copy number alterations within targeted amplicons Lifestyle & environment factors are genetic modifiers Limited availability of additional materials from family members Inaccuracies in retrospective review
Kaurah et al., 2007 ¹²⁰	British Columbia Cancer Agency	4 families with 2398deIC mutation	CDH1 mutation	Breast cancer	Cumulative risk by 75 y: 52% (29%–94%)	Mendel program
						Adjustments: NR
Canada	Study dates: 2004–2006	l 6 cases of breast cancer				Limitations: NR
	Age at recruitment: NR					

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Cross-sectional study	/					
Lowstuter et al., 2017 ¹¹⁶	Ambry Genetics & the University of Southern California	Laboratory cohort: 26,936 patients 16 patients with	CDH1 mutation	Breast cancer	No risk estimate provided	Limitations: Limited or under–ascertained family history and incomplete
USA	Study dates: 2012–2014	pathogenic CDH1 mutations				appreciation of the histologic subtype of breast cancer
	Retrospective review	Clinic cohort: 318 patients 4 pathogenic CDH1 mutation				
		14 breast cancer cases				

Abbreviations: HDGC, Hereditary Diffuse Gastric Cancer; IGCLC, International Gastric Cancer Linkage Consortium; NR, not reported; NS, not significant; OR, odds ratio; p, p-value; RR, relative risk or risk estimate; SE, standard error; UK, United Kingdom; USA, United States of America; y, year/s.

Table D.12 CHEK2 and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Southey et al., 2016 ¹²⁸	48 studies included in the BCAC were mostly population–	42,671 incident cases	CHEK2 mutation (carriers vs non– carriers)	Breast cancer		Unconditional logistic regression model
Date of publication: NR Australia, Belarus, Belgium, Canada, Denmark, Finland, France, Ireland, Italy, Germany, Netherlands, Norway, Poland, Spain, Sweden, UK	based or hospital- based case- controls	42,164 controls	c349A>G variant c538C>T variant c715G>A variant c1036C>T variant c1312G>T variant		OR=2.26 (1.29-3.95); p=0.003 OR=1.33 (1.05-1.67); p=0.016 OR=1.70 (0.73-3.93); p=0.210 OR=5.06 (1.09-23.5); p=0.017 OR=1.03 (0.62-1.71); p=0.910	Adjustments: Study (categorical) Publication bias: NR Limitations: Limited set of variants with imprecise estimates, which may be limited to specific populations
Aloraifi et al., 2015 ¹⁰⁰	9 case-control studies	7,263 incident cases	CHEK2 mutation	Breast cancer	OR=3.25 (2.55–4.13); p(heter)=0.056	Fixed effects model (12<50%)/ Random effects model (12>50%)
Studies published to 2014		13,785 controls				No adjustments
Australia, Canada,		Women with a family history of				No publication bias
Italy, Finland, France, Germany, Poland, UK & USA		breast cancer, onset at <50 y of age, or bilateral breast cancer				Limitations: Study limited to protein– truncating variants
						Uncertainties regarding modes of ascertainment of families and potential confounding effects
						Selection bias

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Yang et al., 2012 ¹²¹	25 case-control studies	29,154 cases	CHEK2 1100delC variant	Breast cancer	OR=2.75 (2.25-3.36); p<0.00001; l²=0.0%, p(heter)=0.90	Fixed effects model (I²<50%)/ Random effects model (I²<50%)
Studies published to 2012	20 hospital-based studies	37,064 controls				Adjustments: NR
Australia, Belgium,	5 population– based studies	Ethnicity: Caucasian				No publication bias
Republic, Canada, Denmark, Finland, Germany, Ireland, Pakistan,						Limitations: Controls were mostly hospital– based
Philippines, Poland, Netherlands, Sweden, UK & USA						Controls and cases matched on few factors
						Unadjusted estimates
						No analysis on pathological classification of breast cancer or menstruation status
Liu et al., 2012 ¹²⁷	13 studies	17,073 cases	CHEK2 1157T variant vs non-carriers	Unselected breast cancer	OR=1.48 (1.31–1.66); p<0.0001; l²=40.2%, p(heter)=0.081	Random effects model
Studies published to 2011		26,501 controls				Adjustments: NR
Belarus, Czech						No publication bias (p>0.05)
Republic, Finland, Germany, Netherlands,						Limitations: Study heterogeneity
Poland, North America & UK						Individual patient data or original data were unavailable

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Zhang et al., 2011 ¹²²			CHEK2 variant (carriers vs non–	Breast cancer		Random effects model
Studies published to			carriers)			Adjustments: NR
2010 Countries of origin:	5 case-control studies	9,970 cases 7.526 controls	IVS2+1G>A variant		OR=3.0/ (2.03–4.63); p=9.82×10–8; I²=0.0%, p(heter)=0.707	Publication bias (p<0.10)
NR	8 case-control	13.311 cases	rs17879961 (1157T)	-	OR=1.52 (1.31–1.77)	 Limitations:
	studies		variant		p=4.76×10-8; l ² =14%,	English-only studies included
		10,817 controls			p(heter)=0.324	
	5 case–control	10,543 cases	1100delC variant	-	OR=2.53 (1.61–3.97);	Publications without resolvable
	studies				p=6.33×10-5; l ² =0.0%,	genotype counts not included
		8,447 controls		<u>.</u>	p(heter)=0.419	
	47 case-control studies	41,791 cases	CHEK2 deletion		OR=3.10 (2.59–3.71); p<10–20; l²=8%, p(heter)=0.315	estimates of effect used
		50,910 controls				
						environment interactions not evaluated
						Other sources of heterogeneity not examined
Weischer et al.,	12 case-control	26,488 cases	CHEK2 deletion	Unselected breast	OR=2.4 (1.8–3.2); I ² =8%	Random effects model
2008123	studies		CHEK2 1100delC	cancer		
Studies published to	9 case–control studies	27,402 controls	heterozygotes vs non–carriers	Familial breast cancer	OR=4.6(3.1–6.8); l ² =0%	Adjustments: NR
2007						No publication bias
Australia, Belgium,						Limitations:
Canada, Czech Republic, Denmark, Finland, Germany, Netherlands,						Potential for heterogeneity and publication bias
Poland, Sweden, UK & USA						

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Pooled analysis						
Easton et al., 2015 ⁹⁸	2 case–control studies	Number of participants: NR	CHEK2 1100delC mutation	Breast cancer	RR=3.02 (90% CI: 2.6–3.5); p<0.0001	Model: NR
Date of publication: NR						Adjustments: NR
						Limitations:
Finland &						Publication bias
multinational						Potential ascertainment bias
Case-control studies						
Kurian et al., 201793	Hospital-based	95,561 women	CHEK2 mutation vs no cancer history at time	Breast cancer		Multivariate logistic regression model
USA	Study dates: 2013–2015	26,384 breast cancer cases	of genetic testing			Adjustments:
	Median age at hereditary cancer	319 incident cases	Multivariate logistic regression model	-	OR=1.99 (1.70-2.33); p<0.0001	Family history of breast and ovarian cancer, age, and
	testing: 55 y	319 matched controls				race/ennicity
		19,056 incident	Exact McNemar's	-	OR=2.12 (1.63–2.77); p<0.0001	Limitations:
		cases	case-control test			Eligibility criteria not rigorous
		15,826 controls				Differential reporting of family history among cases versus controls
Couch et al.,	Exome	29,090 incident	CHEK2 mutation	Breast cancer		Model: NR
2017101	Aggregation	cases:	Pathogenic variant		OR=2.26 (1.89-2.72)	
	Consortium	424 CHEK2	1100delC variant		OR=2.31 (1.88–2.85)	Adjustments: NR
USA	ddiabase	moranons	Missense variants		OR=1.48 (1.31-1.67)	Limitations
	Hospital-based	25,215 controls: 163 CHEK2				Not a population based study
	Cohort dates:	mutations				Use of unmatched cases and
	2012-2016	Mean age at				controls sequenced on different platforms

Authors	Study details	Study sample	Exposures	Outcomes		Risk estimates	Author comments
	Age at recruitment: NR	diagnosis: 48.5 y					
Decker et al., 2017 ¹⁰²	Population-based	13,087 incident cases	CHEK2 truncating mutations (carriers vs	Breast cancer		OR=3.11 (2.15–4.69); p<0.0001	Unconditional logistic regression model
	Start of study: 1996		non–carriers)		ER+	OR=3.42 (2.33–5.21); p<0.0001	
UK		5,488 controls					Adjustments:
	Age at recruitment:						Gene length & multiple testing
	NR	Breast cancer					
		diagnosed <55 y			ER–	OR=1.59 (0.80–3.00); p=0.18	Limitations:
		from 1991 and <70					No analysis on very rare variant
		y from 1996					classes and less common
							breast cancer subtypes

Abbreviations: AR, absolute risk; BCAC, Breast Cancer Association Consortium; CI, confidence interval; ER, oestrogen receptor; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; y, year/s

Table D.13 PALB2 and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments	
Meta–analyses							
Southey et al., 2016 ¹²⁸	48 studies included in the BCAC were	34,488 cases	PALB2 c1592delT (p.Leu531Cysfs)	Breast cancer	OR=3.44 (1.39–8.52); LRT p=0.003	Unconditional logistic regression	
Date of	mostly population– based or hospital–	mostly population– based or hospital–	34,059 controls	PALB2 c3113G>A (p.Trp1038)		OR=4.21 (1.84–9.60); LRT p=1.2x10 ⁻⁴	Publication bias: NR
publication: NR	based case-	Referent: non				Adjustments:	
Australia, Belarus,	Controls	carriers	PALB2 c2816T>G (p.Leu939Trp)		OR=1.03 (0.80–1.32); LRT p=0.82	Study (categorical)	
Belgium, Canada, Denmark, Finland, France, Ireland, Italy, Germany, Netherlands, Norway, Poland						Limitations Limited set of variants with imprecise estimates, which may be limited to specific populations	
Spain, Sweden, UK & USA							
Aloraifi et al., 2015 ¹⁰⁰	13 case-control studies	5,862 cases	PALB2 mutation	Breast cancer	OR=21.4 (10.10-45.32); p(heter)=0.947	Fixed and random effects models	
Studies published to		17,453 controls				No adjustments	
China, Canada,		family history of breast cancer,				No publication bias (funnel plot and Egger's test)	
Finland, Germany, Italy, Malaysia, Poland, UK, USA		age, or bilateral breast cancer				Limitations: Study limited to protein– truncating variants	
						Uncertainties regarding modes of ascertainment of families and potential confounding effects	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
						Selection bias
Pooled analyses						
Easton et al., 201598	1 family-based	Number of	PALB c1529delT	Breast cancer	RR=5.3 (90% CI 3.0–9.4)	Model: NR
	case-control study	participants: NR				A diustmonts: NR
Finland &						Adjusiments. NR
multinational	2 case–control					Limitations:
	studies					Publication bias
						Potential ascertainment bias
Case-control studies	;					
Couch et al.,	Exome	Mean age at	PALB2 mutation	Breast cancer		Model: NR
2017101	Aggregation	diagnosis: 48.5 y				
	Consortium	42,435 incident	All ethnicities		OR=6.25 (4.82–8.14);	Adjustments: NR
North America	database	cases:			p=1.00 x 10 ⁻⁶⁰	
		352 mutations of				Limitations:
	Hospital-based	PALB2				Not a population based study
		52,529 controls:				
	Study dates:	70 mutations of				Unmatched cases and controls
	2012-2016	PALB2				sequenced on different
		30,025 incident	European ancestry		OR=7.46 (5.12–11.19); p=4.31x10-	platforms
	Age at recruitment:	cases:			38	
	NR	241 PALB2				
		mutations				
		26,869 controls:				
		29 PALB2 mutationa				
Decker et al.,	Population-based	13,087 incident	PALB2 gene variants	Breast cancer		Unconditional logistic regression

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
2017102	case-control	cases	Overall		OR=4.69 (2.27-9.68); p=6.9×10-6	model
UK	Start of study: 1996 Breast cancer	Breast cancer diagnosed <55 y from 1991 and <70 y from 1996				Adjustments: NR
	diagnosed:≥1991	12 998 PALB2				
	Age at recruitment: NR 89 PALB2 r carriers	mutation non- carriers 89 PALB2 mutation carriers				
		5,488 controls: 8 carriers 5,480 non–carriers				
Kurian et al., 2017 ⁹³	Hospital-based case-control	95,651 women 484 PALB2	PALB2 mutation	Breast cancer	OR=3.39 (2.79–4.12); p=2.0 x 10 ⁻³⁴	Multivariate logistic regression model
USA	Study dates: 2013–2015	mutations detected in all patients				Adjustments Age, race/ethnicity & family
	Median age at	257 cases with PALB2 mutation				history
	hereditary cancer testing: 55 y	Matched case- control			OR=4.13 (2.88–6.05); p=2.2 x 10 ⁻¹⁸	Limitations: Eligibility criteria not rigorous
		19,056 incident cases				Differential reporting of family history among cases versus controls
		15,826 controls				
Cybulski et al.,2015 ¹³¹	Hospital-based	12,529 cases	PALB2 mutation	Breast cancer	OR=4.39 (2.30-8.37)	Two-by-two table with Wald chi-squared test
Poland	Recruitment dates: 1996–2012	4,702 controls				Adjustments: NR
	7 centres recruited patients with breast	PALB2 mutation present in 116 cases and 10 controls				Limitations: Not able to confirm causes of death

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	cancer 18–92 y 11 centres included patients 21–50 y					Studied two founder mutations in one country (Poland), possible misclassification of women who came other pap
	Follow–up: until 2014					founder PALB2 mutations
	Mean age at recruitment: 53.5 y					Estimates based on small numbers of patients and deaths
Antoniou et al., 2014 ¹³⁰	Family-based	362 individuals from 154 families	PALB2 mutation carrier vs UK general	Breast cancer	RR=9.47 (7.16–12.57)	Most parsimonious model
	Study duration: NR		population (1993–97)			Adjustments:
Australia, Belgium,			Family history to 70 y			Method of ascertainment
Canada, Finland,	Age at enrolment:		No family history		CR=33% (25%-44%)	
Greece, Italy, UK & USA	NR		≥ 2 first–degree relatives		CR=58% (50%-66%)	Limitations: NR
			Age group			
			20–24 y		Mean RR=9.01 (5.70–14.16)	
			25–29 у		Mean RR=8.97 (5.68–14.08)	
			30–34 y		Mean RR=8.85 (5.63–13.78)	
			35–39 у		Mean RR=8.54 (5.51–13.08)	
			40-44 y		Mean RR=8.02 (5.29-11.95)	
			45–49 y		Mean RR=7.31 (4.98–10.55)	
			50-54 y		Mean RR=6.55 (4.60-9.18)	
			55–59 y		Mean RR=5.92 (4.27–8.10)	
			60–64 y		Mean RR=5.45 (4.00–7.33)	
			65–69 y		Mean RR=5.10 (3.80–6.76)	
			70–74 у		Mean RR=4.82 (3.63–6.33)	
			75–79 у		Mean RR=4.56 (3.48–5.95)	

Abbreviations: BCAC, Breast Cancer Association Consortium; CI, confidence interval; CR, cumulative risk; LRT, likelihood ratio test; NR, not reported; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; y, year/s.

Table D.14 PTEN and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Case-control studies	;					
Couch et al., 2017 ¹⁰¹ USA	Hospital-based	38,179 cases	PTEN variants vs no mutation	Breast cancer	OR=12.66 (2.01–258.89); p=5.79×10 ⁻⁰⁴	Fisher exact test
	Study duration: 2012–2016	20 PTEN mutations detected				Adjustments: NR
	Mean age at	24,166 controls				Limitations: Not a population–based study
	recruitment: 48.5 y	1 PTEN mutation detected				Use of results from unmatched cases and controls
						Ascertainment bias
Kurian et al., 2017 ⁹³	Hospital-based	95,561 women	PTEN gene mutation vs no mutation	Breast cancer	OR=5.83 (2.43–14.0); p=7.7×10 ⁻⁰⁵	Multivariable logistic regression model
USA	Study dates: 2013–2015	26,384 cases				Adjustments:
		24 PTEN mutation				Family history of breast &
	Median age at hereditary cancer	detected				ovarian cancer
	testing: 55 y	15 cases with				Limitations:
		detected PTEN				Participants were not accrued
		mutation				according to the rigorous
						eligibility criteria of a clinical
		Median age af				trial
		55 v for cases				Detential bine menutes
		JJ y IOI CUSES				differential reporting of family
						history among cases versus
						controls
Case series						
Nieuwenhuis et al., 2014 ¹³⁴	Laboratory-based	99 women	PTEN mutation	Breast cancer by 60 y	Cumulative RR=67.3%	Kaplan–Meier model
	Patients born	24 cases				Adjustments: NR
Australia, Denmark, France, Germany,	between 1928–2008					Limitations:
Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
--	--	--------------------------	---------------	-----------------------	------------------------------	---
Norway, Switzerland, Netherlands, UK &	Prospective study					Ascertainment bias
USA	Mean age at last contact: 32 y (men & women)					mutations missing in some cases
Bubien et al., 2013 ¹³⁹	Laboratory-based	146 patients 70 women	PTEN mutation	Breast cancer	SIR=39.1 (24.8-58.6)	Kaplan-Meier model
France	Prospective study	23 cases		Breast cancer at 70 y	RR=77% (59–91)	Adjustments: Age & sex
	Study dates: 1997–2008					Limitations: Recruitment & ascertainment
	Median age at enrolment: 36 y (men & women)					bias
Tan et al., 2012 ¹³⁸	Community &	205 women	PTEN mutation	Breast cancer	SIR=25.4 (19.8-32.0)	Kaplan Meier model
Asia, Europe & North–America	medical centre- based	67 cases	Lifetime risk		Penetrance=85.2% (71.4–99.1)	Adjustments: Age
	Prospective study					Limitations:
	Study dates: 2000–2010					Ascertainment bias
	Median age at enrolment: 39 y (men & women)					

Abbreviations: NR, not reported; OR, odds ratio; p, p-value; RR, relative risk or risk estimate; SIR, standardized incident rate; UK, United Kingdom; USA, United States of America; y, year/s.

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Michailidou et al., 2017 ¹⁴⁰	68 studies from BCAC and DRIVE	67 European ancestry studies:	Common susceptibility variants	Breast cancer	FRR=18%	Logistic regression
Dates of	Majority of studies	122,977 cases 105,974 controls	identified through GWAS, including 65 newly identified			Adjustments: Principal components, country
NR	based case-control studies, or case-	12 East Asian ancestry:	susceptibility loci			and study
Australia, Belarus, Belgium, Canada,	control studies nested within	14,068 cases 13,104 controls				limitations : NR
China, Denmark, Finland, France,	population based cohorts	cases				
Germany, Greece, Israel, Italy, Japan,						
Korea, Macedonia, Malaysia,						
Norway, Poland, Russia, Singapore						
Spain, Sweden, Taiwan Thailand						
UK & USA						
Milne et al., 2017 ¹⁴³	68 BCAC studies	21,468 ER- cases	125 SNPs	ER– breast cancer	FRR=14%	Logistic regression
Dates of	Majority of studies	18,908 BRCA1				Adjustments:
publication search:	were case-control	mutation carriers:				Principal components, country

Table D.15 Single nucleotide polymorphisms and susceptibility loci studies and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
NR	studies	9,414 breast cancer cases				and study
Australia, Belarus,						Publication bias: NR
Belgium, Canada,		100,594 controls				
Einland Germany						Limitations: NR
Greece, Ireland,		Einnichy: European				
Israel, Italy,						
Macedonia,						
Zealand, Norway,						
Poland, Russia,						
Spain, Sweden, UK						
& USA						
Pooled-analyses						
Li et al., 2017 ¹⁴⁶	2 pooled cohort	4,365 women	24 SNPs	Breast cancer		Cox proportional hazard model
Data collected	5104105	anarysea	Continuous PRS		HR=1.38 (1.22–1.56); p=2.9x10 ⁻⁷	Adjustments: NR
from 1995 & 1997	BCFR & kConFab	2,869 unaffected				
onwards	cohorts	women	Q1		HR=1.00 (referent)	Publication bias: NR
		1,496 women with	Q2		HR=1.71 (1.00–2.95)	
Australia, Canada,	Prospective analysis	breast cancer	Q3		HR=2.34 (1.40–3.90)	Limitations:
		Mean age: 53.6 y	Q4		HR=2.46(1.47-4.13)	Ascertainment bias
		о ,	Q5		HR=3.18 (1.84–5.23); p=4.7x10 ⁻⁶	
		Mean follow-up:				
		7.4 y				
Mavaddat et al.,	Breast Cancer	33,673 cases	77–SNP PRS	Breast cancer		Logistic regression model
2015141	Association		<1%		OR=0.31 (0.24-0.39)	
Datas of	Consortium	33,381 controls	1–5%		OR=0.42 (0.37–0.46)	Adjustments:
publication search.		Ago at diagnosis:	5–10%		OR=0.49 (0.45–0.54)	stuay and seven principal
			10–20%		OR=0.61 (0.57–0.66)	components

Authors	Study details	Study sample	Exposures	Outcomes		Risk estimates	Author comments
NR		57 y	20–40%			OR=0.79 (0.75–0.83)	
		Age at interview	40–60%			OR=1.00 (referent)	Publication bias: NR
Australia, Belarus,		(controls): 56 y	60–80%			OR=1.27 (1.21-1.33)	
Canada Denmark		Ethnicity: European	80–90%			OR=1.44 (1.36-1.52)	Limitations:
Finland, France,		Ennieny. European	90–95%			OR=1.85 (1.72–1.99)	Linned somple homber
Germany, Greece,			95–99%			OR=2.34 (2.17–2.52)	Estimates less precise for ER-
Ireland, Italy,			>99%			OR=3.36 (2.95–3.83)	negative disease
Netherlands,					ER+	OR=2.80 (2.26–3.46)	
Russia, Spain.					ER-	OR=3.73 (3.24-4.30)	Oversampling for family history
Sweden, UK & USA			First-degree family history of breast cancer	Breast cancer			Lifestyle/environmental risk factors not included in the model
			Yes				
			Lowest quintile			Cumulative AR=8.6%	
			Highest quintile	-		Cumulative AR=24.4%	
			NO				
			Lowest quintile			Cumulative AR=5.2%	
			Hignest quintile			Cumulative AR=16.6%	
Vachon et al.,	3 case-control	1,643 cases	76-SNP PRS	Breast cancer		OR=1.48 (1.38–1.58)	Logistic regression model
2015 ¹⁵¹ Data collected in 1997, 2003-2006,	studies	2,397 controls Mean age: 60.1 y	PRS and BI-RADS density vs BI-RADS density				Adjustments: Case–control design, age and 1/BMI
2001-2008 & 2002-2010							Publication bias: NR
USA							Limitations: Lack of independent cohort data
Cohort studies							
Kuchenbaecker et al., 2017 ¹⁴⁷	CIMBA study	15,252 BRCA1 mutation carriers	BRCA1/2 pathogenic mutation polygenic	Breast cancer			Weighted cohort Cox regression with time to diagnosis model

Authors	Study details	Study sample	Exposures	Outcomes		Risk estimates	Author comments
	Prospective study		risk scores				
26 countries	Study duration: NP	8,211 BRCA2	BRCA1 (per unit SD)		ER+	HR=1.11 (1.08–1.15); p=3.5x10 ⁻¹³	Adjustments: NR
	SIDDY COLUMNI, MX	94 SNPs			ER-	HR=1.27 (1.23-1.31); p=8.2x10-53	- Limitations:
	Age at enrolment:		BRCA2 (per unit SD)		ER+	HR=1.22 (1.16–1.27); p=4.0x10 ⁻¹⁹	Information on family history
	>18 y	Ethnicity: European			ER-	HR=1.15 (1.10–1.20); p=6.8x10 ⁻¹⁰	unavailable
	Follow–up: NR						
Case-control studies							
Cuzick et al., 2017 ¹⁴⁸	Nested case– control	995 women	88 SNPs	Breast cancer		OR=1.37 (1.14–1.66); p<0.001	Model: NR
		359 cases					Adjustments: NR
UK	Cohort dates for						
	1992-2001	636 controls					Limitations:
	Median follow-up:						of SNPs in conjunction with
	16.5 y						mammographic breast density
	Cohort dates for						
	data from Marsden						
	trial: 1986-1996						
	Median follow-up:						
	18.4 y						
	Median age at						
	recruitment:						
	50 y						
Dite et al., 2016 ¹⁴⁹	Population-based	750 cases	77–SNP PRS	Breast cancer		OR=1.46 (1.29-1.64);	Logistic regression model
Australia	Cancer Family	105 controls				β-2x10 ···, C11.4, β-0.2	Adjustments
Australia	Registry	400 comois					Age aroup
		Caucasian women					, , , , , , , , , , , , , , , , , , , ,
	Study duration:	not carrier of					Limitations:
	1772-1777	BRCA1 & BRCA2					Missing values for model's risk

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
						score calculations
	Age at baseline:					
	20-49 y					
Shieh et al., 2016 ¹⁵⁰	Nested case– control	981 women	83 polygenic risk score	Breast cancer		Fitted BCSC logistic regression model
USA	California Pacific	486 cases	<0.57		OR=1 (referent)	
Medical Center		0.57-0.84		OR=1.41 (0.92-2.16); p=0.12	Adjustments:	
	Research Institute	495 controls	0.84-1.26		OR=1.86 (1.22–2.84); p=0.004	First degree relative with breast cancer, history of breast biopsy, BMI and breast density
	Conort		>1.26		OR = 2.51 (1.63 - 3.86); p < 0.001	
	Study duration:	Ethnicity: 80%	~1.20	OR-2.31 (1.63-5	OK 2.01 (1.00 0.00), p (0.001	
	2004-2011	Caucasian descent				
						Limitations:
	First diagnosis of					Single centre study
	invasive breast					
	cancer: 1998–2013					Baseline risk of participants
						may differ from general
	Mean age: 56 y					population

Abbreviations: AR, absolute risk; BCAC, Breast Cancer Association Consortium; BCFR, Breast Cancer Family Registry; BCSC, Breast Cancer Surveillance Consortium; BI–RADS, breast imagining reporting and data system; BMI, body mass index; BRCA, BRCA gene mutation; c², Hosmer–Lemeshow goodness–of–fit test; CIMBA, Consortium of Investigators of Modifiers of *BRCA1/2*; DRIVE; Discover, Biology and Risk of Inherited Variants in Breast Cancer Consortium; ER, oestrogen receptor; FRR, familial relative risk; GWAS, genome–wide association study; HR, hazard ratio; IBIS–1, International Breast Intervention Study; kConFab, Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer; NR, not reported; OR, odds ratio; p, p–value; p(heter), p value for heterogeneity; PRS, polygenic risk score; Q[1–5], quintiles 1–5; SD, standard deviation; SNP, single–nucleotide polymorphisms; UK, United Kingdom; USA, United States of America; y, years.

Table D.16 STK11 and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Giardiello et al.,	6 cohort studies	104 females with	PJS vs general	Breast cancer	RR=15.2 (7.6-27); p<0.001	Poisson regression model
2000152	Peutz-Jeghers Studiogeneticity of Syndrome families	PJS	population			Adjustments: NR
Studies published 1966–1998	syndrome ramilies	11 cases				Publication bias: NR
		Ethnicity: white				
USA		Age at enrolment: 15–64 y				Small number of families analysed
						Familial PJS may not be applicable to sporadic case
						Ascertainment bias
Cohort studies						
Resta et al., 2013 ¹⁵⁴	Cohort dates: 1997-2009	119 participants (58 men & 61 females)	PJS vs general population	Breast cancer	RR=12.5 (5.1–26.0)	Model: NR
Italy		with PJS				Adjustments: NR
	End of follow–up:					
	2009	mutation				Limitations: Ascertainment bias
	Retrospective study	6 fomalo broast				
	Age at enrolment: NR	cancer cases				
		Median age at end				
	Duration of follow– up: NR	of follow–up: 36.5 y				
Case-control studies						
Kurian et al., 201793	Clinic-based	19,056 incident cases	STK11 gene mutation	Breast cancer	OR=4.41 (0.66–29.6); p=0.13	Multivariate logistic regression model
USA	Study dates:	15,826 matched				

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	2013-2015 Median age at	controls				Adjustments: Age, race/ethnicity and family cancer history
	testing: 55 y					Limitations: Eligibility criteria lacked rigour of a clinical trial
						Potential differential reporting of family history among cases versus controls
						Family history did not include number of unaffected relatives
Case series						
Hearle et al., 2006 ¹⁵³	Study dates: NR	419 individuals with PJS	PJS By ag	Breast cancer e		Cox proportional hazards regression model
Australia, Europe & USA	Age at recruitment: NR	297 males and females with STK 1 1	40 50	y y	CR=8% (4–17%) CR=13% (7–24%)	Adjustments: NR
		mutation	60 70	У У	CR=31% (18–50%) CR=45% (27–68%)	Limitations: Ascertainment bias
		16 Cases				
		Age at diagnosis: 35–61 y				

Abbreviations: CR, cumulative risk; NR, not reported; OR, odds ratio; p, p-value; PJS, Peutz-Jeghers polyposis and cancer syndrome; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; y, year/s.

Table D.17 TP53 and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Easton et al., 201598	1 segregation analysis	Population: based on families	TP53 gene mutation vs no TP53 gene	Breast cancer	RR=105 (90% CI: 62-165)	Model: NR
USA		ascertained through sarcoma	mutation			Adjustments: NR
Study published in 2003		probands				Publication bias: NR
						Limitations:
						Potential ascertainment bias
Cohort studies						
Mai et al., 2016 ¹⁶⁶	NCI LFS study	186 TP53+ participants	TP53 gene mutation & LFS syndrome	Breast cancer by age 60 y	CIR=approximately 85%	Model: NR
USA	Start of recruitment:					Adjustments: NR
	Aug 2011	76 cases				limitations
	Prospective study	Median age at time of death or				Referral/selection bias due to identification of families with
	Age at enrolment: NR	last follow–up: 35 y				cancer diagnosis among family members
	Follow–up duration:					Inclusion of only TP53+ family
	NR					members
						Potential inflation of survival estimates
						Limited data on treatments and data collected retrospectively
Bougeard et al., 2015 ¹⁶⁷	Prospective study	257 female TP53 carriers	TP53 mutation	Breast cancer	127 out of 160 (79%) of affected mutation carriers	Model: NR
	Cohort tested for			CBC	40 out of 127 (31%) with CBC	Adjustments: NR
France	TP53 mutations:	127 cases				

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	1993-2013					Limitations: NR
	Age at enrolment: NR	Mean age of tumour onset: 35 y				
	Follow–up duration: NR					
Hwang et al., 2003 ¹⁶⁵	Prospective study	107 kindreds from patients with	TP53 mutation & familial childhood	Breast cancer		Monsoon program Cohort Analysis for Genetic
USA	End of study: 2001	childhood soft tissue sarcoma:	sarcoma Mutation carriers		SIR=105.1 (55.9–179.8)	Epidemiology
	Childhood soft tissue sarcoma diagnosed: 1944–1975	56 germline TP53 mutation carriers				Adjustments: Birth year, race and familial correlation
	Follow–up: >20 y	13 cases (out of 56 carriers)				Limitations: NR
		48 non–carriers				
Case-control studies	\$					
Couch et al., 2017 ¹⁰¹	Laboratory-based	38,305 incident cases	TP53	Breast cancer	OR=2.58 (1.39–4.90); p=1.53x10 ⁻³	Model: NR
LISA	Controls from Exome	26 789 controls			р	Adjustments: NR
0071	Aggregation	20,707 00111013				Limitations:
	Consortium	Ethnicity: multi– ethnic				Not a population-based study
	Genetic testing: Mar 2012–Jun 2016	8,009 incident cases	-	Breast cancer at ≤40 y	OR=8.25 (4.27–15.84); p=1.04x10 ⁻¹¹	Association analysis limited to sequencing results from breast
	Age at enrolment: NR	26,789 controls				database of Exome Aggregation Consortium
		Ethnicity: multi– ethnic				reference samples

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
						Cases and controls were not matched and were sequenced on different platforms, which may inflate ORs
Kurian et al., 201793	Laboratory-based	19,056 incident	TP53	Breast cancer		Multivariable logistic regression
ΑΖΗ	Genetic testina:	Cases	Overall		OR=5.37 (2.78–10.4);	model
03/1	Sep 2013–Sep 2015	51,200 cancer-free controls	Matched case-		OR=5.00 (1.07–46.9);	Adjustments§
	Median age at hereditary cancer testing: 55 y	dian age at editary cancer 15,826 cases with ting: 55 y matched controls	Limitations: Eligibility criteria was not rigorous			
						Family history obtained from requisition forms completed by ordering physicians and genetic counsellors
						Differential reporting of family history
						Family history did not include number of unaffected relatives
McCuaig et al., 2012 ¹⁶⁴	Retrospective case–only study,	28 incident cases diagnosed <30 y	TP53 pathogenic mutation	Breast cancer		Model: NR
Canada	clinic-based	15 cases from	Did not meet current criteria for LFS		Prevalence of mutation in those who did not meet current criteria	Adjustments: NR
Ger 1992	Genetic testing: 1992-2011	families suggestive of LFS		for LFS=7.7%	for LFS=7.7%	Limitations: Retrospective study, with limited ability to collect clinical
	Age at enrolment: NR					information
						Small sample size

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Mouchawar et al., 2010 ¹⁶³	Australian Breast Cancer Family	52 prevalent cases	TP53 germline mutation	Very early onset breast cancer	Prevalence of mutation=4% (n=2)	Model: NR
	Study, population-			(before age 30 y)		Adjustments: NR
Australia	based	42 prevalent cases	2 or more first– or	Early onset breast	Prevalence of mutation=7% (n=3)	-
	Breast cancer diagnosed: 1992–1999		second-degree relatives with breast or ovarian cancer	cancer (aged 30–39 y)		Limitations: NR
	Age at enrolment: >18 y					

Note: Risk estimates are presented with 95% confidence intervals (except for Easton et al., 2015, which presented a 90% confidence interval).

Abbreviations: CBC, contralateral breast cancer; CIR, cumulative incidence rate; LFS, Li–Fraumeni syndrome; n, number; NCI LSF, National Cancer Institute Li–Fraumani Syndrome; NR, not reported; OR, odds ration; RR, relative risk or risk estimate; SIR, standard incidence ratio; TP53+, TP53 mutation carriers; USA, United States of America; y, year/s.

†Multivariable logistic regression model.

‡Matched case-control analyses, exact McNemar's test.

§Adjusted for age, ancestry, personal and family cancer histories associated with HBOC, and Lynch and adenomatous polyposis colon cancer syndromes.

Breast pathology

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Dyrstad et al., 2015 ¹⁶⁸	32 retrospective & prospective case-	Participant information: NR	BBD	Breast cancer		Random effects model
Studies published	control studies	Referent group: reported as either	Non-proliferative		RR=1.17 (0.94–1.47); l²=79.7%, p(heter)<0.0001	Publication bias assessed by Funnel plot & rank correlation
1972–2010	Mean follow–up: 12.8 v	'designated reference	PDWA		RR=1.76 (1.58–1.95); l²=40.1%, p(heter)=0.0542	method of Begg. Significant heterogeneity in studies for:
Canada, China, Italy, Japan, UK &		population' or 'BBD'	Not otherwise specified		RR=2.07 (1.64–2.61); l²=97.8%, p(heter)<0.0001	benign breast disease not otherwise specified & non- proliferative disease
USA		Mean age at	AH not otherwise		RR=3.93 (3.24–4.76); I ² =33.2%,	proliterative disease
		biopsy: 46.6 y	specified		p(heter)=0.1166	Adjustments: NR
		Median age at				Limitations:
		breast cancer				Lack of uniform reporting on
		diagnosis: 55.9 y				specific BBD pathologies
						Each risk estimate adjusted for
						factors that varied for each
						stuay & may attect statistical analysis
Zhou et al., 2011 ¹⁶⁹	7 nested case-	2,340 cases	BBD	Breast cancer		Random effects model
	control studies	4,422 controls	Non-proliferative		OR=1 (referent)	
Studies published			(referent)			No significant publication bias
1992– 2010	2 case–control	Participants	PDWA		OR=1.44 (1.28–1.63);	(Egger's test 0.05)
	siddles	information: NR			p(heter)=0.80	
& USA			AH		OR=2.81 (1.91-4.12); p(heter)<0.01	Adjustments: NR
			ADH		OR=2.93 (2.16–3.97);	Limitations:
			_		p(heter)=0.479	Both very old & relatively new

Table D.18 Previous benign breast disease and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			ALH		OR=5.14 (3.52–7.52); p(heter)=0.975	studies were included in this study
						Most subjects were Caucasian & not Asian
						ORs were unadjusted
Cohort studies						
Visscher et al., 2017 ¹⁷⁴	Mayo clinical BBD cohort	1,414 women 140 cases	BBD vs non– proliferative	Breast cancer		Proportional subdistribution hazards model†
			First biopsy			
	Benign breast		PDWA		HR=1.79 (1.20-2.66)	Limitations:
	Diopsies. 1767-2001		AH		HR=4.60 (2.41–8.79); p-trend<0.001	sample of total breast tissue, &
	Retrospective		Second biopsy	_		lesions may not be present in the biopsy
	Stody		PDWA		HR=1.77 (1.22–2.57)	
	Age categories: <45, 45–55 & >55 y		АН		HR=3.40 (2.08–5.55); p-trend<0.001	Findings were from clinically
			First to second	-		distinct subset of BBD women
	Median follow-up:		biopsy			who underwent more than
	20.3 y		NP to NP		HR=1 (referent)	one benign biopsy for clinical
			NP to PDWA/AH		HR=1.69 (1.01-2.82)	Teasons
			PDWA to NP		HR=1.12 (0.54-2.34)	MBC differed significantly by
			PDWA to PDWA		HR=2.32 (1.38–3.88)	age, family history of breast
			PDWA to AH		HR=3.23 (1.53–6.85)	cancer & clinical presentation
			AH to NP/PDWA		HR=3.36 (1.34–8.45)	from other subsets in cohort
			AH to AH		HR=7.30 (2.68–19.86); p-trend<0.001	
Radisky et al., 2016 ¹⁷⁵	Mayo clinical BBD cohort	106 cases 1,009 controls	BBD vs non– proliferative	Breast cancer		Cox proportional hazards regression model
			PDWA		HR=2.10 (1.31–3.35)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments		
	Multiple breast biopsy cohort only Benign breast		AH		HR=5.49 (2.56-11.81); p-trend<0.001	Adjustments: Time from first biopsy to second biopsy & histologic impression		
	biopsies: 1967-2001 Retrospective					Limitations: Significant differences in		
	study Ages: 18–85 y					average age between the MBC & overall BBD cohort; & limited power of statistical comparisons		
	Median follow–up: 21.9 y							
Degnim et al., 2016 ¹⁷⁸	Mayo clinical BBD & Nashville AH	1,174 AH cases	Benign breast disease	Breast cancer		SIR calculation: Observed breast cancer		
	cohort Mayo cohort: 708 AH cases & Retrospective 143 breast	Mayo cohort: 708 AH cases & 143 breast	ADH (overall) ADH (number of atypical foci)		SIR=3.49 (2.88-4.22)	incidence divided by population-based expected counts		
	study	cancer cases	1	SIR [.] SIR	SIR=2.65 (2.06 –3.41) SIR=5.19 (3.59–7.52)	Adjustments:		
		Ages: 18–85 y	≥3		SIR=8.94 (5.48–14.59); p-trend<0.001	The analyses account for the effects of age & calendar period		
		Median follow- up: 13.5 y	ALH (overall) ALH (number of	-	SIR=3.41 (2.87-4.04)	Limitations:		
		Nashville cohort: 466 AH cases &	atypical foci) 1		SIR=2.58 (1.95–3.42)	There may be variability in how number of foci were		
		115 breast	2		SIR=3.49 (2.51-4.86)	identified		
			≥3	_	SIR=4.97 (3.74–6.62); p-trend=0.001	AH is only detected via tissue		
		Women aged 20–91 y	women aged 20–91 y	women aged 20–91 y	ADH (overall) ADH (number of	Invasive breast cancer	SIR=3.46 (2.77-4.31)	regard to breast cancer
		Median follow-	atypical foci) 1		SIR=2.88 (2.19–3.80)			

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		ир: 17 у	2 ≥3		SIR=4.61 (2.94–7.23) SIR=7.14 (3.84–13.28); p-trend=0.007	
			ALH (overall) ALH (number of atypical foci)	-	SIR=3.71 (3.08-4.48)	
			1 2 ≥3		SIR=2.90 (2.14–3.92) SIR=3.51 (2.40–5.11) SIR=5.58 (4.09–7.61); p-trend=0.004	
Said et al., 2015 ¹⁷⁶	Mayo clinical BBD cohort	11,591 women with excisional breast biopsy	Benign breast disease	Breast cancer	HP-1 (referent)	Cox proportional hazards regression analysis
	Benign breast biopsies: 1967–2001 Retrospective study Age categories: <45, 45–55 & >55 y	282 FEA cases: 48 FEA + breast cancer cases 1,044 no FEA + breast cancer cases	NP PDWA AH		HR=1 (referent) HR=1.61 (1.40–1.85) HR=3.80 (3.04–4.74); p<0.0001	Adjustments: FEA absent/present, age at biopsy, year of biopsy, extent of lobular involution & family history of breast cancer
	Median follow–up: 16.8 y					
Hartmann et al., 2014 ¹⁷⁷	Mayo clinical BBD cohort	13,652 women	Benign breast disease	Breast cancer		Limitations: Single institute, which could
	Benign breast biopsies: 1967–2001	AH cases: 698 ADH cases: 330	AH (overall) Age at AH	-	SIR=4.34 (3.66–5.12)	- Study included women who
	Retrospective	ADH + ALH cases: 32	<45 y		SIR=5.45 (3.17-8.73)	had histologic findings of atypical hyperplasia on breast
	study	Breast cancer cases: 143	45–55 y >55 y		SIR=5.43 (4.13-7.01) SIR=3.54 (2.74-4.49); p=0.04	biopsy between 1/1/1967 & 12/31/2001 at Mayo clinic,

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Age categories:		Type of AH			women referred to Mayo
	<45, 45–55 & >55 y		ADH		SIR=3.93 (3.00-5.06)	because of a finding of atypia
	Moon follow up:	ALH		SIR=4.76 (3.74–5.97)	on an outside biopsy were not	
	12.5 v	Mean follow–up:	ADH + ALH	SIR=4.36 (1.75 –8.96); p=0.54		
	12.0 y		Number of atypical	_		
			loci			
			1		SIR=3.19 (2.46-4.07)	
			2		SIR=5.53 (3.95-7.53)	
			≥3		SIR=7.61 (5.36-10.49); p<0.001	

Abbreviations: ADH, atypical ductal hyperplasia; ALH, atypical lobular hyperplasia; AH; atypical hyperplasia; BBD, benign breast disease; FEA, flat epithelial atypia; HR, hazard ratio; MBC, multiple biopsy cohort; NP, non-proliferative disease; NR, not reported; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; p-trend, p-value for linear trend; PDWA, proliferative disease with atypia; RR, relative risk or risk estimate; SIR, standardised incidence ratio.; UK, United Kingdom; USA, United States of America; y, year/s.

[†]Adjusted for age at index biopsy, year of index biopsy, extent of lobular involution, family history of breast cancer, and time between index and second biopsy. Time was modelled as time from index biopsy to cancer for index biopsy characteristics and time from second biopsy to cancer for secondary biopsy characteristics. Age at index biopsy was used as an adjustment term for the characteristics at index biopsy, and age at second biopsy was used for characteristics at second biopsy.

‡Observed breast cancer incidence divided by expected counts. The expected number was determined by dividing the patient's follow-up into 5-year periods according to the patient's age and according to the calendar period; this accounted for differences related to the variables. Potential heterogeneity in SIRs across subgroups was assessed with Poisson regression analysis.

Table D.19 LCIS and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Cohort studies						
Mao et al., 2017 ¹⁸⁶	SEER	10,304 women	LCIS	Invasive IBC		Multivariable Cox proportional
			HR–		HR=1 (referent)	model
USA	Prospective study	HR+: 9,949 cases	HR+		HR=0.356 (0.141–0.899); p=0.029	
	Cobort datas:	diagnosis: 62 y HR-: 355 cases	Treatment	-		 Adjustments:
	1998–2007		No surgery		HR=1 (referent)	pathologic, & treatment
			BCS		HR=0.074 (0.026–0.210); p<0.001	factors
Women aged	Median age at	Radiation				
	20–84 y (diagnosed	osed diagnosis: 63 y 1 last 9,179 white women 588 black women -UP: 509 other	No		HR=1 (referent)	Limitations:
	with LCIS within last		Yes		HR=0.490 (0.263–0.912); p=0.024	Lack of information on family history, lifestyle factors, clinical pathological characteristics, genetic mutations & use of chemo-preventatives
6 montris)	8 (110) (11) (1)			Invasive CBC		
	Median follow–up: g		HR–		HR=1 (referent)	
			HR+	_	HR=0.172 (0.108–0.274); p<0.001	
			Treatment			
			No surgery		HR=1 (referent)	ine pathology & HR reporting may not be accurate
			BCS		HR=0.181 (0.064–0.509); p=0.001	
			Mastectomy		HR=0.225 (0.080-0.632); p=0.005	The incidences of second
						underestimated
King et al., 2015 ¹⁸⁰	Patients	1,060 women with	LCIS	Breast cancer		Cox regression model
	participating in	LCIS	Use of		HR=0.269 (0.15–0.50); p<0.001	
USA	surveillance for LCIS		chemoprevention			Adjustments: NR
	Kettering Cancer	chemoprevention		Insilateral breast	4397	Limitations: NR
	Center	enemoprovermen		cancer	00%	LITHIGHOUS. NK
		168 cases				
	Cohort dates:					_
	1980-2009			Contralateral Breast	25%	
	Prospective study			cancer		

Authors	Study details	Study sample	Exposures		Outcomes		Risk estimates	Author comments
	Median follow up: 81 months				Bilateral c	breast ancer	12%	
	Median age at baseline: 50 y							
Li et al., 2006 ¹⁸⁴	SEER	4,270 women	LCIS		Invasive LBC			Cox proportional hazard model
		282 cases		Initial DCIS			HR=1 (referent)	
USA	Prospective study			Initial LCIS			HR=5.3 (4.1–6.9); p=sig.	Adjustments:
	Cohort date: 1988–2002	Mean age at diagnosis: 54.3 y		Initial DCIS Initial LCIS	Invasive DBC		HR=1 (referent) HR=0.8 (0.7–1.0); p=sig.	Age, year, registry, race/ethnicity, & surgery
		3,606 Non–Hispanic						Limitations:
	Follow–up: up to 14 y	white 328 Black						Misclassification errors
		153 Asian/Pacific						Possible confounders
		Islander						
		9 American						
		Indian/Alaska Native						
Rawal et al., 2005189	Swedish Family-	In situ breast	LCIS		Invasive CBC			Poisson regression model
	Cancer Database	cancer: 3,802				No	RR=1.00 (referent)	
Sweden		women				Yes	RR=3.16 (1.42–7.03); p=sig.	Adjustments:
	Prospective study Cobort dates:	15 cases: 6 CBC			Invasive IBC			Age, family history, parity &
	1993–2000	cases; 9 IBC cases				No	RR=1.00 (referent)	
						Tes	KK-4.74 (2.46-9.11), p-sig.	Limitations:
	Age at baseline:	34,803 without in						Small number of cases
	≥21 y	situ breast cancer						
	Follow–up: up to 7 y	Population covered						A higher incidence of DCIS/LCIS due to screening
		by national						-
		mammographic						Possible confounders
		screening						(treatment, contraceptives,
								singe of concer & iumour size)

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Chuba et al.,	SEER database	4,853 women	LCIS	Breast cancer		Model: NR
2005181			All ages		SIR=2.4 (2.1-2.6)	
	Prospective study	350 cases	<40 y		SIR=3.3 (1.9–5.4)	Adjustments:
USA			40–49 y		SIR=2.2 (1.8-2.7)	Age & year of diagnosis
	Conort dates:		50–59 y		SIR=2.1 (1.7-2.6)	limitations
	1770 1770		60–69 y		SIR=2.7 (2.1-4.0)	Linder reporting or imperfect
	Age at baseline: NR		>70 y		SIR=2.9 (2.0-4.0)	ascertainment
	Follow–up: 25 y		Partial mastectomy	-	CIR=24.3%	Pathological definitions of LCIS changed during the study
			Mastectomy	-	CIR=12.8%	penod
						Data on treatment factors & personal history was lacking
Levi et al., 2005) ¹⁸⁷	Vaud Cancer	88 LCIS patients	LCIS	Invasive breast		Model: NR
	Registry		Overall	cancer	SIR=4.2 (2.1–7.5)	
Switzerland	Prospective	11 cases		-		Adjustments: NR
					SIR-24 (08 4 1)	
	Cohort dates:		Lobular		SIR = 11.5 (3.7 - 26.8)	Linitations.
	1977–2002		Other		SIR=3.6 (0.0-20.1)	family history, histology & other
	Follow–up: up to 25 y, 4,025 person–y		Chici		SIK-0.0 (0.0 20.1)	confounding factors
	Age range: 27–91 y					
Wärnberg et al.,	Swedish Cancer	55 LCIS patients	LCIS	Invasive breast		Model: NR
2000191	Registry	14 cases		cancer	SIR=4.0 (2.1–7.5)	
	Cobort datas:					Adjustments: NR
Sweden	1980–1992	Age at diagnosis NR				Limitations:
	Mean follow-up: 4.3 y					Small incidence number

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Page et al., 1991 ¹⁹⁵	Hospital cohort	39 LCIS patients	LCIS	Invasive carcinoma of the breast	RR=8.2 (3.6–18)	Cox hazard regression model
USA	Cohort dates: 1950–1968	Women who underwent breast				Adjustments: age
	Follow–up: 19 y	biopsies in Nashville hospitals				Limitations: NR
Lo et al., 2018 ¹⁸⁵	Victorian Cancer	732 LCIS cases	LCIS	Invasive breast	Mean observed risk at 10 y=14.1%	Chi-squared goodness-of-fit
Australia	Regisiry	73 invasive breast		Curren	(11.5-17.5%)	statistic compatison
	Cohort dates: 1982–2015	10 y of LCIS diagnosis			Mean assigned risk at 10 y=20.9%	Adjustments: NR
		254 women without				Limitations:
	Prospective study	invasive breast				Information lacking on uptake of bilateral mastectomy or risk-
	Median age at LCIS diagnosis: 50 y	follow-up				reducing medication after LCIS diagnosis
		LCIS cases				
	Mean follow-up: 9.8	excluded previous				Potential misclassification of
	У	or synchronous DCIS or invasive				LCIS as atypical hyperplasia
		breast cancer in				Overestimation and poorer
		(including within 6				calibration of data for women
		months after I CIS				diagnosed with LCIS at age ≥50
		diagnosis)				years
		Women with other				Overdiagnoses from
		invasive cancer				mammographic screening
		diagnoses (except				
		cancer) prior to				Patient migration out of Victoria
		their pure LCIS				after LCIS diagnosis
		diagnosis were also				
		excluded				

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Wong et al., 2017 ¹⁹⁷	SEER database	19,462 women with histological	LCIS	DCIS or invasive breast cancer,	10-year cumulative risk=11.3% (10.7–11.9%)	Kaplan–Meier method
USA	Cohort dates: 1983–2014	diagnosis of LCIS	including IDC and ILC	20-y cumulative risk=19.8%	No adjustments	
		cases			(18.8–20.9%)	Limitations:
	Retrospective study	Median age at LCIS diagnosis: 53.7 y††			Pure pleomorphic LCIS not treated with radiation may exist within the cohort and increase	
	Age at enrolment: NR	LCIS diagnosed between 1983 and 2013				the incidence of ipsilateral malignancies
	Median follow-up: 8.1 y	Ethnicity: majority were Caucasian & non-Hispanic				Lack of information on chemoprevention or reasons for surgical treatment selection, as well as LCIS grade, extent of
		Inclusion of women aged ≥18 y with				disease, and multifocality
		confirmed LCIS				of SEER registry catchment areas
		exclusion of women with a history of prior malignancy, as well as those with a synchronous malignancy				Progressive incorporation of additional SEER registries in 1992 and 2000 confounds the surgical trend observation.
		diagnosed within 6 months of LCIS diagnosis				11.1% (n=2159) of women with LCIS underwent mastectomy
		Breast cancers were diagnosed >6 months following the index LCIS				

Authors	Study details	Study sample	Exposu	res	Outcomes	Risk estimates	Author comments
Robinson et al., 2008 ¹⁹³	Thames Cancer Registry	12,836 women with BCIS	LCIS	First year post- diganosis	Ipsilateral breast cancer	SIR=8.06 (2.62-18.8)	Model: NR
Southeast England	Cohort dates: 1971–2004	512 invasive breast cancer cases	BCIS		Breast cancer	SIR=1.96 (1.79-2.14)	Limitations:
	Retrospective study	Mean age at initial BCIS diagnosis: 57 y					Cancer registry data contains limited and incomplete treatment information
	Age at enrolment: NR	Women were diagnosed with					Underreporting of second cancers in those who leave the
	Follow-up duration: NR	BCIS 1971-2003					registry catchment area
		Women with BCIS were excluded if recorded date of diagnosis was the same as the date of death, if prior or					Cancer incidence until the end of 2004 may be incomplete
		synchronous cancer was present and if patients were wrongly classified as having received chemotherapy					
Soerjomataram et al., 2006 ¹⁹²	Eindhoven Cancer Registry	1,223 women with BCIS§§, including 66 cases LCIS	LCIS vs populo	general Ition	Second breast cancer	SIR=2.5, AER: 42	Poisson probability for 95% CI of SIR
The Netherlands	Cohort dates: 1972–2003	143 cancer cases;					Adjustments: age (in 5-year categories) and calendar year of BCIS diagnosis.
	Prospective study End of follow-up:	3 cases of second breast among 66 initial cases of LCIS					Limitations: Most women had less than 10

Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Dec 2003					years of follow-up
Age at enrolment: >25 y	Mean age at initial BCIS diagnosis: 57.1 Y				The absolute numbers are relatively small
Mean follow-up: 6.3 y	Women were diagnosed with BCIS 1972-2002				Increased medical surveillance of women with BCIS may have increased detection of second cancers
	Patients with <1- year of follow-up time and with unknown morphological code were				AER should be interpreted with caution since BCIS accounts for only approximately 13% of all breast cancer diagnoses
	excluded				57% of all secondary cancers were diagnosed in 1–4 y of follow-up
Vaud Cancer Registry	249 incident cases diagnosed with histologically	LCIS	Invasive breast cancer	SIR=4.2 (1.1-10.7)	Poisson distribution
Cohort dates:	confirmed CIS	CIS		SIR=7.2 (4.6-10.6	Adjustments: NR
End of follow-up:	59 incident LCIS cases				Limitations: Information on selected clinicopathological characteristics, such as site and margin status was leaking
Retrospective study	invasive breast cancer cases				margin status was tacking
Median age at entry: 50 y for LCIS patients	Exclusion of women with a history of previous malignant				No meaningful pattern was
	Study details Dec 2003 Age at enrolment: >25 y Mean follow-up: 6.3 y Vaud Cancer Registry Cohort dates: 1977-94 End of follow-up: 1994 Retrospective study Median age at entry: 50 y for LCIS patients	Study detailsStudy sampleDec 2003Mean age at initial BCIS diagnosis: 57.1 yAge at enrolment: >25 yMean follow-up: 6.3 yWomen were diagnosed with BCIS 1972-2002Mean follow-up: 6.3 yWomen were diagnosed with BCIS 1972-2002Mean follow-up: 6.3 yPatients with <1- year of follow-up time and with unknown morphological code were excludedVaud Cancer Registry249 incident cases diagnosed with histologically confirmed CIS 1977-94Vaud Cancer Registry249 incident cases diagnosed with histologically confirmed CIS 59 incident LCIS casesEnd of follow-up: 199459 incident LCIS casesRetrospective study4 secondary invasive breast cancer casesMedian age at entry: 50 y for LCIS patientsExclusion of women with a history of previous malignant neoplasm, with the	Study detailsStudy sampleExposuresDec 2003Mean age at initial BCIS diagnosis: 57.1 YMean follow-up: 6.3 YMean not see diagnosed with BCIS 1972-2002Mean follow-up: 6.3 YWomen were diagnosed with BCIS 1972-2002	Study detailsStudy sampleExposuresOutcomesDec 2003Mean age at initial BCIS diagnosis: 57.1 YMean age at initial BCIS diagnosis: 57.1 YMean follow-up: 6.3 YWomen were diagnosed with BCIS 1972-2002	Sludy detailsSludy sampleExposuresOutcomesRisk estimatesDec 2003Mean age at initial BCIS diagnosis: 57.1 YMean age at initial BCIS diagnoses: 57.1 YMean follow-up: 6.3 yWomen were diagnosed with BCIS 1972-2002ValueSile 4.2 List and the second with unknown morphological code were excludedVaud Cancer Registry249 incident cases diagnosed with histologicallyLCISInvasive breast cancerSIR=4.2 (1.1-10.7) cancerVaud Cancer Registry249 incident cases diagnosed with histologicallyLCISInvasive breast cancerSIR=7.2 (4.6-10.6)Partients with LCIS confirmed CISSile 4.2 (1.1-10.7) cancerSile 7.2 (4.6-10.6)Partient studyconfirmed CIS casesCISSile 7.2 (4.6-10.6)Partient studycasesCisSile 7.2 (4.6-10.6)Partients studycasesSile 7.2

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author com	ments
	Follow-up duration: NR	exception of non- melanomatous skin cancer and concurrent cancer of the breast or other sites				observed for LCIS due to I cases diagn	r breast cancer after limited number of osed
Bodian et al., 1996 ¹⁹⁰	Last patient contact: 1993–94	236 patients with LCIS	Lobular neoplasia vs general population	Invasive or intraductal			Standardised morbidity ratios
			All patients	carcinoma	RR=5.4 (4.2-7.0)		
USA	Prospective study	62 carcinoma cases — (intraductal and invasive carcinoma)	Multivariate analysis †	-	RR=5.3; p=0.001		Adjustments: NR
	Median age at enrolment: 47 y		By years after initial diagnosis of LCIS	_	RR=5.8 (2.8-10.7)		Limitations: NR
		LCIS diagnosed by	1-4 y				Patients had at least
	Median age at last-	biopsy	5-9 y		RR=8.9 (5.3-13.8)		one year of follow-
	known diagnosis of		10-14 y		RR=5.1 (2.5-9.1)		up, at least one biopsy specimen
	50 y		15–19 y		RR=7.3 (4.0-12.2)		with LCIS, and no
			20-29 y		RR=2.0 (0.7-4.8)		previous or concur-
	Median follow-up: 18 y		30-39 y		RR=3.5 (0.7-10.2)		rent CA, with at least one breast intact after their first diagnosis of LN
Rosen et al.,1978 ¹⁸⁸	Cohort dates: LCIS	99 LCIS cases who	LCIS vs general	Breast cancer	9-fold increased risk (observed vs e	expected	Expected number
USA	cases diagnosed 1940–1950	underwent breast biopsy	population		p<0.001)	of cancers calculated by calendar year & 5-	
	Retrospective study	32 invasive breast cancer cases					age intervals using incidence data from the
	Mean age at LCIS						Connecticut Tumor
	diagnosis: 45 y	77 LCIS patients with					Registry
	Mean follow-up: 24	28 cases ot breast cancer included in risk analysis	_			_	Adjustments: NR

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments	
	у	(Inclusion criteria for analysis: patients whose only lesion				Limitations: NR	
		was untreated unilateral LCIS; patients with no prior or simultaneous contralateral breast carcinoma; known age and year of diagnosis of LCIS; known age at diagnosis of subsequent				Intervals between diagnosis of LCIS and carcinoma o the breast varied to 31 years in cancer of the ipsilateral breast t from 3 to 30 years the contralateral breast	n of 12 to rs in 1
		carcinoma if it occurred; and known age at last follow-up or death)				About 38% of patients develope breast cancer at least 20 years afte a diagnosis of LCI	red Fer
		Exclusion of women treated by mastectomy; exclusion of women with LCIS and intraductal carcinoma in same breast; and exclusion of patients with simultaneous LCIS and infiltrating carcinoma					
Andersen, 1977 ¹⁹⁶	Cohort dates: 1942–1961	3,299 cases of benign breast	LCIS	Invasive breast cancer	_	Model: NR	

Authors	Study details	Study sample	Exposu	res	Outcomes	Risk estimates	Author com	ments
Denmark		lesions						Adjustments: NR
	Retrospective study	44 LCIS cases						Limitations: NR
	Age at enrolment: NR	11 invasive breast cancer cases						Povious of 5 278
	Mean follow-up: 15.9 y	Mean age at time of operation (biopsy): 46 y						newly prepared slides from 3,299 cases of benign
		The figures are based on biopsy- treated patients only						The National Registry provided
		Excluded those with previous invasive cancer and those who had LCIS treated with mastectomy						
Case-control studies								
To et al., 2014 ¹⁹⁸	The CNBSS study	35 women with LCIS	LCIS		Breast cancer	5-year CIP=5.71%	Models and	methods§¶
Canada	Nested case	7 invasive breast				10-year CIP=11.52%	Adjustments	s§¶
	control study within	cancer cases				15-year CIP=17.52%	Limitations:	NR
	an RCI	Controls‡						
						20-year CIP=21.26%	Mean time to diagnosis	from diagnosis of LCIS
	Recruitment: 1980-1985	Mode of LCIS detection:		Case-control		OR=2.69 (1.07-6.75); p=0.0346	cancer was compared	8.62±6.26 years to 5.45±5.22 years for
		77.1% screen		DCIS		RR=1 (referent)	- DCIS	
	Follow-up by	detected		LCIS		RR=1.03 (0.43-2.46); p=0.9494	Care contra	analysis nataatial
	surgeon: 1980-1996	(70.4%					controls we	re excluded if they

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	End of passive follow-up through	mammography alone, 18.5% physical				had died or been diagnosed with invasive breast cancer prior to the case's diagnosis of CIS
	record linkage: Dec 2005 & 11.1% for both) 5.7% Interval (<12 Age at entry: 40-59 y screening)	examination alone & 11.1% for both) 5.7% Interval (<12 months after screening)				Histological verification required a review of the slides from all breast biopsies performed during the period of screening, regardless of the diagnosis made by the community pathologist
		17.1% Incident (>12 months after screening)				

Abbreviations: AER, absolute excess risk; BCS, breast conserving surgery; CA, invasive or intraductal carcinoma; CBC, contralateral breast cancer; CIP, cumulative incidence probability; CIR, cumulative incidence rate; CIS, carcinoma in situ; CNBSS, Canadian National Breast Screening Study; DBC, ductal breast cancer; DCIS, ductal carcinoma in situ; HR, hazard ratio; HR+/–, hormone receptor status positive/negative; IBC, ipsilateral breast cancer; IBIS-RET, International Breast Cancer Intervention Study Risk Evaluation Tool; LBC, lobular breast cancer; LCIS, lobular carcinoma in situ; NA, not applicable; NR, not reported; p, p–value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; SEER, Surveillance, Epidemiology & End Results; SIR, standardised incidence ratio; USA, United States of America; y, year/s.

†Multivariate "baseline group" patients had an initial LN diagnosis between the ages 40 and 54 years, had no family history of CA, no personal history of BBD preceding their LN, and their initial LCIS had at least 90% of the acini in the lobule of maximum involvement showing the characteristic features of LCIS.

‡Conditional logistic regression with 1:5 matching used. Cases and controls were matched by age at entry, allocation group and centre of recruitment. Number of reference controls=175 women.

§Actuarial life table method for cumulative incidence probability. Adjusted for the 1:5 matching and stratified by CIS type.

¶Cox proportional hazards regression model for RR estimates. Adjusted for histological type, age at entry into the CNBSS and surgical treatment received.

†† Median age of diagosis of LCIS was stated as 52 y in the text and 53.7y in the abstract

§§Of the 1276 women diagnosed with BCIS, only 1223 were retained in the analyses

Table D.20 DCIS and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Zhang et al., 2016 ²⁰⁷	13 observational studies	Age of DCIS patients: 20–80 y	DCIS	Local invasive recurrence following		Fixed effects model (no heterogeneity/ random effects
Studies published to 2014	5 RCTs		By tumour characteristics	DCIS		model (heterogeneity)
Asia, Europe &		10,021 cases	Positive vs negative margins		HR=1.36 (1.04–1.69); l²=39.7%, p(heter)=0.127	Adjustments: Type of treatment
North America		10,866 cases	Non– screening vs screening detection		HR=1.38 (1.12–1.63); l²=48.2%, p(heter)=0.086	Publication bias: Sig. for PR & HER2 studies only
						Limitations: The number of eligible studies was relatively small
						Different definitions of tumour predictors
Cohort studies						
Elshof et al., 2017 ⁷⁰²	Surgical treatment: 1989–2004	7,042 women surgically treated for DCIS	DCIS Non-screening- related	Invasive IBC	HR=1 (referent)	Multivariable–adjusted Cox proportional hazards analysis
	Retrospective study	Screen-detected	Screen-detected		HR=0.75 (0.59–0.96) HR=1.02 (0.68–1.51)	Adjustments: DCIS treatment (time-varying),
	Median follow–up: 10.5 y	DCIS: 4,814	Non-screening- related	Invasive CBC	HR=1 (referent)	 DCIS grade & period of diagnosis
		Interval-detected DCIS: 651 Non-screen related DCIS: 1,577	Screen-detected		HR=0.86 (0.67-1.10)	Limitations: Non-screening group was
			Interval	-	HR=0.83 (0.54-1.26)	heterogeneous including women not invited to
		363 IBC cases 378 CBC cases				screening program & women refusing to participate

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		Age at DCIS diagnosis: 49–75 y				May not reflect current screening methods (screen– film vs full–field digital mammography)
Elshof et al., 2016 ²⁰⁵	Netherlands Cancer Registry &	10,090 women	DCIS Age at DCIS	Invasive IBC		Cox proportional hazards analysis
Netherlands	nation-wide	BCS + RT: 2,612	diagnosis			
	network & registry BCS	BCS alone: 2,658	<50 y		HR=1 (referent)	Adjustments:
	ot histology &	Mastectomy: 4,820	≥50 y		HR=0.38 (0.25–0.59); p<0.001	Treatment & period
	cytopathology		Treatment <50 y of			Limitations
	Me DCIS diagnosis: DCI 1989–2004 y	DCIS diagnosis: 989–2004 Y	age			Potential of confounding by
			0–5 y follow–up			indication
			BCS & RT		HR=1 (referent)	
	Retrospective study	79% of women	BCS alone		HR=2.11 (1.35–3.29); p=0.001	Bias due to non-randomisation
	Madian follow unt	aged ≥50 y at DCIS	Mastectomy		HR=0.35 (0.20–0.61); p<0.001	of DCIS treatment & potential
	10.7 v	alagnosis	10sis 5–10 y follow–up			relationship between
			BCS & RT		HR=1 (referent)	breast cancer
	Age at enrolment:		BCS alone		HR=1.01 (0.66–1.55); p=0.95	
	NR		Mastectomy		HR=0.13 (0.07–0.23); p<0.001	
			>10 y follow-up			
			BCS & RT		HR=1 (referent)	
			BCS alone		HR=0.78 (0.46–1.33); p=0.37	
			Mastectomy		HR=0.20 (0.11–0.37); p<0.001	
			Treatment ≥50 y of			
			age			
			0–5 y follow–up			
			BCS & RT		HR=1 (referent)	
			BCS alone		HR=4.44 (3.11–6.36); p<0.001	
			Mastectomy		HR=0.27 (0.16–0.46); p<0.001	
			5–10 y follow–up			
			BCS & RT		HR=1 (referent)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			BCS alone		HR=2.13 (1.54–2.96); p<0.001	
			Mastectomy	_	HR=0.10 (0.06–0.17); p<0.001	
			>10 y follow–up	_		
			BCS & RT		HR=1 (referent)	
			BCS alone		HR=1.64 (1.01–2.69); p=0.05	
			Mastectomy		HR=0.15 (0.08–0.29); p<0.001	
Buckley et al., 2016 ²⁰²	Sample source: population-based,	272,047 women	Screen-detected DCIS	Invasive breast cancer		Univariate Cox regression model
	from the BSSA	DCIS screen-	≤5 y since diagnosis		HR=4.0 (3.4–4.8)	Adjustments:
Australia	Cohort dates: 1989–2010 Retrospective cohort study Median follow–up: 12.2 y Age at enrolment (eligible for screening): 40–69 y	detected: 1,277 women 121 breast cancer cases Median age at DCIS diagnosis: 54 y Median age at first screen: 52 y Non-screen detected DCIS: 270,770 women	By treatment BCS +/– RT Mastectomy Mastectomy + BCS	_	HR=1 (referent) HR=0.54 (0.30–0.96) HR=6.31 (0.86–46.04)	Socio-economic status, area of residence (metropolitan or rural), age at initiation of screening & year of the woman's first breast screen Limitations: No data on DCIS margins & nuclear grade No natural history of DCIS. Most DCIS cases were surgically treated, affecting breast cancer risk & risk factor detection
Liu et al., 2015 ²⁰⁸	Sample source:	9,433 breast cancer cases Median age at first screen: 51 y 40,749 women	DCIS	IBC		Risk also affected by radiotherapy, tamoxifen & other systemic therapies not recorded in the administrative data Multivariable logistic regression
USA	SEER	receiving BCS & radiation therapy	Treatment (by propensity score			analysis
	DCIS diagnosis:		matching)			Adjustments:

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	2002-2011	WBI: 38,537 women	WBI		OR=1 (referent)	Patients were nested within
		APBIb: 2,212	APBIb		OR=1.74 (1.06–2.85); p=0.03	counties to account for the
	Retrospective study Median follow-up:	women Median age at	APBIb by propensity score adjustment		OR=1.68 (1.13-2.49); p=0.01	treatment selection among patients from the same county
	46 months	diagnosis: 58 y (range 18–100 v)	sis: 58 y WBI CBC OR=1 (referent)	OR=1 (referent)		
	Age at enrolment:		APBIb		OR=0.91 (0.59–1.41); p=0.68	Potential confounders were
	NR	22.1% of patient population were from ethnic minority groups	APBIb by propensity score adjustment		OR=0.87 (0.65–1.15); p=0.32	unavailable, including surgical margins, multifocality, endocrine therapy & comorbidities
						Lack of the information on surgical margins & endocrine therapy may have resulted in the underestimation of DCIS outcomes in APBIb patients
						Short follow–up time & incomplete capture of second breast tumours
Rakovitch et al.,	Sample source:	3,320 women	DCIS (treated by BCS	Breast cancer		Cox proportional hazards model
2015 ⁷⁰³ Canada	Ontario population-based DCIS cohort Diagnosis 1994-	BCS alone: 1,658	& negative resection margins) DCIS Oncotype	(local recurrence)	HR=1.68 (1.08–2.62); p=0.02	Adjustments: Margin status & year of diagnosis for DCIS score
	2003	BCS & RT: 1,662				— Limitations:
En	End date: 2010		Adjusting for margin status DCIS score		HR=2.11 (1.43-3.09): p<0.001	Patients were not randomised, but were selected for
	Retrospective study					on clinico-pathologic features & patient preference
	Median age at diagnosis†: 61 y					Margin width & tumour size data were incomplete

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Median follow–up: 9.6 y					Data on clinical presentation or family history were not available
	Age at enrolment: NR					
Cheung et al.,	Sample source:	3,930 patients	DCIS	IBC		Cox proportional hazard model
2014206	West Midlands		Radiotherapy			
	cancer registry	Age at DCIS diagnosis: 23–95 y	No		HR=1 (referent)	Adjustments:
UK	uuubuse		Yes		HR=0.455; p<0.0001	Patients aged 50–70 y for
	DCIS diagnosis:		Surgical treatment	-		Other adjustments not stated
	1988-2008		BCS		HR=1 (referent)	Limitations: Lack of information on tumour
			Mastectomy		HR=0.264; p<0.0001	
	Retrospective study		Unknown/no Tx		HR=1.046; p=0.783	
		-up: to 2011	Mode of detection	-		size
	Follow-up: to 2011		Non-screening-		HR=1 (referent)	
	Age at enrolment:	ant:	detected			
	NR		Screening detected		HR=0.318; p<0.0001	
			Cvtonuclear arade	-		—
			, C		HR=1 (referent)	
			Intermediate		HR=0.985; p=0.913	
			High		HR=1.609; p=0.0001	
			Unknown		HR=1.379; p=0.032	
Rakovitch et al.,	Sample source:	3,762 women	DCIS (Treated by	Breast cancer (local		Cox proportional hazard model
2013704	population-based		BCS)	recurrence)		
	cohort identified	BCS alone:	Margin status			Adjustments:
Canada	via the Ontario 1,8 Cancer Registry 36	1,867 women	Negative		HR=1 (referent)	Time of initial treatment
		363 cases	Positive		HR=1.4 (1.0–1.9); p=0.025	adjusted for year of diagnosis
	DCIS diagnosis:		DCIS (Treated by BCS	-		 Other adjustments not stated
	1994–2003	DUS & KI: 1 895 women	& RT)			Limitations:
		233 cases	Margin status			Tumour size & marain width
		200 00303	Negative		HR=1 (referent)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	End of follow–up:		Positive		HR=1.7 (1.2-2.4); p=0.002	were not consistently reported
	31 Mar 2010 Retrospective study					Data on clinical presentation were not available
	Mean age at time					
	of freatment:					
	58.66 y (BCS & RT)					
	Median follow–up: 10 y					
	Age at enrolment: NR					
Yi et al., 2012 ²⁰⁹	Sample source:	2,662 women from	DCIS	IBC (recurrences)		Multivariate Cox proportional
ASI	MDACC & MSKCC	cohorts	Adjuvant			nazara model
007			Yes		HR=1 (referent)	Adjustments:
	Surgery: 1990–2007	Multi-ethnic cohort	No			No other adjustments apart
	Retrospective study		MDACC		HR=2.45 (1.15–5.24); p=0.02	trom those listed under
	Kenospeenve slody		MSKCC	_	HR=2.11 (1.29-3.46); p=0.003	
	Median age at		Adjuvant radiation			Limitations:
	diagnosis of DCIS:		therapy			Small sample size & only
	57 Y		res		HR=1 (referent)	pathological features were used to determine risk
	Median follow-up				$HR = 1.59 (0.88 - 2.89) \cdot n = 0.1$	estimates
	5.6 y (MDACC)		MSKCC		HR=2.67 (1.91-3.75); p<0.001	
	7.1 y (MSKCC)		Initial presentation	-		
	Ago at oproleopt		Radiologic		HR=1 (referent)	
	NR		Clinical		· · ·	
			MDACC		HR=1.87 (1.03–3.37); p=0.039	
			MSKCC		HR=1.39 (0.95-2.03); p=0.09	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Falk et al., 2011 ²⁰³	Sample source: Cancer Registry of	3,046 women with DCIS	DCIS (compared with general population)	All malignancies	SIR=4.8 (4.1–5.5)	Multivariate Cox proportional hazards regression model
Norway	Norway—	192 cases	Age at diagnosis	Invasive IBC		
	population-based		≤49 y		HR=1 (referent)	Adjustment: NR
	DCIS diagnosted	Age at DCIS	50–69 y		HR=0.9 (0.5–1.5)	
	1993–2007	alagnosis: U->85 y	>70 y		HR=1.0 (0.5-1.8)	Limitations:
	1770 2007		Treatment			risk factors, tumour
	End of follow–up:		Mastectomy		HR=1 (referent)	characteristics & treatment
	31 Dec 2007		BCS only		HR=3.3 (1.4–7.8)	procedures
			BCS & RT		HR=2.1 (1.1–4.1)	
	Retrospective study		Detection method			
	Follow-up: 10 y		Non-screen detected		HR=1 (referent)	
	(4 momms=>10 y)		Screen-detected		HR=0.7 (0.4–1.1)	
	Age at enrolment:		Age at diagnosis	Invasive CBC		
	NR		≤49 y		HR=1 (referent)	
			50–69 y		HR=1.2 (0.6-2.3)	
			>70 y		HR=1.4 (0.6–3.1)	
			Treatment	-		
			Mastectomy		HR=1 (referent)	
			BCS only		HR=0.6 (0.1-2.5)	
			BCS & RT		HR=0.6 (0.3-1.4)	
			Detection method			
			Non-screen detected		HR=1 (referent)	
			Screen-detected		HR=0.8 (0.4–1.5)	
AIHW & NBOCC, 2010 ¹⁹⁹	DCIS diagnosed: 1995–2005 (1997 onwards for South	13,749 women diagnosed with DCIS	DCIS vs all Australian women (<11 months follow–up)	Invasive breast cancer		Model: Kaplan–Meier product limit technique
Australia	Australia & 1996		Overall		RR=3.9 (3.6-4.2)	Adjustments: NR
	onwards for	706 cases	Follow-up			

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Northern Territory)		<5 y		RR=3.6 (3.3–3.9)	Limitations:
		Age at DCIS	5–11 y		RR=5.3 (4.5-6.0)	Women who were diagnosed
		diagnosis: <40–≥80	<11 y		RR=3.9 (3.6-4.2)	with invasive breast cancer
		У	Age at diagnosis	-		diganosis had their DCIS
		Sample source:	<40 y		RR=19.8 (14.2-25.4)	diagnosis deleted from their
		derived from state	40–49 y		RR=5.6 (4.7–6.5)	record
		& territory cancer	50–59 y		RR=3.0 (2.5-3.4)	
		registries	60–69 y		RR=3.4 (2.9-3.9)	In Queensland, the DCIS
			70–79 y		RR=4.1 (3.3-4.8)	diagnosis was deleted it a diagnosis of invasive breast
			≥80 y		RR=4.2 (2.4–5.9)	cancer was within 6 months of
						DCIS being diagnoses
Innos et al., 2008 ²⁰⁴	DCIS diagnosis:	23,547 women	DCIS vs general	Invasive IBC		Poisson regression model
	1988–1999	23,411 women	population			
USA	For all all stars	analysed for CBC;	Overall		SIR=1.7 (1.4–2.1)	Adjustments:
	End date:	analysed for	Age at diagnosis of			Race/ethnicity, age at
	51 Dec 1777	ipsilateral DCIS	first DCIS			histological subtype of first
	Retrospective study		<40 y		SIR=23.9 (12.9–44.4)	DCIS, & treatment for first DCIS
	. ,	Invasive CBC:	40–49 y		SIR=5.4 (3.9–7.4)	
	Mean follow-up:	502 cases	50–64 y		SIR=1.3 (0.9–1.9)	Limitations:
	55 months	Invasive IBC:	≥65 y	<u>-</u>	SIR=1.0 (0.7–1.4)	Possible misclassification of the
	(3 months-≥5 y)	TU8 Cases	Treatment			primary diagnosis—
		Age at diagnosis:	Partial		IRR=1 (referent)	
	NR	<40–≥65 y	masieciomy & Ri			
		·	mastectomy only		IRR-3.07 (1.91-4.93)	Short follow–up for invasive IBC
		Sample source: population-based, California Cancer Registry Multi-ethnic,	Overall	Invasive CBC	SIR=1.4 (1.2–1.5)	
			Age at diagnosis of		0	
			first DCIS			
			<40 y		SIR=5.3 (3.7–7.5)	
			40–49 y		SIR=1.8 (1.4–2.2)	
		including White,	50–64 y		SIR=1.2 (1.0-1.4)	
Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
----------------------------------	---------------------------------	---	--------------------	---------------------------	-----------------------------	---
		African Americans, Hispanic & Asian– Pacific Islander	≥65 y		SIR=1.2 (1.1-1.4)	
Rawal et al., 2005189	DCIS diagnosis:	5,000,000 women	In situ vs general	Invasive IBC	RR=3.80 (2.98-4.84); p=sig.	Poisson regression model
	1993–2000	3,802 in situ breast	population	Invasive CBC	RR=1.96 (1.40-2.74); p=sig.	
Sweden		cancer patients				Adjustments:
	Retrospective study	breast cancer				Age, family history, parity & age at first birth
	Follow–up: from	cases				
	latter of age 21					Limitations:
	ation/Jan 1993 until	Sample source:				Number of cases was small
	diagnosis of breast	Swedish Family				Information on treatment
	cancer/death/emi	Cancer Database				received, contraceptives,
	gration/31 Dec 2000					stage of cancer & tumour size, was not available
	Age at enrolment: NR					
Levi et al., 2005 ¹⁸⁷	CIS diagnosis: 1977–2002	579 in situ patients	CIS	Invasive breast cancer	SIR=4.6 (3.4–6.2)	Limitations: Lack of treatment information,
Switzerland		482 DCIS patients				family history, histology & other
	Median age: 55 y	55 invasive breast				confounding factors
	(range 27–91 y) at enrolment	cancer cases				
		Sample source:				
	Follow–up: until	Vaud Cancer				
	Dec 2002	Registry file				
	Age at enrolment:					
	NR					

Note: Risk estimates are presented with 95% confidence intervals. Cases refer to breast cancer cases unless specified otherwise.

Abbreviations: ADH, atypical ductal hyperplasia; AlHW, Australian Institute of Health and Welfare; APBIb, accelerated partial breast irradiation through brachytherapy; BCS, breast conserving surgery; BSSA, South Australian breast cancer screening programme; CBC, contralateral breast cancer; CIS, carcinoma in situ; DCIS, ductal carcinoma in situ; EORTC, European Organisation for Research and Treatment Centre; HER2, human epidermal growth factor receptor 2; HPHC, Harvard Pilgrim Health Care; HR, hazard ratio; IBC, ipsilateral breast cancer; IRR, incident rate ratio; KPNC, Kaiser Permanente Northern California; KPSC, Kaiser Permanente Southern California; MDACC, MD Anderson Cancer Centre; MSKCC, Memorial Sloan–Kettering Cancer Centre; NBOCC, National Breast and Ovarian Cancer Centre; NR, not reported; NSABP, National Surgical Adjuvant Breast Project randomised trials for DCIS; OR, odds ratio; p, p–value; p(heter), p–value for the measure of heterogeneity; PR, progesterone receptor; RR, risk estimate or relative risk; RT, radiation therapy; SEER, Surveillance, Epidemiology, and End Results program; sig., significant; SIR, standardised incidence ratio; SweDCIS, Swedish randomised DCIS trial; UK, United Kingdom; UKCCCR/ANZ DCIS trial, UK Coordinating Committee on Cancer Research Ductal Carcinoma in situ Working Party; USA, United States of America; WBI, whole body irradiation; y, year/s.

†When initial breast surgery associated with DCIS diagnosis occurred.

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Cohort studies						
Bazire et al., 2017 ²¹¹	Cohort name: NR	17,745 women	Non-metastatic breast cancer	CBC		Poisson regression model
France	Cohort dates for first breast cancer	1,503 CBC cases	Overall vs general population		SIR=2.96 (2.82-3.12); p<0.0001	Adjustments: Radiation–, chemo– and
	diagnosis: 1981–2000	14,709 women not using hormonal	No hormonal therapy		RR=1 (referent)	hormonal therapy
	Retrospective study	therapy	Hormonal therapy		RR=0.70 (0.60–0.82); p<0.001	Limitations: Data on personal history of smoking status and alcohol
	Age at enrolment: NR	hormonal therapy				intake was lacking
	Median follow–up: 13.4 y					
Ricceri et al., 2015 ²¹²	EPIC cohort	10,045 women	First primary breast cancer (no history of	CBC		Cox proportional hazards regression model†
Denmark, France,	Cohort dates: 1992–1998	139 cases	other cancers) Overall		Age-standardised SIR=1.15 (1.02-	Limitations:
Netherlands, Norway, Sweden & UK	Prospective study	Analyses performed only on subjects from France, UK,			1.29)	Lack of information on therapies, surgeries, and hormonal subtypes of breast
	Age at enrolment: 35–70 y	Netherlands, Sweden, Denmark & Norway				cancer
	Follow–up: 11 y	a norway.				were from 1993 onwards
						Study limited to invasive cancers
Rusner et al., 2014 ²¹³	EPIC cohort	49,804 women	Any first primary invasive breast	CBC	SIR=1.2 (1.1–1.3)	Poisson regression model
Germany	Cohort dates for first breast cancer	594 CBC cases Median age at	cancer			Adjustments: NR

Table D.21 Previous primary invasive breast cancer and risk of secondary breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	diagnosis: 1998–2007	diagnosis of first primary breast cancer: 63 y				Limitations: Small number of CBC cases
	Prospective study	,				Short follow-up
	Age at enrolment: NR					Lack of stage and treatment information
	Median follow-up: 3 y					
Vichapat et al., 2012 ²¹⁸	Cohort name: NR	35,897 women	First primary invasive breast cancer	Metachronous CBC		Cox proportional hazards regression model‡
Sweden	Cohort dates: 1992–2008	894 CBC cases	Endocrine treatment			Limitations:
	Prospective study	442 CBC cases in women who did not use endocrine	No Yes		HR=1 (referent) HR=0.78 (0.68–0.90)	Histologic grade and histologic type were only available for a limited number of patients
	Age at enrolment: NR	treatment				
	Median follow–up: 9.9 y	438 CBC cases in women who used endocrine treatment				
		Median age at CBC diagnosis: 64 y				
Bouchardy et al. 2011 ²¹⁹	Cohort name: NR	4,152 women	First primary invasive breast cancer	Second primary invasive breast		Poisson regression model/Multivariate Cox
Switzerland	Cohort dates for first breast cancer	63 cases	ER status of first	cancer		proportional hazards regression model§
	aiagnosis: 1995–2007	620 first –ER– women; 19 breast cancer cases	ER-		SIR=1.98 (1.19–3.09); p<0.05	Limitations: Central pathological reviews of
	Prospective study	3,335 first ER+	ER+ Anti-oestrogen use	-	SIR=0.67 (0.48-0.90); p<0.05	the breast tumours were lacking

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Mean age at enrolment: 60.4 y for ER+	women; 43 breast cancer cases	All secondary Yes		HR=0.51 (0.26–0.99); p<0.05.	Small number of second breast cancers
	56.8 y for ER– 65.9 y for unknown	2,983 women with anti–oestrogen use and 1,169 women	NO		HK=1 (reiereni)	Limited information on duration of anti-oestrogen treatment
	Median follow-up: 5.16 y	without anti– oestrogen use				
Youlden & Baade 2011 ²¹⁰	Cohort name: NR	26,725 women	Primary invasive breast cancer	Secondary invasive breast cancer (vs	SIR=1.55 (1.45–1.66)	Poisson regression model
Australia	Cohort dates for 2,96 first breast cancer	2,962 cases		general population)		Adjustments: NR
	diagnosis: 1982–2001	Age at first diagnosis: ≥15 y				Limitations: NR
	Retrospective study					
	Age at enrolment: NR					
	Median follow–up: 5.5 y					
Cluze et al., 2009 ²¹⁴	Cohort name: NR	5,663 women	Primary invasive breast cancer vs	Second primary invasive breast		Poisson regression model
France	Cohort dates for first breast cancer diagnosis: 1989–1997	98 cases	general population	cancer	SID = 1.74(1.41.0.10), $D = cic$	Adjustments: NR
		Mean age at diagnosis: 59.9 y	Overdi		sin−1.74 (1.41−2.12), µ−sig.	Limitations: Adverse events analysed quickly after diagnosis

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	End of study period: Jan 2002					(maximum 5 years)
	Retrospective study					Small number of people lost to follow–up (<5%)
	Age at enrolment: NR					
	Mean follow–up: 4.1 y					
Kurian et al., 2009 ²¹⁵	SEER population based cohort	4,927 cases	First primary invasive breast cancer	CBC		Model: NR
USA	Cohort dates for first breast cancer diagnosis: 1992–2004 Retrospective study Age at enrolment: NR End of follow–up: Dec 2005		Overall vs general population		SIR=2.46 (2.40–2.52)	Adjustments: Age, race and calendar year Limitations: No analysis for additional tumour markers or by family history, inherited mutations, or treatment details including tamoxifen use
Schaapveld et al., 2008 ²¹⁶	Cohort dates for	45,229 women	Primary invasive breast cancer CBC vs non-CBC	Metachronous CBC		Poisson regression model (SIR)/Cox proportional hazards model¶
Netherlands	first breast cancer		Overall		SIR=1.9 (1.8-2.1)	
	diagnosis: 1989–2002 Retrospective study		Treatment Hormone therapy Chemotherapy	-	HR=0.58 (0.48–0.69); p=sig. HR=0.73 (0.60–0.90); p=sig.	Limitations: Information on treatment for secondary cancer not recorded
			RT		HR=0.96 (0.92–1.01)	Underestimation of hormone

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Age at enrolment: NR					treatment may have occurred
	Median follow–up: 5.8 y					
Soerjomataram et al., 2005 ²¹⁷	Cohort name: NR	9,919 women	Invasive primary breast cancer vs	Second primary invasive breast		Poisson regression model
	First breast cancer	588 cases	general population	cancer		Adjustments: NR
Netherlands	diagnosis:		Overall		SIR=3.5 (3.2–3.8); p=sig.	
	1972–2000	Mean age at first breast cancer				Limitations: Family history and genetic
	End of follow–up: 2001	diagnosis: 58.8 y				factors not included
	Retrospective study					Increased incidence may be related to RT
	Age at enrolment:					
	>25 y					
	Mean follow-up:					
	6.6 y					

Abbreviations: CBC, contralateral breast cancer; EPIC, European Prospective Investigation into Cancer and Nutrition; ER, oestrogen receptor; HR, hazard ratio; p, p-value; RR, relative risk or risk estimate; RT, radiation therapy; SEER, Surveillance, Epidemiology, and End Results; SIR, standardised incidence rate; UK, United Kingdom; USA, United States of America; sig., significant; y, year/s.

†Adjusted for age at first tumour, body mass index, smoking status, education, menopausal status, history of full-term pregnancy, and nutrients.

‡Adjusted for age, calendar period, clinical tumour stage, pathologic nodal stage, and endocrine treatment of the initial breast cancer in categories.

§SIRs adjusted for age, using as standard the 5-year age distribution of the Geneva female resident population; rates are per 100,000 person-years. HRs adjusted for ER status of the first tumour, age (years), period, family history and anti-oestrogen use.

¶SIRs adjusted for age, stage, treatment and follow-up period. HRs adjusted for age (continuous variable), morphology, stage, and treatment at index cancer diagnosis.

Endogenous hormones

Table D.22 Age at menarche and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Collaborative Group on Hormonal	117 studies	118,964 cases 306,091 controls	Age at menarche Per year younger	Breast cancer	RR=1.050 (1.044–1.057); p<0.0001	Conditional logistic regression model
Factors in Breast Cancer, 2012 ²²⁰	35 cohort studies	Median birth y:	Age group <11		RR=1.19 (1.13–1.25)	Adjustments†
Studies published to	56 population– based case–control	1939	11		RR=1.09 (1.06–1.12)	Publication bias: NR
35 countries mostly	studies	Median age af diagnosis: 54 y	12		RR=1.07 (1.05–1.09) RR=1.00 (0.98–1.02)	Advantages:
from Europe & North America	case-control	Mean age at	14		RR=0.98 (0.96-1.00)	Meta-analysis includes almost all available epidemiological
	siddles	Cases 13.0 y	≥16		RR=0.92 (0.89–0.95) RR=0.82 (0.79–0.85)	between menarche and
		Controls 13.1y	Per year younger	Ductal carcinoma, ER+	RR=1.034 (1.026-1.052)	
				Ductal carcinoma, ER–	RR=1.024 (1.004–1.044)	Reviews both published and unpublished findings
				Lobular carcinoma, ER+	RR=1.083 (1.052-1.115)	Limitations:
				Lobular carcinoma, ER–	RR=1.076 (0.999–1.159)	at menarche
Cohort dudios						
	F2NL FDIC ashart	17 / 24		Dra na a na a na an sa		
Dartois et al., 201644	E3N-EPIC CONOFF	67,634 women	Age at menarche	Premenopausai breast cancer		Multivariable aajustea model
France	1998–2008	cases	≥14 y <10 y		HR=1.43 (0.35–5.81)	Adjustments‡
	Prospective study		10–12 y 12–14 y		HR=1.26 (0.95–1.66) HR=1.36 (1.09–1.70)	Limitations:

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		3,138	≥14 y	Postmenopausal	HR=1 (referent)	Possible menarche
	Mean age at	postmenopausal	<10 y	breast cancer	HR=1.58 (0.91–2.74)	measurement error
	enrolment: 52.8y	cases	10–12 y	-	HR=1.19 (1.07–1.32)	Lineite el reunele ex ef
	(Idlige 42-72 y)		12–14 y		HR=1.13 (1.04–1.23)	premenopausal breast cancer
	Follow–up period: 15 y; 876,468 person–y					cases was observed due to restriction of women over 40 years
Bodicoat et al.,	BGS	104,931 women	Age at menarche	Breast cancer		Multivariable adjusted model
2014223		1,095 cases	13–14 y		HR=1 (referent)	
	Recruitment:		≤12 y		HR=1.06 (0.93-1.21)	Adjustments§
UK	2003–2013 Retrospective study		≥15 y		HR=0.78 (0.62–0.99); p <0.05 HR for trend=0.89 (0.81–0.99) ; p <0.05	Limitations: Average follow–up was only 4 y
	Mean age at recruitment: 46.7 y					Retrospective analysis may compromise accuracy
	Mean follow–up: 4.1 person–y					Confounders such as benign breast disease were not adjusted for

Abbreviations: BGS, Breakthrough Generations Study; E3N–EPIC, Etude Epidémiologique auprès des femmes de la MGEN – European Prospective Investigation into Cancer and Nutrition; HR, hazard ratio; p, p–value; p–trend, p–value for trend; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; y, year/s.

†Stratifications by study, year of birth, age, parity and age at first birth, height, current BMI, smoking, alcohol consumption, height and current body mass index.

‡Adjusted for age (as the time scale), first-degree family history of breast cancer, level of education, height at adulthood, history of benign breast diseases, age at menarche, birth weight, age at menopause (for postmenopausal women only), tobacco smoking, number of children and age at first full term pregnancy, physical activity level, body shape at menarche, breastfeeding, dietary pattern, alcohol consumption, vitamin D intake and mean daily ultraviolet radiation doses (UVRd), oral contraceptives or progesterone alone use, body mass index and menopausal hormone therapy use (for postmenopausal women only).

§Adjusted for attained age, menopausal status, family history of breast cancer in a first degree relative, adult height, age at first full term pregnancy and hormone therapy status.

Table D.23 Parity and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments	
Meta-analyses							
Lambertini et al., 2016 ²²⁷	14 studies	21,941 cases	≥1 pregnancies vs nulliparity	Breast cancer subtype		Random effects model	
Studies published to	3 cohort studies	864,177 controls		Luminal	pOR=0.75 (0.70–0.81); I²=46.2%, p(heter)=0.04	Adjustments: Correlation within studies and	
Asia Europo & LISA	9 case-control studies			HER2+	pOR=0.90 (0.69-1.16);l ² =33.2%,		
	1 pooled analysis of cohort studies			ТИВС	p(neter)=0.13 pOR=1.01 (0.87–1.17); I ² =30.3%, p(heter)=0.13	al method)	
	1 pooled analysis of					Limitations: Methodological limits	
	case-control studies					Data were retrieved from	
						published articles;	
						Confounding factors	
						HER2+/HR+ breast cancer could not be evaluated	
Nelson et al.,	17 studies†	Women aged	Nulliparity	Breast cancer		Random effects model	
2012 ²²⁶	4 cohort studies	40–49 y	Overall		RR=1.16 (1.04-1.26); I²=80.3%, p(heter)<0.001	Adjustments: NR	
Studies published to			Number of births	-		—	
2011	13 case–control		0		RR=1.00 (referent)	Publication bias: NR	
Countries: NR	studies		1		RR=0.95 (0.81-1.11); l²=48.3%, p(heter)=0.026	Limitations:	
	number of birth		2	2 RR= 0.93 (0.77-1.12); I ² =7 p(heter)<0.001	RR= 0.93 (0.77-1.12); l²=73.2%, p(heter)<0.001	Potential bias in the combined estimates of RRs	
	2 cohort studies 11 case–control		≥3		RR=0.73 (0.61-0.87); l²=82.4%, p(heter)<0.001	Inclusion of women outside the targeted age group	
	studies						

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Collaborative Group on Hormonal Factors in Breast Cancer, 2002 ²²⁴ Studies published from 1983 30 countries	 47 case-control & cohort studies 42 case-control studies 5 cohort studies 	50,302 incident cases, average number of birth: 2.2 96,973 controls, average number of births: 2.6	Parity Reduction in risk per birth	Breast cancer	7.0% (5.0%–9.0%); p<0.0001	Mantel-Haenszel stratification model Adjustments: Stratified by study, age, parity, age at first birth, and menopausal status Limitations: Confounders, as well as measurement errors and limited numbers with substantial exposures Limited statistical power
Cohort studies Dartois et al., 2016 ⁴⁴	E3N-EPIC cohort	67,634 women	Number of children	Premenopausal breast cancer		Multivariate Cox proportional
France	Cohort dates: NR	497 premenopausal cases	1 child before 30 y 1 child after 30 y	Diedsi Concer	HR=0.99 (0.73–1.34) HR=1.64 (1.16–2.31); p=sig.	Adjustments‡
	Age at enrolment: 42–72 y; mean 3,138 52.8 y (SD 6.6 y) postmenopo cases Follow–up: 15 y (876,468 person–y) 63,999 non–c	3,138 postmenopausal cases 63,999 non–cases	≥1 child, the first before 30 y ≥1 child, the first after 30 y Nulliparous		HR=1 (referent) HR=1.44 (1.04–1.98); p=sig. HR=0.97 (0.69–1.35) Limit pren	Limitations: Health cohort effect Limited number of premenopausal breast cancer
			21 child after 30 y ≥1 child, the first before 30 y ≥1 child, the first after 30 y	Postmenopausal breast cancer	HR=1.29 (1.09–1.51); p=sig. HR=1 (referent) HR=1.22 (1.06–1.40); p=sig.	Cases

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			Nulliparous		HR=1.28 (1.13–1.45); p=sig.	
Ritte et al., 2013 ²²⁸	EPIC cohort	311,097 women	Ever a full term birth	ER+ PR+ breast		Cox proportional
			Overall	cancer	HR=0.87 (0.78-0.96); p=0.01	hazards models§
Denmark, France, Italy, Germany, Greece, Norway,	Cohort dates: 1992–2000	9,456 cases; 3,567 ER+ PR+ 998 ER_PR- cases	Number of full term childbirths	-		Publication bias: NR
Spain, Sweden, Netherlands & UK	Prospective study		2		HR=1.00 (referent) HR=0.92 (0.84-1.01)	Limitations: Classification of ER–PR– tumours
	Age at enrolment: 25–70 y		>3		HR=0.76 (0.68–0.85); p-trend<0.001	is controversial
	Duration of follow-		Ever a full term birth	ER–PR– breast		Insufficient information to
up 3,3	up: 3,346,356 person-y		Number of full term childbirths	_	nk-0.76 (0.80-1.20), p-0.76	
			1		HR=1.00 (referent)	
			2		HR=1.01 (0.84-1.22)	
			>3		HR=0.89 (0.73-1.10); p- trend=0.19	

Abbreviations: E3N, Étude Épidémiologique des femmes de la Mutuelle Génerale de l'Édcuation Nationale; EPIC, European Prospective Investigation into Cancer and Nutrition; ER, oestrogen receptor; FFTP, first full term pregnancy; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; p, p-value; HR+, hormone receptor positive; NR, not reported; OR, odds ratio; p(heter), p-value for the measure of heterogeneity; p-trend, p-value for the measure of trend; PR, progesterone receptor; RR, relative risk or risk estimate; SD, standard deviation; TNBC, triple-negative breast cancer; UK, United Kingdom; USA, United States of America; y, year/s.

†Count taken from supplementary tables. In text 3 cohort studies and 14 case-control studies reported.

‡Adjusted for age, first-degree family history of breast cancer, level of education, height at adulthood, history of benign breast diseases, age at menarche, birth weight, age at menopause (for postmenopausal women only), tobacco smoking, number of children and age at first full term pregnancy, physical activity level, body shape at menarche, breastfeeding, dietary pattern, alcohol consumption, vitamin D intake and ultraviolet radiation dose, oral contraceptives or progesterone alone use, body mass index and menopausal hormone therapy use (for postmenopausal women only).

§Stratified by age at recruitment and centre and further adjusted for BMI, height, menopausal status at enrolment, hormone therapy use, physical activity, smoking status, alcohol consumption and attained level of education

Table D.24 Age at first birth and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Lambertini et al., 2016 ²²⁷	12 studies	21,941 breast cancer patients	Advanced age at first birth (>24 y) vs			Mixed effects model
Studies published to 2014	3 prospective cohort studies	864,177 controls	young age at first birth (≤24 y)	Luminal	pOR=1.15 (1.00–1.32); p=0.05; l²=86.9%, p(heter)<0.001	Adjustments: Correlation within studies heterogeneity between studies
9 case-control Women aged China, Japan, studies 20-<84 y		HER2+	pOR=0.91 (0.72–1.16); p=0.41; l²=64.3%, p(heter)=0.002	Publication bias for HER2+		
USA	(7 population- based studies)			ТИВС	pOR=0.94 (0.80–1.11); p=0.45;	(p<0.05)
					l²=64.5%, p(heter)=<0.001	Limitations:
					All data extracted directly from publications	
						Subtypes not based on gene expression
						HER2+/HR+ breast cancer could not be evaluated
Nelson et al.,	4 case-control	32,891 women	Age first child born			Random effects model
2012 ²²⁶	studies	(170	25-29 у		RR=1 (referent)	
Studies published	1 cohort study	4,179 cases	≥30 y		RR=1.20 (1.02–1.42); l²=17.9%, p(heter)=0.30	Adjustments†
1996-2011		Age: 40–49 y	20-24 y		RR=0.96 (0.82–1.11); l²=0%, p(heter)=0.62	Publication bias: NR
New Zealand & USA		<20 y	RR=0.96 (0.82–1.11); l2=0 p(heter)=0.81	RR=0.96 (0.82–1.11); l ² =0%, p(heter)=0.81	Limitations: Studies reported different measures	
						Some women included outside target age group
						Between study variations in

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
						adjustment for confounders
						Publication bias and selective reporting
Cohort studies						
Sisti et al., 2016 ²²⁹	Nurses Health	121,700 women	Age at first birth			Cox proportional hazards model
USA	Studies (NHS & NHSII)	NHS & (NHS)	Dose response (per year increase)	All subtypes	HR=1.03 (1.02–1.03); p(heter)=0.04	Adjustments‡
	Cohort dates: (NHSII)		Luminal A	HR=1.03 (1.02-1.05)		
	1976-2006 (NHS)	1976-2006 (NHS)		Luminal B	HR=1.01 (0.99-1.03)	Limitations: Not many tissue samples
Age at enrolment: 30–55 y in 1976 (NHS)	1989–2003 (NHSII)			HER2+	HR=1.03 (0.99-1.07)	obtained for cases
			Basal–like	HR=1.01 (0.98-1.09)		
	Age at enrolment: 30–55 y in 1976 (NHS)			Unclassified breast cancer	HR=1.03 (0.97-1.09)	Low proportion of non-luminal tumours
	25–42 y in 1989 (NHSII)					
	Duration of follow– up: NR					
Ritte et al., 2013 ²²⁸	EPIC study	311,097 women	Age at first full term birth			Cox proportional hazards model
Denmark, France, Italy, Germany,	Cohort dates: 1992–2000	9,456 first primary invasive breast	≤19 y		HR=1 (referent)	Adjustments§
Greece, Netherlands,	Prospective study	cancer cases	≥35 y	ER+PR+	HR=1.47 (1.15–1.88); p-trend<0.001	Limitations: Accuracy of classifying an ER
Norway, Spain, Sweden & UK Mediai recruitr	Median age at		≥35 y	ER-PR-	HR=0.93 (0.53–1.65); p-trend=0.96	or PR-negative tumour is controversial
	recruitment: 51.1 y		≥35 y	ER+	HR=1.46 (1.20–1.77); p–trend<0.001	Insufficient information on HER2
	Duration of follow– up:		≥35 y	ER-	HR=0.89 (0.56–1.43); p-trend=0.80	status

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	3,346,356 person-y		≥35 y	PR+	HR=1.46 (1.15–1.86); p-trend<0.001	
			≥35 y	PR-	HR=1.39 (1.01–1.93); p-trend=0.002	
			≥35 y	ER+ PR-	HR=1.70 (1.13–2.55); p-trend<0.001	
			≥35 y	ER-PR+	HR=1.19 (0.40–3.59); p-trend=0.23	
			≥35 y	ER or PR missing	HR=1.13 (0.87–1.46); p-trend<0.001	

Abbreviations: BMI, body mass index; EPIC, European Prospective Investigation into Cancer and Nutrition; ER, oestrogen receptor; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; HR+, hormone receptor positive; HT, hormone therapy; NHS, Nurses' Health Study; NR, not reported; p, p–value; p(heter), p–value for the measure of heterogeneity; pOR, pooled odds ratio; PR, progesterone receptor; RR, relative risk or risk estimate; TNBC, triple negative breast cancer; USA, United States of America; y, year/s.

†Adjusted for Age, race, family history of breast cancer, BMI and stratified by site

‡Mutual adjustment for reproductive variables, in addition to BMI at 18, weight change since 18, history of benign breast disease, family history of breast cancer, total physical activity, alcohol intake, height, and cohort.

§Stratified by age at recruitment and centre and further adjusted for BMI, height, menopausal status at enrolment, HT use, physical activity, smoking status, alcohol consumption and attained level of education.

Table D.25 Breastfeeding and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
WCRF, 2017 ¹⁰ Studies published to	13 cohort studies (including one pooled analysis)	11,610 participants	Lactation Dose response (per 5 months)	Breast cancer	RR=0.98 (0.97–0.99), p=sig.; l²=0.0%, p(heter)=0.518	No publication biases (p>0.05)
2014	4 cohort studies	1,321 women		Premenopausal breast cancer	RR=0.95 (0.89–1.01); l²=63%, p(heter)=0.04	_
East Asia , Europe & North America	5 cohort studies	7,359 women		Postmenopausal breast cancer	RR=1.00 (0.99-1.02); l²=4.6%, p(heter)=0.4	_
Lambertini et al., 2016 ²²⁷	15 cohort & case- control studies	21,941 breast cancer cases 864,177 controls	Breastfeeding ever vs never	Breast cancer subtype		Random effects model
Studies published to 2014	11 studies included for breastfeeding	169,870 women		Luminal breast cancer	OR=0.77 (0.66–0.88), p=0.003; I²=79.1%, p(heter)<0.001	Correlation within studies and heterogeneity between studies
China, Japan,		14,266 women		HER2	OR=0.78 (0.59–1.03), p=0.07; l²=45.6%, p(heter)=0.07	No publication biases (p≥0.05)
Norway, Poland & USA		176,340 women		TNBC	OR=0.79 (0.66–0.94), p=0.01; l²=65.1%, p(heter)=0.001	Limitations: Not possible to investigate the
		Age: 20–80 y				impact of other important factors (race/ethnicity, number of children, different ages at first birth, & duration of breastfeeding)
						Molecular subtype of breast cancer was not available
Islami et al., 2015 ²³⁴	27 studies (including adjusted	Cohort studies: 736,308 participants	Breastfeeding ever vs never	Breast cancer subtype		Random effects model
Studies published to 2014	and unadjusted studies)	13,223 cases		ER-PR-	RR=0.84 (0.72–0.97); I ² =49.8%, p=0.063	Adjustments: For at least age, body mass
Australia, North	8 cohort studies	Case-control studies:		TNBC	RR=0.73 (0.62–0.87) ; I²=0%, p(heter)=0.43	 index, parity & family history of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
America, Europe, Asia	19 case-controls	23,658 cases 31,304 controls		ER+ and/or PR+	RR=0.97 (0.88–1.07); I²=78%, p(heter)=<0.001	No publication biases (p>0.05)
				ER+ PR+	RR=1.00 (0.90-1.10); I ² =54%, p(heter)=0.09	Limitations: No further confounders included as it would limit study number
						No dose response analyses conducted due to potential biases
						Small number of TNBC cohort studies
Zhou et al., 2015 ²³³	27 studies	13,907 breast	Breastfeeding	Breast cancer		Random effects model
Churching and the start		cancer cases	_			No publication bias (p=0.108)
2008–2014	8 studies	Sources of control:	Ever vs never		RR=0.613 (0.442–0.850) l²=89.9%, p(heter)< 0.001	All studies adjusted for age
Africa, Asia, Europe	19 studies	2,828 population- based	Longest vs shortest		RR=0.471 (0.368–0.602) l²=76.6%, p(heter)<0.001	Limitations: Prone to biases inherent in the
	23 case-controls	based	Case-control studies	-	RR=0.444 (0.362-0.546); l2=71.4%, p(heter)<0.001	 original studies Individual studies may have
	3 cohorts		Cohort studies	-	RR=0.995 (0.914-1.083); I ² =0.0%, p(heter)=0.844	 failed to control for potential confounders
						Significant heterogeneity and a possible publication bias
Pooled analysis						
Ma et al., 2017 ²³⁵	3 population– based case–control	2,658 cases 2,448 controls	Duration of breastfeeding	TNBC		Multivariate adjusted model
USA	studies (Women's		Never		OR=1 (referent)	Adjustments†
	CARE, BCIS & LIFE studies)	0.500.0	Ever		OR=0.80 (0.63-1.02)	Limitations: 36% of case participants had missing data on at least one of the receptors
SIUCIE	5100105)	1,597 African–	<6 months		OR=0.96 (0.74–1.26)	
			6–11 months ≥12 months		OR=0.55 (0.37–0.82) OR=0.69 (0.50–0.96); p-trend=0.006	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		American women	Never	Luminal A–like	OR=1 (referent)	Potential misclassification of
			Ever <6 months	-	OR=0.78 (0.65–0.94)	tumour subtypes
					OR=0.83 (0.68–1.02)	
		women aged	6–11 months		OR=0.76 (0.59–0.99)	
		20 - 64 y	≥12 months		OR=0.71 (0.56–0.90); p-trend=0.004	
			Never	Luminal B–like	OR=1 (referent)	
			Ever		OR=0.89 (0.65–1.23)	
			<6 months		OR=0.99 (0.70-1.41)	
			6–11 months		OR=0.70 (0.44-1.12)	
			≥12 months		OR=0.85 (0.56–1.30); p-trend=0.28	
			Never	HER2-enriched	OR=1 (referent)	
			Ever		OR=0.91 (0.63–1.32)	
			<6 months		OR=0.68 (0.43–1.07)	
			6–11 months		OR=1.28 (0.78-2.09)	
			≥12 months		OR=1.10 (0.69–1.75); p-trend=0.36	

Note: Risk estimates are presented with 95% confidence intervals. Abbreviations: BCIS, breast carcinoma in situ; CARE, Contraceptive and Reproductive Experiences; ER, oestrogen receptor; HER2, human epidermal growth factor receptor 2; LIFE, Learning the Influence of Family and Environment; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; PR, progesterone receptor; RR, relative risk or risk estimate; TNBC, triple-negative breast cancer; UK, United Kingdom; USA, United States of America; WCRF, World Cancer Research Fund; y, year.

 \pm tincluded sub-study (the Women's CARE Study or the Women's BCIS Study, the Women's LIFE Study), study site (Los Angeles, Detroit), ethnicity (white, African–American), reference age (in 5 year age categories), education (\leq high school, technical school or some college, college graduate), first–degree breast cancer family history (no, yes), body mass index (<25, 25–29, \geq 30 kg/m²), a variable combining menopausal status and hormone therapy use (premenopausal; postmenopausal: never used hormone therapy, ever used hormone therapy; unknown menopausal status), lifetime recreational physical activity (inactive, \leq 2.2, 2.3–6.6, 6.7–15.1, \geq 15.2 annual metabolic equivalents of energy expenditure, hour/week), alcohol intake (never, former, current), cigarette smoking status (never, former, current), age at menarche (\leq 12, 13, \geq 14 years), number of completed pregnancies (never pregnant, 1, 2, \geq 3, only non–completed pregnancy), oral contraceptive use (never, <1, 1–4, 5–9, \geq 10 years).

Table D.26 Age at menopause and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Li et al., 2017 ²³⁷	6 case–control studies	8,637 cases 13,001 controls	Age at menopause	Luminal breast cancer		Random effects model
Studies published to		1,229 cases	<50 y		OR=1.00 (referent)	All studies adjusted for age
Ching & Janan		2,624 controls	≥50 y		OR=1.15(1.00-1.32); p(heter)=0.26	No publication bias
China & Japan		629 cases	<50 y	ER-PR-	OR=1.00 (referent)	- Limitations:
		2,624 controls	≥50 y		OR=1.19(1.00-1.43); p(heter)=0.06	Limited sample size
Collaborative	117 studies	118,964 cases	Age at menopause	Postmenopausal		Conditional logistic regression
Group on Hormonal		306,091 controls	for every year older	breast cancer	RR=1.029 (1.025-1.032); p<0.0001	model
Cancer, 2012 ²²⁰	35 cohort studies	Median birth y: 1939	at menopause 45–49 v		RR=0.86 (0.84–0.89)	Adjustments†
	56 population–	,			,	
Studies published to 2011	based case-control	Median age at				Publication bias: NR
	3100163	alagnosis. 54 y				Limitations: NR
35 countries mostly from Europe &	26 hospital–based case–control	Mean age at menopause:				
North America	studies	Cases 50.0 y				
		Controls 49.5y	50–54 y		RR=1.00 (0.98-1.02)	
			≥55 y		RR=1.12 (1.07-1.17)	
Cobort studies						
Ritte et al. 2013228	FPIC cohort	311 097 women	Age at	FR+PR+		Cox proportional bazards model
		9,456 cases	menopause			
Denmark, France,	Enrolled in study:		≤48 y		HR=1.00 (referent)	Adjustments‡
Germany, Greece,	1992-2000	At recruitment:	49–50 v		HR=1.12 (0.98–1.29)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Italy, Netherlands,	Median age at	46.5%	51–54 y		HR=1.06 (0.91–1.24)	Limitations:
Norway, Spain,	recruitment: 51.1 y	postmenopausal	≥55 y		HR=1.17 (0.95–1.44); p-trend=0.18	Accurate classification of an ER
Sweden & UK	women		ER-PR-		or PR-negative tumour is	
	F0110W-Up: 11.3 y		≤48 y		HR=1.00 (referent)	comoversidi
			49–50 y		HR=1.09 (0.84–1.42)	
			51–54 y		HR=0.87 (0.64–1.20)	
			≥55 y		HR=1.03 (0.69–1.54); p-trend=0.79	

Note: Risk estimates are presented with 95% confidence intervals. Abbreviations: EPIC, European Prospective Investigation into Cancer and Nutrition; ER, oestrogen receptor; HR, hazard ratio; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; PR, progesterone receptor; RR, relative risk or risk estimate; UK, United Kingdom; y, year/s.

†Stratified by study, year of birth, age, parity and age at first birth, height, current body mass index (BMI), smoking and alcohol consumption.

\$Stratified by age at recruitment and centre and further adjusted for BMI, height, menopausal status at enrolment, hormone therapy (HT) use, physical activity, smoking status, alcohol consumption and attained level of education.

Table D.27 PCOS and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Shobeiri & Jenabi, 2016 ²⁵⁵	8 studies	45,470 women	PCOS vs no PCOS (ref)	Breast cancer		Model: NR
Studies published to	5 cohort studies	Participant information: NR			*ES=1.18 (0.93–1.43); I ² =0.0%, p=0.721	Adjustments: NR
2015	3 case-control	Age at enrolment:			*ES=0.87 (0.44–1.31); l ² =5.2%,	Significant publication bias: Eager & Begg's test
From Denmark,	3100103	24–69 γ			ρ-0.040	-990. a 2099 a 100.
Italy, Iran, Taiwan, USA & UK		Follow-up:				Limitations: Limited number of eligible
		243,064 person-y				Not all studies adjusted for covariates
						Authors could not assess the effect of confounding variables which may lead to selection bias
Chittenden, 2009 ²⁵⁶	3 case–control studies	23,842 women	PCOS vs no PCOS (ref)	Breast cancer	OR=0.88 (0.44-1.77); I ² =72.8%	Model: NR
Studies published 1968–2008		11,836 cases				Adjustment: NR
Italy & USA		12,006 controls				Publication bias: NR
		US women 20–75 y identified from cancer registries				Limitations: Definition of PCOS has changed over time
		Italian women 23–74 y identified through hospital				Population sample in this analysis was heterogeneous
		admission				Paucity of data available for analysis

Note: Risk estimates are presented with 95% confidence intervals.

Abbreviations: HR, hazard ratio; NR, not reported; NS, not significant; OR, odds ratio; PCOS, polycystic ovarian syndrome; p, p-value; SIR, standardised incident rate; UK, United Kingdom; USA, United State of America; y, year/s.

*ES, this abbreviation has not been explicitly stated.

[†]Adjusted for age; common comorbidities, including hypertension, diabetes mellitus, dyslipidaemia, congestive heart failure, chronic pulmonary diseases, coronary artery diseases, and cerebrovascular diseases; urbanisation; and monthly income.

*ES, this abbreviation has not been explicitly stated.

[†]Adjusted for age; common comorbidities, including hypertension, diabetes mellitus, dyslipidaemia, congestive heart failure, chronic pulmonary diseases, coronary artery diseases, and cerebrovascular diseases; urbanisation; and monthly income.

Exogenous hormones

Table D.28 Hormonal contraception—combined and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Anothaisintawee et al., 2013 ²⁶⁷	wee et Ever vs never use: 66 case- control/cohort studies Duration of use: zil, 6 case-control/ na, cohort studies Cyprus, ince.	Ever use: 35,527 women	Oral contraceptive Never use	Breast cancer	OR=1 (referent)	Random effects model
Studies published to		Never use:	Ever use	_	OR=1.10 (1.02–1.18); l²=85.7%, p(heter)=0.00	No adjustments
2011		180,318 women	<5 y		OR=0.95 (0.78–1.16)	Publication bias: NR
Australia, Brazil, Canada, China, Costa Rica, Cyprus, Denmark, France,		case-control/ :ohort studies	5–10 y >10 y		OR=0.98 (0.77-1.25) OR=1.17 (0.92-1.49)	Limitations: Use of summary data from observational studies
Iran, Italy, Japan, Malaysia, Netherlands, New						Most data not adjusted for confounding
Zealand, Norway, South Africa, Sweden, UK & USA						Pooling might be prone to bias
Gierisch et al.,	Ever vs never:	Case-control	Oral contraceptive	Breast cancer		Random effects model
2013 ²⁶⁶ Studies published	15 case–control studies 8 cohort studies	studies: 38,682 women	.tudies: Never use 38,682 women Ever use	OR=1.00 (referent) OR=1.08 (1.00–1.17); Q=73.35, p(heter)<0.001	Adjustments: NR	
from 2000	Duration of use:	 Cohort studies: 317 341 women 	≤12 months	-	OR=0.95 (0.83-1.09)	Publication bias: NR
Australia, Brazil, Canada, China, France, Israel, Netherlands, Norway, Pakistan,	14 studies	3,981,072 person-y in 3 studies	13–60 months 61–120 months >120 months		OR=1.03 (0.92 –1.15) OR=1.01 (0.90 – 1.13) OR=1.04 (0.93–1.17); †=5.84,	Limitations: Potential confounding
	Time since last use:	_	∩_5 v	-	p(heter) < 0.0001	Significant heterogeneity
Poland, South Africa, Sweden, UK	11 studies		5–10 y 10–20 y		OR=1.17 (0.98 –1.38) OR=1.13 (0.97–1.31)	Outdated oral contraceptive formulas

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
& USA			>20 y		OR=1.02 (0.88–1.18); t=4.95, p(heter)=0.0004	All included studies were observational (i.e. bias)
						High level of heterogeneity across studies (for duration of use)
Zhu et al., 2012 ²⁵⁷	Ever vs never:	859,894 women	Oral contraceptive	Breast cancer		Fixed effects model (no
Studies published	cohort studies	11,722 cases	use Never use		RR=1.00 (referent)	model (heterogeneity present)
China, France,		Ages: >20–70 years	Ever use overall		RR=1.08 (0.99–1.17); I²=61.4%, p(heter)=0.002	Adjustments: NR
Japan,	Dose-response:	—	Dose response (per 5	-		No publication bias (p=0.77)
Netherlands, Norway, South Korea, Sweden, UK & USA	Netherlands, 5 studies Norway, South Korea, Sweden, UK & USA		y increment)	RR=1.07 (1.03–1.11); I²=0.0%, p(heter)=0.436		Limitations: No distinction in type of oral contraceptive
						Confounders such as personal history not included
						Potential misclassification in duration of use
Cohort studies						
lversen et al.,	Royal College of	Ever users: 22,920	Oral contraceptive	Breast cancer		Poisson regression model
201/265	General Practitioners' Oral	Nover (1997) 02 100	Never use		IRR=1.00 (referent)	
UK	Contraception	Never Users: 23,102	Ever use overall	_	IRR=1.04 (99% CI: 0.91–1.17); p=NS	Age, parity, smoking and social
	ology		<5 y		IRR=1.48 (99% CI: 1.10–1.97);	Class
	Cohort dates:		E 15.		p=sig.	Limitations:
	1968-1969		3-15 Y		IRR = 1.12 (77% CI. 0.71 = 1.39) IRR = 1.05 (99% CI. 0.88 = 1.34)	No adjustment for HT
			25–35 y		IRR=1.10 (99% CI: 0.94–1.28)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Prospective study		≥35 y		IRR=0.75 (99% CI: 0.60–0.93); p=sig.	Findings may not be current due to older progesterone in
	Mean age at enrolment: 28.8 y					formulas
	Follow–up: 44 y					
Hunter et al., 2010 ²⁶⁸	The Nurses' Health Study II	116,413 women	Oral contraceptive use	Breast cancer		Cox proportional hazard model
USA	Cohort dates:	1,344 cases	Never Past		RR=1 (referent) RR=1.12 (0.95-1.33)	Adjustments†
	1989-2001		Current	-	RR=1.33 (1.03-1.73)	Publication bias: NR
	Prospective study		0-8 y		RR=1.16 (0.80-1.69)	
			≥8 y		RR=1.42 (1.05-1.94)	Limitations:
	Age at enrolment: 24-43 y		Triphasic preparations Levonorgestrel	-	RR=3.05 (2.00-4.66); p<0.0001	women currently using oral contraceptives
	Follow–up: 1,246,967 person–y		, i i i i i i i i i i i i i i i i i i i			
Dartois et al., 201644	E3N cohort	67,634 women	Oral contraceptive or progestagen alone	Postmenopausal breast cancer		Multivariate Cox proportional hazards regression models
France	Prospective study	497 premenopausal breast cancer	use Recent use		HR=1.38 (1.18–1.61)	Adjustments¶
	Cohort dates: 1993–2008	cases				Limitations:
	Age at baseline:	3,138 postmenopausal breast cancer	Past use <10 y ago		HR=1.06 (0.97-1.15)	The E3N population prone to a healthy cohort effect
	42–72y Follow up: 15 y	Cases	Past use ≥10 y ago		HR=1.00 (referent)	Measurement errors for some retrospectively collected data

Abbreviations: E3N, Etude Epidemiologique aupres des femmes de la Mutuelle Generale de l'Education Nationale; HR, hazard ratio; HT, hormone therapy; IRR, incident rate ratio; NS, not significant; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; sig, significant; UK, United Kingdom; USA, United States of America; y, year/s.

¶Adjusted on age (as the time scale), first-degree family history of breast cancer, level of education, height at adulthood, history of benign breast diseases, age at menarche, birth weight, age at menopause (for postmenopausal women only), tobacco smoking, number of children and age at first full term pregnancy (FFTP), physical activity level, body shape at menarche, breastfeeding, dietary pattern, alcohol consumption, vitamin D intake and daily ultraviolet radiation dose, oral contraceptives or progesterone alone use, body mass index and menopausal hormone therapy use (for postmenopausal women only).

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Cohort studies						
Fabre et al., 2007 ²⁷⁰	E3N cohort	73,664 women Ever users: 28,370	Oral progesterone	Premenopausal breast cancer	RR=1.01 (0.93–1.11)	Cox proportional hazard model
France	Cohort dates: 1990– 2002	Never users: 45,294				Adjustments†
	Prospective study	2,390 cases				Limitations: Intermittent versus continuous
	Age at enrolment: 40–64 y					Information was self-reported and exposures could be
	Mean follow–up: 9.07 y					misclassified
Backman et al.,	Cohort dates:	17,360 women	30–34 y	Breast cancer	Incidence per 100,000	No model used
2005 ²⁷³	1990-2000	165 cases	Overall Finnish female population		25.5	Adjustments not required
Finland	Refrospective study Mean age of		Levonorgestrel- releasing intrauterine system users		27.2; p=0.84	Limitations: Possible non-response bias
	system users: 35.4 y	4 y	35–39 y Overall Finnish female	-	49.2	No official registry of all levonorgestrel system users and
	Follow-up: 141,892 person-y		Levonorgestrel- releasing intrauterine		74.0; p=0.056	total users in population can be confirmed
			40–44 v	-		Unable to control for
			Overall Finnish female population		122.4	
			Levonorgestrel releasing intrauterine system users		120.3; p>0.99	

Table D.29 Hormonal contraception—progestogen only and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			45–49 y Overall Finnish female population		232.5	
			Levonorgestrel- releasing intrauterine system users	-	203.6; p=0.41	
			Overall Finnish female population		272.6	
			Levonorgestrel- releasing intrauterine system users		258.5; p=0.85	
Kumle et al., 2002 ²⁷¹	Cohort dates:	103,027 women	Progestin-only pills	Breast cancer		Proportional hazard regression
	1991–1999		Never use		RR=1 (referent)	model
Norway & Sweden		1,008 cases	Ever use		RR=1.1 (0.8–1.7)	
	21 Dec 1999 or	a of follow–up: Dec 1999 or Median age at nigration, death diagnosis: 47 y diagnosis	Current vs never use			No adjustments
	emigration, death		Overall		RR=1.6 (1.0-2.4)	Limitations: Possible surveillance bias
	or diagnosis		30–39 y		RR=1.7 (0.8-3.7)	
			40–49 y		RR=1.6 (0.9-2.6)	
	Prospective study					No information about stage of the disease
	Age at enrolment: 30–49 y					Low response rate
	Follow–up: NR					
Case-control studies						
Strom et al., 2004 ²⁷⁵	Women's CARE population-based	4,574 incident cases	Contraceptive implants (progestin–	Breast cancer		Conditional unadjusted logistic regression model
USA	siudy	1 (9) controls	Daseal			
	Breast cancer	4,002 CONITOIS				Aajusimenisj
	diagnosis:	Ethnicity:	Ever used		OK=U.67 (U.21-2.13)	Limitations:

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	1994-1998	Caucasian & African–American	Contraceptive injection (progestin–			Recall bias
	Age at recruitment:		based)			Sample size
	55 04 y		Never used		OR=1 (referent)	Exclusion of women under the
			Ever used		OR=0.87 (0.66-1.15)	age of 35 y
Marchbanks et al., 2002 ²⁷²	Women's CARE	4,575 incident	Oral contraceptive	Breast cancer		Conditional logistic regression
2002	study	Cases	No use		OR=1 (referent)	
USA	Breast cancer	4,682 controls	Estrane progestins	-		Adjustments#
	diagnosis: 1994–1998	diagnosis: Ethnicity: 1994–1998 Caucasian &	Any use		OR=0.9 (0.8-1.0)	Limitations: Use of oral contraception was
		African-American	Current use**		OR=1.1 (0.8-1.5)	not validated
	Age di recroinment. 35–64 y		Gonane progestins	-		Representation of only white
			Any use		OR=1.0 (0.8-1.2)	and black women;
			Current use		OR=1.0 (0.7-1.5)	Absence of information on diet and environmental exposures and small subgroups
						No information on women under the age of 35 y
Shapiro et al., 2000 ²⁷⁴	Hospital–based study	484 incident cases	Injectable progestogen	Breast cancer		Unconditional multiple logistic regression model
South Africa	Breast cancer treated: 1994–1997	1,625 frequency matched controls	contraceptives Any use		RR=0.9 (0.7-1.2)	Adjustments: Age, ethnic group,

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Age at recruitment: 20–54 y	Ethnicity: African & coloured women of mixed race	Current user (exposed <1 y previously)		RR=1.6 (1.1-2.3)	socioeconomic status, and any combined oestrogen/progestogen oral contraceptive use
						Limitations: NR

Abbreviations: CARE, Contraceptive and Reproductive Experiences; E3N, Étude épidémiologique auprés des femmes de la mutuelle générale de l'éducation nationale; NR, not reported; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; USA, United States of America; y, year/s.

 \uparrow Adjusted for body mass index before and after menopause (<22/22–25/25–30/>=30), menopausal status (premenopausal/artificial menopause/natural menopause), age at menopause (<48/48–52/>52), parity and age at first full term pregnancy (FFTP) (nulliparous/FFTP at age <30/FFTP at age ≥30, num=1/FFTP at age ≥-30, num>1), age at menarche (<13/13–15/>15), familial history of breast cancer in sisters, mother, children (no/1/more than 1), familial history of breast cancer in other relatives (yes/no), personal history of benign breast disease 1(yes/no), personal history of benign uterine or ovarian disease (yes/no), use of oral contraceptive (never/current or <5 years after stop/4–5 years after stop), use of hormone therapy (No/oestrogen alone/oestrogen+progestin/ oestrogen+progesterone/others) and previous mammography (yes/no).

‡Age (continuous variable), parity (0, 1, 2, 3), age at first birth (20/21–24/25), age at menarche (continuous variable), use of hormone therapy (ever/never), menopausal status (pre-/postmenopausal), history of breast cancer in first-degree relatives (yes/no), duration of breastfeeding (continuous variable), body mass index (continuous variable), region (Sweden and five health regions in Norway), and a term for interaction between body mass index and menopausal status.

§All analyses were stratified by study, age at diagnosis, parity, and, where appropriate, the age a woman was when her first child was born, and the age she was when her risk of conception ceased.

¶ Conditioned on 60 matched groups (2 races x 6 age categories x 5 sites).

Odds ratios were derived by conditional logistic regression with the study site, race, and age (in five-year categories) as conditioning variables and were adjusted for menopausal status, age at menarche, age at menopause, number of term pregnancies, age at first term pregnancy, body mass index, presence or absence of a family history of breast cancer, and use or non-use of hormone therapy. Unknown oral contraceptive formulations were classified as combination formulations.

** Current use was defined as use of combination oral contraceptives containing the specified progestin within six months before the reference date.

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta-analyses						
Munsell et al., 2014 ²⁷⁶	32 studies	32,043 cases from case–control	Oestrogen–progestin hormone use	Postmenopausal breast cancer		Random effects model
Studies published	17 case–control studies	studies	Never used		RR=1.00 (referent)	No publication bias (p>0.05)
1980–2012		23,541 cases from	Ever used		RR=1.34 (1.24–1.46); l²=79%, p<0.001	Adjustments:
Europe & North	12 conort studies	RCTs		ER+PR+	RR=1.40 (1.08–1.82); I ² =74%,	Most studies adjusted for age
America	2 RCTs			ER-PR-	p=0.02 RR=1.09 (0.87–1.37); I²=0%, p=0.40	Limitations: Combination of adjusted
			Never used	Postmenopausal breast cancer	RR=1.00 (referent) RR=1.72 (1.55–1.92): l²=79%	relative risk estimates taken directly from the published
			Coneniose	ER+PR+ RR=1.92 (1.60–2.30); I^2 =60%, p=0.11	p<0.001	papers along with crude estimates
				ER-PR-	RR=1.11 (0.78–1.57); I ² =0%, p=0.98	indicators of quality, such as
				UNNIOWI	p=0.006	participation rates or loss to follow–up
Anothaisintawee et al., 2013 ²⁶⁷	94 studies	Sample: NR	Combined oestrogen–	Breast cancer		Random effects model
Studies published to	34% cohort studies	69% of studies	progesterone use		OP-1 33 (1 30 1 34)	Publication bias: NR
2011	studies	postmenopausal women	Lver vs never		0 1.33 (1.30 - 1.36)	Adjustments: NR
Asia, Canada, Europe & USA	34 studies for					Limitations:
						adjustments for confounding effects
						Results might be prone to bias
Collins et al., 2005 ²⁸⁴	Collaborative	52,705 women with	Oestrogen-progestin	Postmenopausal		Mantel-Haenszel model

Table D.30 Menopausal hormone therapy—combined and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
(Narrative review)	re-analysis	breast cancer	Non-users	breast cancer	Mean RR=1.00 (referent)	
			User <5 y		Mean RR=1.15 (0.78–1.52)	No publication bias
Studies published to 2005		108,411 women without breast cancer	User >5 y		Mean RR=1.53 (0.88–2.18)	Adjustments: NR
Europe & North						Limitations: NR
America		RCTs: 19,756 patients				
Shah et al., 2005 ²⁸⁵	4 cohort studies	655,559 women	Combined oestrogen-	Postmenopausal breast cancer		Random effects model
Studies published	4 case-control	Mostly US based	progestogen therapy			No publication bias (non-
1966–2003	studies	population	Non-users		OR=1.00 (referent)	parametric test)
E A 110.1			User <5 y		OR=1.35 (1.16–1.57)	
Europe & USA			User >5 y		OR=1.63 (1.22-2.18)	Adjustments: NR
						Limitations: Confounding and 'healthy
Cohort studios						User blas
	Bracktbrauch	EQ 14Q	Oostrogon plus	Investive and in situ		Cay bazard regression model
JOHES ET CI., 2018200	Generations Study	postmenopausal	progestogen	breast cancer		Cox hazara regression moder
ЦК	contraitons oroay	women	Currentuse vs no		HR=2 74 (2 05-3 65)	Adjustments:
	Cohort dates:		previous use		111 2.7 4 (2.00 0.00)	Attained age & age at
	2003-2009	39,183 women with	No previous use	Invasive breast	HR=1.00 (referent)	menopause
		known menopausal	Current use	cancer	HR=2.96 (2.19–3.99)	
	Retrospective	age	Past use		HR=1.01 (0.79-1.28)	Limitations:
	CONON	775 cases	Duration of use	-		Analyses included women with simple bysterectomy before
	Age at enrolment:		>0-4 y		HR=1.62 (0.88-2.95)	menopause or who started
	≥16 y	Mean menopausal	5–9 y		HR=3.86 (2.40-6.21)	MHT before cessation of
		age: 50.2 y	10–14 y		HR=4.28 (2.39–7.65)	menstrual bleeding
	Follow–up: 6 y		≥15 y		HR=3.69 (1.73–7.90)	
		Mean postmenopausal BMI: 25.7 kg/m²				

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		Median combined MHT use: 5.4 y				
Román et al.,Norwegian2015281PrescriptionDatabase CancerNorwayRegistry of NorwayCohort dates:2004-2008	178,383 women users of hormonal therapy 508,231 never used hormone therapy	Estradiol—NETA Non-users Current use Continuous use Sequential use Route of administration	Breast cancer	RR=1.00 (referent) RR=2.74 (2.55–2.95) RR=2.80 (2.59–3.02) RR=2.31 (1.88–2.83)	Multivariate model Adjustments: Age (5–y), number of births, age at first birth & time (offset) Limitations:	
	Prospective cohort Age at baseline: 45–75 y Mean follow–up:	7,910 cases 776 cases of women with continual use 96 cases of women with sequential use	Oral Transdermal		RR=2.76 (2.52–2.97) RR=1.62 (0.81–3.23)	Time-related biases Underestimation of the effect & risk of hormone therapy use Short follow-up time
Fournier et al., 2014 ²⁸³	E3N cohort	78,353 postmenopausal	Oestrogen– progesterone/	Postmenopausal breast cancer		Cox proportional hazards models
France	Cohort dates: 1992-2008 Prospective cohort Women born: 1925-1950 Mean follow-up: 11.2 y	women 3,678 cases 21,601 MHT never users 31,223 MHT past users 17,986 MHT current users	Ayarogesterone Never use Current use Past use Short term use (≤5 y) Current use 3 m–5 y since last use 5–10 y since last use >10 y since last use Long term use (>5 y) Current use	-	HR=1.00 (referent) HR=1.22 (1.11–1.35) HR=0.96 (0.87–1.06) HR=1.13 (0.99–1.29) HR=0.96 (0.82–1.12) HR=0.85 (0.71–1.01) HR=1.14 (0.91–1.44) HR=1.31 (1.15–1.48)	Adjustments† Limitations: Lack of statistical power among long term MHT users who stopped treatment more than 10 years earlier Limited ability to describe with precision the risks of breast cancer within a 2-year period after stopping treatment

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		Participants are insured by a national health insurance fund that	3 m–5 y since last		HR=1.15 (0.93-1.42)	Risk of screening bias since
			Use			normone users generally have
			5–10 y since last use		HR=1.08 (0.80–1.46)	than non-users
		mainly covers	>10 y since last use	_	HR=0.98 (0.46–2.06)	
		teachers	Oestrogen + progestogen			In situ breast cancers not considered
			Never use		HR=1.00 (referent)	
			Current use		HR=1.87 (1.71-2.04)	
Bakken et al., 2011 ²⁸⁷	EPIC cohort	133,744 women	Combined oestrogen–progestin	Breast cancer		Multivariable model
Denmark, France,	Cohort recruitment: 1992–2000	4,312 cases	Never use		RR=1.00 (referent)	Adjustments‡
Germany, Greece,		Denmark:	Current use	_	RR=1.77 (1.40-2.24)	Limitations:
Italy, Norway, Spain	Prospective cohort	21,794 women	Duration of use			Lack of information of MHT use
Sweden,		France:	≤1 y		RR=1.44 (1.09-1.89)	after recruitment
Netherlands & UK	Mean age at	33,125 women	1–3 y		RR=1.73 (1.44-2.08)	
	recruitment: 58.1 y	Germany: 11,575 women	3–5 у		RR=1.81 (1.44-2.29)	Models not adjusted for age at
	Mean follow–up: 8.6 v		5–10 y		RR=1.93 (1.58-2.35)	henign breast disease, physical
		Norway:	>10 y		RR=1.98 (1.12-3.50)	activity or history of breast
	0.07	10,578 women				cancer in first-degree relatives
		Spain: 9,360 women				
		Netherlands:				
		10,935 women				
		UK: 22,303 women				
Lee et al., 2006 ²⁸⁶	Multiethnic Cohort	55,371	Oestrogen-progestin	Postmenopausal		Multivariate-analysis
	Sludy	women	Inerapy	breast cancer		A diveto opto
USA (Hawali & Los Angeles)	Prospective study	women	Never use		RR=1.00 (referent)	Adjusimenis:
VI ACICS)	Cohort dates:	1,615 cases of	Current use			age at first birth, number of
		breast cancer	0–5 y		RR=1.43 (1.06–1.93)	children, age and type of
	1993–1996		5–10 y		RR=1.82 (1.53–2.17)	menopause, BMI, alcohol
		9,494 African-	>10 y		RR=2.18 (1.86–2.56)	consumption, family history
	Mean age at	American,				and time on study

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	enrolment: 61.1 y	3,637 Native Hawaiian				Limitations:
	Mean follow-up:	16,789 Japanese-				Possibility of differential follow-
	7.3 y	American				up
		11,792 Latina				
		13,659 White				Upward bias since hormone
						therapy users are more likely to
						be screened for breast cancer
Barah at al 2002291	Waman's Llagth	17.025		Destmononguard		
Porch et dl., 2002271	study	17,833	РМН	Posimenopausai breast cancer		Mullivariable dajusted model
USA	31007	women	пі	bleast curicel		Adjustments**
0077	Cohort start date:	Women	Never use		RR=1.00 (referent)	Acjosinienis
	1993	411 cases	Current use		RR=1.37 (1.05-1.78)	Limitations:
			Duration			PMH use information not
	Prospective study	No PMH:	<5 y		RR=1.11 (0.81-1.52)	updated
		6,595 women	≥5 y		RR=1.76 (1.29-2.39);	5
	Age at enrolment:	LITE (1) women			p-trend=0.0004	PMH use and breast cancer risk
	≥45 y	HI. 5,616 WOMEN	Continuous	-	RR=1.82 (1.34–2.48	who undergo surgical
	Mean follow-up:		<2 weeks/m		RR=1.04 (0.74–1.46));	menopause and women with
	5.9 y				p-trend=0.0003	natural menopause
Randomised controll	ed trials					
Chlebowski et al.,	Women's Health	27,347	Oestrogen plus	Breast cancer		Cox proportional hazard models
2015 ²⁷⁹	Initiative	postmenopausal	progestin use vs			
	Door itmont datas	women	placebo			Adjustments: NR
USA	1993_1998	8 506 CEE + MPA	Intervention		HR = 1.24 (1.01 - 1.53)	Limitations:
	1770 1770	0,000 CEE + MI / (Fosi-Intervention		HR = 1.32 (1.06 - 1.61)	Unblinded reporting of breast
	Age at enrolment:	8,102 placebo	Early post-		HR=1.23 (0.90–1.70)	cancers after intervention
	50–79 y	·	Intervention			
		84% white women	intervention			Need for re-consent
	Median follow–up:					
	13 y					
Manson et al.,	Women's	27,347	Menopausal	Breast cancer		Cox proportional
2013278	Health Initiative	postmenopausal	hormone therapy use			hazards models

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		women enrolled	vs placebo			
USA	Recruitment dates:		CEE + MPA			Adjustments: NR
	1993–1998	8,506 CEE + MPA	Intervention phase		HR=1.24 (1.01–1.53)	
			Post-intervention		HR=1.32 (1.08–1.61)	Limitations:
	Age at enrolment: 50–79 y	8,102 placebo	Cumulative follow-up		HR=1.28 (1.11-1.48)	Only 1 dose, formulation, and route of administration was
		206 cases for				assessed
	Cumulative	CEE+MPA				
	follow–up: 13 y					Unblinded reporting
		155 cases for				
		placebo				Possible false-positive and
						false-negative results
		Ethnicity: 84% white				
		women				

Abbreviations: BMI, body mass index; CEE, conjugated equine oestrogens; E3N, Etude Epidemiologique aupres des femmes de la Mutuelle Generale de l'Education Nationale; EPIC, The European Prospective Investigation into Cancer and Nutrition, ER, oestrogen receptor; HR, hazard ratio; HT, hormone therapy; m, month/s; MHT, menopausal hormone therapy; MPA, medroxyprogesterone acetate; NETA, norethisterone acetate; NR, not reported; OR, odds ratio; p, p-value; PMH, postmenopausal hormone; PR, progesterone receptor; ptrend, p-value for trend; RCT, randomised controlled trial; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; y, year/s.

*Adjusted on age (as the time scale), first-degree family history of breast cancer, level of education, height at adulthood, history of benign breast diseases, age at menarche, birth weight, age at menopause (for postmenopausal women only), tobacco smoking, number of children and age at first full term pregnancy (FFTP), physical activity level, body shape at menarche, breastfeeding, dietary pattern, alcohol consumption, vitamin D intake and daily ultraviolet radiation dose (UVRd), oral contraceptives or progesterone alone use, body mass index and menopausal hormone therapy use (for postmenopausal women only).

†Years of schooling, parity and age at first birth, BMI, type of menopause, age at menarche, pap smear frequency, history of breast cancer in first-degree relatives, history of breast cancer in other relatives, personal history of benign breast disease, mammogram in the previous follow-up period, use of oral contraceptives before menopause, use of progestogens alone before menopause.

‡Age (continuous time scale), type of menopause (natural/artificial), BMI (<18.5/[18.5–25]/[25–30]/>30 kg/m²), ever–use of oral contraceptives (yes/no), number of full term pregnancies (0/1/2/>3), age at first full term pregnancy (<25/[25–30]/>30 y old/unknown), age at menarche (<12/[12–16]/>16 y old/unknown), alcohol consumption (none/[0–15]/[15–30]/30> g/day/unknown). Further stratified by EPIC-participating centre.

**Adjusted for age, age at menopause, menopause type, age at menarche, nulliparity, age at first pregnancy, abortions/miscarriages, full term pregnancies, ever use of oral contraceptives, history of benign breast disease, use of breast cancer screening, family history of breast cancer, race, body mass index, cigarette use, alcohol use and exercise.
Tuble D.31 Menopulsal normone merupy—desilogen only and lisk of bleast curc	Table D.31	Menopausal hormone thera	py—oestrogen only	and risk of l	breast cancer
---	------------	--------------------------	-------------------	---------------	---------------

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Anothaisintawee et al., 2013 ²⁶⁷						Random effect model (heterogeneity present)/fixed effect model (heterogeneity not
Studies published to	94 studies					present)
2011	34% cohort studies	Number of participants: NR				Publication bias: NR
Europe & USA	55% case-control studies	69% studies focused on postmenopausal	Oestrogen-only HT	Breast cancer	OR=1.09 (1.06-1.12)	Adjustments: NR
	29 studies for oestrogen only MHT	women				Limitations: Increased HT effect size limited to Caucasian women due to small number of studies on Asian women
Collins et al., 2005 ²⁸⁴			Oestrogen–only HT			
(Narrative review)	20 epidemiological studies (ever &	7,055 cases	Current use		Mean RR=1.18 (1.01–1.38)†	Inverse variance model
Studies published to 2005	current use)		Ever use		Mean RR=1.08 (0.97–1.20)†	No publication bias for collaborative
North America &	Collaborative	4,640 women	<5 y use	Breast cancer	Mean RR=0.99 (0.83–1.15)§	re-analysis
Europe	re-analysis	1,056 cases	>5 y use		Mean RR=1.34 (1.16–1.52)§	Adjustments: NR
	4 RCTs	12,643 women 103 cases	Oestrogen–only HT vs placebo	-	Mean RR=0.78 (0.61–1.01)¶	Limitations: NR
Cohort studies						
Jones et al., 2016 ²⁸⁰	Breakthrough	58,148 women	Oestrogen-only MHT	Postmenopausal		Cox proportional hazards
	Generations Study		Overall	breast cancer	HR=1.00 (0.66–1.54)	regression model
UK		23 cases currently	Per year of use	_	HR=4.2 (-1.8-10.5); p=0.99	
	Recruitment dates: 2003–2009	using MHT	Current use vs no previous use			Adjustments: Attained age & menopausal

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		Mean menopausal	Duration			age (continuous)
	Retrospective study	age: 50.2 y	>0–4 y		HR=0.80 (0.38–1.69)	
			5–9 y		HR=0.96 (0.43-2.16)	Limitations:
	Age at enrolment:	menopausal BMI:	10–14 y		HR=1.41 (0.62–3.17)	Misclassification of MHI/HI use
	210 y	25.7 kg/m ²	15+ y		HR=1.14 (0.42-3.08)	excess HR
	Follow–up: 6 y		Time since last use	-		
			1 y		HR=0.40 (0.10–1.62)	
			2–4 y		HR=1.02 (0.63-1.63)	
			5–9 y		HR=0.99 (0.61-1.62)	
			10+ y		HR=1.35 (0.63–2.86)	
Román et al., 2015 ²⁸¹	Norwegian Prescription	686,614 women	Oestrogen–only HT use vs non–use			Multivariate model
	Database Cancer		Baseline use	Pro act o apoor	RR=1.30 (1.12–1.50); p=NS	Adjustments:
Norway	Registry of Norway	ay Estradiol use: 64,023 women	New use	BIEUSI CUIICEI	RR=0.94 (0.82-1.08)	Age (5–year), number of births,
	Cohort dates:		Oral use		RR=1.40 (1.16-1.68)	age at 1st birth & time (offset)
	2004-2008		Transdermal use		RR=1.40 (1.00-1.95)	Lincitation
	Prospective study	377 Cuses	1 mg use		RR=1.52 (1.11–2.10)	Time-related biases
			2 mg use		RR=1.68 (1.30-2.15)	
	Age at baseline: 45–79 y	Estriol use:	Baseline use	-	RR=1.18 (0.93-1.50); p=NS	Underestimation of the effect & risk of hormone therapy use
	Mean follow–up: 4.8 y	14,405 women 96 cases	New use		RR=0.89 (0.61-1.29)	Short follow–up time
Fournier et al., 2014 ²⁸³	E3N cohort	78,353 women	Oestrogen–only MHT Never use	Postmenopausal breast cancer	HR=1.00 (referent)	Cox proportional hazards model
France	Cohort dates: 1992–2008	3,678 cases	Current use overall	_	HR=1.17 (0.99–1.38)	Adjustments#
	Prospective cohort	Mean age at end of follow–up	≤5 y of use, time since last use	-		Limitations: Limited precision in describing
		(current users):	Current use		HR=1.11 (0.89–1.38)	risks of breast cancer within a
	Women born:	63.1 y	3 months–5 y		HR=1.10 (0.91–1.33)	2-year period after stopping
1925–1950		5–10 y		HR=1.11 (0.92–1.33)	treatment	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		Mean age at end	>10 y	_	HR=0.92 (0.74–1.15)	
	Follow up: 11.2 y	of follow–up (never users): 67.1 y	>5 y of use, time since last use	_		
			Current use		HR=1.22 (0.96–1.54)	
			3 months–5 y		HR=0.79 (0.46–1.34)	
			5–10 y		HR=1.54 (0.92–2.57)	
			>10 y		HR=1.81 (1.02-3.22)	
			Past use overall	_	HR=1.06 (0.95–1.19)	
Bakken et al., 2011 ²⁸⁷	EPIC cohort		Oestrogen–only MHT Never use		RR=1.00 (referent)	Multivariable Cox proportional
	Prospective study		Current use overall		RR=1.42 (1.23-1.64)	
Denmark, France,		133,/44 women	Per year of use	- Postmenopausal	RR=1.02 (0.99-1.06)	Adjustments**
Netherlands,	Mean age af	4 312 cases	<1 y	breast cancer	RR=1.01 (0.70-1.46)	
Norway & UK	enioimeni. 36.1 y	4,012 00303	3–5 у		RR=1.40 (1.01–1.93)	Limitations: Lack of information of MHT use
	Mean tollow-up: 8.6 y		>10 y		RR=1.72 (1.15–2.57)	after recruitment
Randomised control	lled trials					
Manson et al., 2013 ²⁷⁸	WHI trials: 2 RCTs	27,347 women	CEE/MPA hormone therapy	Postmenopausal breast cancer		Cox proportional hazards model
USA	Study duration: Oral CEE + MPA 1993–2002 Oral CEE 1993–2004	16,608 women with a uterus	Intervention phase Oral CEE + MPA vs placebo		HR=1.24 (1.01-1.53); p=0.04	Adjustments: Stratified by age, prior disease (if appropriate), & randomisation status
		361 cases				
	Age at recruitment: 50–79 y	10,739 women with prior hysterectomy	Oral CEE vs placebo	-	HR=0.79 (0.61-1.02); p=0.07	Limitations: Multiple testing limitations attending subgroup analyses
	Median cumulative	239 cases		_		
	tollow-up: 13 y		Post-intervention phase			
		396 cases	Oral CEE + MPA vs placebo		HR=1.32 (1.08-1.61); p=0.007	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		145 cases	Oral CEE vs placebo		HR=0.80 (0.58-1.11); p=0.19	
			Overall combined phases	_		
			Oral CEE + MPA vs placebo			
		757 cases	Overall		HR=1.28 (1.11-1.48); p<0.001	
			50-59 y		HR=1.34 (1.03-1.75)	
			60–69 y		HR=1.27 (1.02-1.57)	
			70-79 y		HR=1.25 (0.94-1.67); p-trend=0.72	
			Oral CEE vs placebo	-		_
			Overall		HR=0.79 (0.65-0.97); p=0.02	
			50-59 y		HR=0.76 (0.52-1.11)	
		384 cases	60–69 y		HR=0.78 (0.58-1.05)	
			70-79 y		HR=0.85 (0.56-1.28); p-trend=0.70	

Abbreviations: BMI, body mass index; CEE, conjugated equine oestrogens; E3N, Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l'Education Nationale; EPIC, European Prospective Investigation into Cancer and Nutrition; HR, hazard ratio; HT, hormone therapy; IARC, International Agency for Research on Cancer; MHT, menopausal hormone therapy; MPA, medroxy-progesterone acetate; NS, not significant; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; p-trend, p-value for trend; RCT, randomised controlled trial; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; WHI, Women's Health Initiative; y, year/s.

†Random-effects model. §Mantel-Haenszel model. ¶Inverse variance model.

#Age (time scale), all variables listed in Table 1 (Age at end of follow-up, age at menopause, year of birth, years of schooling, parity and age at first birth, BMI, type of menopause, age at menarche, pap smear frequency, history of breast cancer in first-degree and other relatives, personal history of benign breast cancer, mammogram in previous follow-up period, oral contraceptive use before menopause, progestagen use before menopause; and all categories of MHT exposure described in the table (current and past use, as well as duration of use and time since last use).**Age (continuous time scale), type of menopause (natural/artificial), BMI (<18.5/[18.5-25]/[25-30]/30 or more kg/m²), ever-use of oral contraceptives (yes/no), number of full-term pregnancies (0/1/2/3 or more), age at first full-term pregnancy (<25/[25-30]/30 or more y old/unknown), age at menarche (<12/[12-16]/16 or more y old/unknown), alcohol consumption (none/[0–15]/[15–30]/30 or more g/day/unknown). Further stratified by EPIC-participating centre.

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Gennari et al., 2015 ²⁹⁵	20 cohort studies	207,914 women exposed to	Hormonal infertility treatments vs no	Breast cancer	SRR=1.05 (0.96–1.14); I²=58.5%, p(heter)=0.001	Random effects model
		hormonal intertility	treatment			Adjustments: NR
Studies published 1996–2014	IVF: 7 studies	freatments	IVF		SRR=0.96 (0.81–1.14); l²=50.4%, p(heter)=0.06	Publication bias: NR
Countries of origin:	No IVF: 3 studies	2,347 cases	No IVF (enrolled before 1980)†		SRR=1.26†† (1.06–1.50); p=0.05; ²=28.3%, p(heter)=0.248	limitations:
NR	<10 y: 10 studies >10 y: 10 studies	16 studies used general population	Duration of follow- up‡	_		Confounding effect of pregnancy
		4 studies used internal controls	<10 y		SRR=0.95 (0.85–1.06); I²=34.1%, p(heter)=0.135	Observational studies, including selection bias and
			>10 y		SRR=1.13 (1.02–1.26); I ² =53.5%,	ascendinment blas
					p(heter)=0.02, p(subgroup)=0.2	It is not possible to identify a control group that is closely comparable, in terms of BC risk, to a group of women receiving treatments for infertility
Cohort studies						
Lundberg et al., 2017 ²⁹⁶	Swedish Multi– Generation Register	Cohort 1: 38,047 women who	ART vs spontaneous conception	Breast cancer	HR=0.84 (0.74–0.95)	Cox proportional hazard model
Sweden	Retrospective study	gave birth after ART treatment				Adjustments§
	. ,					Limitations:
	Cohort 1:	13,414 cases				Not able to identify all women
	Parous women who					with infertility-related problems
	had their first live	Cohort 2:	Infertility related	-	HR=0.83 (0.76-0.91)	
	birth in 1982–2012	39,469 women had	diagnosis but no COS			Unidentified or unmeasured
		gone through COS	vs no intertility related			confounders affected the
	9 6 v for ART hirth &	received ovulation	Other hormonal	-		
	7.0 Y TOLAKT DITTLA				пк-0./У (0.00-1.00)	

Table D.32 Hormonal infertility treatment and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	14.6 y for no ART birth	induction 7,229 cases	treatment vs no infertility related diagnosis or COS			Information on ART births 1982– 2006 was collected from IVF clinics retrospectively and
	Cohort 2: Women born 1960–1992		COS vs no infertility related diagnosis or COS	_	HR=0.86 (0.69-1.07)	might have lower coverage
	Mean follow–up: 7.4 y for COS women, 7.2 y for women with ovulation induction, & 6.3 y for women who received no ovarian stimulation					
	Age at enrolment: NR					
Reigstad et al.,	All women born in	1,353,724 eligible	Exposure to ART	Breast cancer	HR=1.00 (0.81-1.22)	Cox regression model
2017298	Norway in	for the study	Nulliparous		HR=1.11 (0.75–1.66)	
	1960–1996 & registered in the		Parous		HR=0.96 (0.76-1.22)	Adjustments: Region of residence, birth cohort, and concomitant
Norway	National Registry. Data was also from	treatment with ART	Exposure to clomiphene citrate		HR=1.12 (0.93–1.35)	
	the Norwegian	38 027 with	Nulliparous		HR=0.73 (0.47-1.12)	exposure to ciomphene circle
	Prescription	clomiphene citrate	Parous		HR=1.26 (1.03–1.54)	Limitations:
	Database, medical Birth Registry of	6,690 cases	Dose of clomiphene citrate	_		Misclassification of exposure
	Registry of Norway		Nulliparous			Comorbidity data are
	Regisiry of Norway	112 ART women	≤3		HR=0.77 (0.43-1.36)	unavailable
	Cohort dates:	cases & 6,578	4–6		HR=0.85 (0.41-1.73)	
	2004–2014 unexposed cases	>6		HR=0.44 (0.14–1.41)	Information on fertility	
		140 clominhono	Parous			diagnoses are unavailable
	Retrospective study	citrate cases &	≤3		HR=1.24 (0.94–1.63)	Confounding factors
		4–6		HR=1.33 (0.94-1.88)		

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Age at enrolment: women born 1960–1996	6,550 unexposed cases	>6		HR=1.21 (0.79–1.84)	associated with cancer and infertility not unavailable
	Median follow–up: 11 y					Information on BRCA mutations, socioeconomic factors, smoking, and BMI was unavailable
						Surveillance bias
						Correction for multiple analyses were not performed
van den Belt– Dusebout et al.,	OMEGA cohort study	25,108 women	Incidence of breast cancer vs general	Invasive breast cancer		Cox proportional hazards models
2016294	19,158 women in	population			Adjustments¶	
Nothorlanda	Cohort dates:	the IVF group	IVF		SIR=1.01 (0.93-1.09)	
Nemenanas	1909-2013	5,950 women in the	Non–IVF		SIR=1.00 (0.88-1.15)	
	Retrospective study	non–IVF group Jy 839 cases of	Breast cancer risk according to fertility treatment and			Age at menopause ana menopausal status at end of follow–up were unknown
	Mean age at baseline: 32.8 y	invasive breast cancer	reproductive characteristics			Person-years were included
			IVF		HR=1.01 (0.86-1.19)	from 1989 onward because
	Median follow-up: 21.1 v		Non-IVF		HR=1 (referent)	was only known for responding
	,		Time since first IVF cycle in the IVF group	-		women and not for non- responding women
			<5		SIR=0.95 (0.71-1.25)	
			5–9		SIR=1.07 (0.88-1.29)	Results are largely based on IVF
			10–14		SIR=1.06 (0.91-1.23)	treatment protocols used until
			15–19		SIR=0.98 (0.85-1.13)	1775
			≥20		SIR=0.92 (0.73–1.15); p-trend=0.47	
			Time since first IVF cycle in the non– IVF	-		

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			group			
			<5		SIR=1.02 (0.53-1.78)	
			5–9		SIR=0.95 (0.61-1.40)	
			10–14		SIR=1.07 (0.79-1.42)	
			15–19		SIR=0.94 (0.71-1.22)	
			≥20		SIR=1.03 (0.82–1.29); p-trend=0.93	
Luke et al., 2015 ²⁹⁷	SART CORS database	113,226 women	Comparison of incidence ratios with	Breast cancer	SIR=0.83 (0.75-0.91)	Cox proportional hazard model
USA		185 cases	women treated with			Adjustments#
	Cohort dates:		ART			
	2004–2009 to 2010					Limitations:
	Prospective study					Lack of information on family history of cancer, age at menarche, first birth,
	Follow–up: 263,457					breastfeeding history, use of
	person–y (mean 4.87 y)					contraceptive drugs and hormone replacement therapy
	Mean age at cancer diagnosis: 40.8 y					

Abbreviations: ART, assisted reproductive technologies/techniques; COH, controlled ovarian hyperstimulation; COS, controlled ovarian stimulation; HR, hazard ratio; IVF, in vitro fertilisation; NR, not reported; p, p-value; p(heter), p-value for the measure of heterogeneity; p(subgroup), p-value for subgroup comparison; RR, relative risk or risk ratio; SART CORS, Society for Assisted Reproductive Technology Clinic Outcomes Reporting System; SIR, standardised incidence ration; SRR, summary relative risk; USA, United States of America; y, year/s.

†Meta-regressional model comparing IVF, hormonal treatments outside of IVF protocols and mixed/unspecified treatments.

 \pm Meta-regressional model comparing <10 y and \geq 10 y.

§Adjusted for attained age, parity, calendar time, education level, country of birth, family history of BC and age at first birth.

¶Adjusted for age at first birth and number of births because for these variables, the IVF-specific risks (yes vs no or number of cycles) were changed by more than 10% when the variables were added to the model, which was not the case for the other potential confounders (4.5% maximum change): subfertility diagnosis, type of luteal phase support, clomiphene use, family history of breast cancer, body mass index, multiple pregnancies, breast feeding, age at menarche, use of oral contraceptives, and hormonal replacement therapy.

#Age at cycle start was adjusted for State and year of ART treatment. Parity, infertility diagnosis, and number of infertility diagnoses were adjusted for age at cycle start, State, and year of ART treatment. Number of ART cycles was adjusted for infertility diagnosis and number of infertility diagnoses, parity, age at cycle start, and year of ART treatment. Cumulative FSH dosage was adjusted for infertility diagnosis, number of ART cycles and diagnoses, parity, age at cycle start, State, and year of ART treatment. ART outcome was adjusted for cumulative FSH dosage, infertility diagnosis, number of ART cycles and diagnoses, parity, age at cycle start, State, and year of ART treatment.

††The SRR reported is from the study's Forest plot. The text of the study reports the SRR as 1.23.

Table D.33 DES in utero and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Pooled analyses						
Hoover et al., 2011 ³⁰⁹	3 cohort studies	4,653 DES-exposed women	DES, in utero Non-exposed	Breast cancer at ≥40 y	HR=1 (referent)	Cox proportional hazards model
Studies published 1977–1984		1,927 unexposed women	Exposed VEC present		HR=1.82 (1.04–3.18) CR=3.6% (1.4%–5.8%)	Adjustments: Date of birth and cohort
USA		61 cases among	VEC absent		CK=2.3% (U.2%-4.4%)	Publication bias: NR
		women aged ≥40 y				NR for breast cancer
		21 cases among 1,647 unexposed in women aged ≥40 y				
Troisi et al., 2007 ³⁰⁷	4 cohorts: National Cooperative	4,806 exposed women	DES, in utero Exposed vs not	Breast cancer		Poisson regression model
Countries of origin:	Diethylstilbestrol	0.0.(7	exposed			Adjustments:
INR	daughters of	2,067 unexposed women	All ages ≥40 y		RR=1.35 (0.85–2.1) RR=1.83 (1.1–3.2)	5-year categories
	women from the Dieckmann cohort; 223 cas daughters of 75 cas women from the expose Horne Cohort; 26 cas Women's Health unexpo Study Daughters Cohort	223 cases: 75 cases in exposed group 26 cases in	<40 y		RR=0.60 (0.26–1.3)	Limitations: Incomplete retrieval of medical records for confirmation of the cancers
		unexposed group				Loss to follow-up
	Follow–up: 1978–2001 (follow–up of Women's Health Study Daughters					
	(follow-up of Women's Health Study Daughters from 1995-2001)					

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Median follow–up: 24 y or 97,831 person–y (exposed) and 22 y or 34,810 person– y (unexposed)					
Cohort studies						
Verloop et al., 2010 ³⁰⁰	Cohort dates: 1992–2008	12,091 women	DES, in utero Overall	Breast cancer	SIR=1.05 (0.90-1.23)	Poisson distribution
Netherlands	Prospective study	165 Cases	<40 y ≥40 y		SIR=0.95 (0.69-1.29) SIR=1.09 (0.91-1.31)	Adjustments: Stratification for age (<40 and ≥ 40 y), educational level, parity,
	Median age at registration: 29 y					and maternal age at birth aid not alter these results
	Follow–up: 180,941 women–y exposed to DES					Limitations: DES exposure was not documented for majority of participants
						Women enrolled in cohort differ from the background population of DES daughters
						No internal comparison group, preventing adjustment for several risk factors

Abbreviations: CR, cumulative risk; DES, diethylstilbesterol; HR, hazard ratio; NR, not reported; SIR, standardised incidence ratio; RR, relative risk or risk estimate; USA, United States of America; VEC, vaginal epithelial changes; y, year/s.

Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Mothers and Dieckmann Study		DES exposure when pregnant vs no		RR=1.27 (1.07-1.52)	Poisson regression model
cohorts		exposure			Adjustments:
Review of obstetrics records: 1940–1960					RR adjusted for age, calendar year and the interaction between age and calendar year
Retrospective study	3,844 exposed women		Breast cancer		Time since exposure RR values
Dieckmann study	2714 upoynorod	DES exposure when			further adjusted for cohort
enrolled in early 1950s	women	pregnant vs general population		SIR=1.10 (0.98-1.23)	Limitations: There was a long interim between evaluations of the
Follow–up:					Dieckmann cohort and
143,657 person-y in					consequent losses to follow-up
139,735 person-y in					Only parous women included
	Study details Mothers and Dieckmann Study cohorts Review of obstetrics records: 1940–1960 Retrospective study Dieckmann study cohort: women enrolled in early 1950s Follow–up: 143,657 person–y in exposed women & 139,735 person–y in unexposed women	Study detailsStudy sampleMothers and Dieckmann Study cohorts	Study detailsStudy sampleExposuresMothers and Dieckmann Study cohortsDES exposure when pregnant vs no exposureReview of obstetrics records: 1940–1960J.844 exposed womenRetrospective study cohort: women enrolled in early 1950s3,716 unexposed womenDieckmann study cohort: women enrolled in early 1950s3,716 unexposed womenFollow-up: 143,657 person-y in exposed womenJ.716 unexposed womenFollow-up: 143,657 person-y in unexposed womenJ.716 unexposed women	Study detailsStudy sampleExposuresOutcomesMothers and Dieckmann Study cohortsDES exposure when pregnant vs no exposureJES exposure when pregnant vs no exposureReview of obstetrics records: 1940–19603,844 exposed womenBreast cancerRetrospective study cohort: women 	Study detailsStudy sampleExposuresOutcomesRisk estimatesMothers and Dieckmann Study cohortsDES exposure when pregnant vs no exposureRR=1.27 (1.07–1.52)Review of obstetrics records: 1940–19603,844 exposed womenBreast cancerDieckmann study cohort: women3,716 unexposed womenBreast cancerDieckmann study cohort: women3,716 unexposed womenDES exposure when pregnant vs general populationSIR=1.10 (0.98–1.23)Follow-up: 143,657 person-y in exposed women & 139,735 person-y in unexposed womenDES exposure when pregnant vs general populationSIR=1.10 (0.98–1.23)

Table D.34 DES maternal exposure and risk of breast cancer

Note: Risk estimates are presented with 95% confidence intervals.

Abbreviations: DES, diethylstilbesterol; RR, relative risk or risk estimate; SIR, standardised incidence ratio; USA, United States of America; y, year/s.

Lifestyle factors

Table D.35 Adiposity and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
WCRF, 2017 ¹⁰ Studies published to 2015	37 studies (including 3 pooled analyses) 56 studies	16,371 cases	BMI Dose response (per 5 —— kg/m²)	Premenopausal breast cancer	RR=0.93 (0.90-0.97); I ² =54.5%, p(heter)=0.001	Model: NR Adjustments: — Age, alcohol intake,
Asia, Europe & North America	Asia, Europe & (including 4 pooled 80,4 North America analyses)	80,404 cases		Postmenopausal breast cancer	p(heter)=0.000	change or adult BMI/waist-hip ratio
12 s (inc anc	12 studies (includina 1 pooled	4,953 cases	BMI in young adulthood Dose response (per 5 kg/m²)			Publication bias for
	analysis)	18–30 y		Premenopausal breast cancer	RR=0.82 (0.76–0.89); I²=14.9%, p(heter)=0.310	postmenopausal breast cancer (p<0.05)
	17 studies (including 1 pooled	10,229 cases		Postmenopausal	RR=0.82 (0.76–0.88); l ² =43.5%,	Limitations: NR
	analysis)	18–30 y		breast cancer	p(nelei)=0.042	
	6 studies	2,423 cases	Waist circumference Dose-response (per 10 cm) BMI adjusted	Premenopausal breast cancer	RR=1.14 (1.04–1.26); I²=0%, p(heter)=0.853	2=0%, 2=0%, 2=72.0%,
			BMI unadjusted		RR=0.99 (0.95–1.04); l²= 0%, p(heter)=0.904	
	11 studies	14,033 cases	Waist circumference Dose-response (per 10 cm)	Postmenopausal breast cancer		
			BMI adjusted		RR=1.06 (1.01–1.12); I2=72.0%, p(heter)=0.006	
			BMI unadjusted		RR=1.11 (1.09–1.13); l²=0%, p(heter)=0.590	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	11 studies (including 1 pooled	3,465 cases	Waist-to-hip ratio Dose-response (per 0.1 unit)	Premenopausal breast cancer		
	analysis)		BMI adjusted		RR=1.15 (1.01–1.31); l²=56.1%, p(heter)=0.034	
			BMI unadjusted		RR=1.06 (0.98–1.16); l²=27.1%, p(heter)=0.203	
			Waist-to-hip ratio Dose-response			_
	18 studies (including 1 pooled analysis)	15,643 cases	BMI adjusted	Postmenopausal breast cancer	RR=1.06 (0.99-1.15); I²=41.4%, p(heter)=0.115	
			BMI unadjusted		RR=1.10 (1.05–1.16); I²=0.0%, p(heter)=0.590	
Freisling et al., 2017 ³¹⁹			BMI [Dose response per 4.6 kg/m²]			Random effects model
Publication search			Never used HT		HR=1.28 (1.11–1.47)	Adjustments†‡
dates: NR			Ever used HT		HR=0.91(0.76-1.10)	Publications bias: NR
Europe & North	CHANCES consortium		Unknown use of HT	Postmenopausal breast cancer -	HR=1.02 (0.73–1.43)	Limitations:
America	7 prospective cohort studies	24,751 women	Waist circumference [Dose response per			Adiposity measures across all cancer sites not compared
		555 cases	Never used HT		HR=1.21 (1.05-1.40)	Differences in study design
	Mean age: 63 y		Ever used HT		HR=0.93 (0.78-1.11)	between cohorts
	Median follow-up:		Unknown use of HT		HR=1.00 (0.71-1.41)	Confounding
	12 y		Hip circumference [Dose response per 9.3 cm]	_		
			Never used HT		HR=1.24 (1.08-1.42)	
			Ever used HT		HR=0.96 (0.80-1.14)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			Unknown use of HT		HR=1.13 (0.82-1.55)	
Pooled analyses						
Premenopausal			BMI			Cox proportional hazards
Breast Cancer Collaborative			Age 18-24 y			regression model
Group, 2018 ³¹⁸		758,592 women	Trend (per 5 unit difference)		HR=0.77 (0.73-0.80)	Adjustments§
Participants	13,082 cases	13,082 cases	BMI<18.5		HR=1.14 (1.07-1.21)	Limitations:
recruited 1963-2013	cohort studies	cohort studies	BMI 18.5-22.9	Premenopausal	HR=1.00 (referent)	BMI does not measure
Australia Canada	Median age	Median age at	BMI 25.0-29.9	breast cancer	HR=0.75 (0.68–0.82)	overall body fat level
European countries,		enroimeni: 40.6 y				Weight was usually self-
France, Japan,		Median follow-up:				reported
Sweden, UK & USA		9.3 y	BMI≥30.0		HR=0.55 (0.45–0.68)	
						Insufficient power to assess associations in Asian population
Cohort studies						
Horn–Ross et al.,			BMI			Multivariable Cox proportional
201650	California Teachers					hazards regression
A 211	Study cohort		Current use of HT			Adjustments¶#**
037	Cohort dates:		<25 kg/m ²		HR=1 (referent)	
	1997-2011		≥25 kg/m ²	-	HR=1.21 (1.07–1.37)	Limitations:
		109,862 women	NO CUITENT USE OF HI	Postmenopausal	UD-1 (referent)	Small case numbers in some
	Prospective study		~23 kg/11 ²	breast cancer		subgroups
	Age at enrolment:	3,844 EK+ COSES		L	κ ^τ	Only 16 body-size phenotypes
	18 y					included
			≥25 kg/m²		HR=1.07 (0.95-1.21)	
	Duration of follow– up: 10 y					Data limited to specific time points

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
						Potential menopausal status and HT use misclassification
						Self-reported anthropometric data
Neuhouser et al.,			BMI	Postmenopausal		Multivariable Cox model
2015321			With uterus	breast cancer		
			Never used HT			Adjustments††
USA			<25 kg/m ²		HR=1 (referent)	
			25–<30 kg/m ²		HR=1.14 (0.95–1.37)	Limitations:
			30–<35 kg/m ²	g/m ² HR=1.29 (1.05–1.59)	participants	
	WHI clinical trials		≥35 kg/m ²		HR=1.46 (1.17–1.83)	panicipanis
	Cohort dates:	67,142 women	Current use of oestrogen & progestin	-		Lack of data on tumour molecular characteristics, and on longer term weight and
	1770 1770	3.388 cases	<25 kg/m ²		HR=1 (referent)	body composition changes
	Age at enrolment:	-,	25–<30 kg/m ²		HR=1.21 (1.03-1.42)	
	50-79 y		30–<35 kg/m ²		HR=1.36 (1.13–1.64)	Inability to distinguish from
			≥35 kg/m ²		HR=1.53 (1.22–1.91)	unintentional weight loss
	Median follow–up: 13 y		Past use of oestrogen & progestin	-		Insufficient power to examine distant stage
			<25 kg/m ²		HR=1 (referent)	
			25–<30 kg/m ²		HR=1.57 (0.98-2.51)	
			30–<35 kg/m ²		HR=1.64 (0.97-2.78)	
			≥35 kg/m²		HR=1.84 (0.97-3.48)	

Abbreviations: BMI, body mass index; CHANCES, Consortium on Health and Ageing; network of Cohorts in Europe and the United States; cm, centimetres; ER, oestrogen receptor; HR, hazard ratio; HT, hormone therapy; kg/m², kilograms per square metre; NR, not reported; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; WCRF, World Cancer Research Fund; WHI, Women's Health Initiative; y, year/s.

†Waist-to-hip ratios (WHR) HR adjusted for: age (1-y categories), and sex, and adjusted for daily smoking (never, former, current, missing), average alcohol consumption (g/day), education (primary or less, more than primary but less than college, college or university, missing), vigorous physical activity (yes, no, missing), recruitment year, and height; in the pooled analysis, models were additionally stratified by cohort and WHR-residual.

‡HR for BMI adjusted for: age (1-y categories), and sex, and adjusted for daily smoking (never, former, current, missing), average alcohol consumption (g/day), education (primary or less, more than primary but less than college, college or university, missing), vigorous physical activity (yes, no, missing), recruitment year, and height; in the pooled analysis, models were additionally stratified by cohort and mutually adjusted using waist circumference (WC)- and hip circumference (HC)-residuals.

§Adjusted for age, cohort, year of birth, age at menarche, age at first birth, number of births, time since last birth, and family history of breast cancer.

¶Premenopausal breast cancer: adjusted for history of benign breast disease and family history of breast cancer in a first-degree relative; age was the time metric and the model was stratified by age at baseline.

#Postmenopausal breast cancer (no hormone therapy): adjusted for age at menarche, nulliparity and age at first full term pregnancy, history of benign breast disease, family history of breast cancer in a first-degree relative, and consumption of a plant-based diet; age was the time metric and the model was stratified by age at baseline.

**Postmenopausal breast cancer (hormone therapy): adjusted for nulliparity and age at first full term pregnancy, history of benign breast disease, family history of breast cancer in a first-degree relative, average alcohol consumption in the year prior to baseline, and neighbourhood socioeconomic status; age was the time metric and the model was stratified by age at baseline.

††Adjusted for age, race/ethnicity, education, parity, age at first birth, bilateral oophorectomy, family history of breast cancer, estrogen-alone use and duration, oestrogen and progesterone use and duration, smoking status, diabetes mellitus, alcohol consumption, and stratified by baseline age group, hormone therapy trial randomization group, dietary trial randomization group, hysterectomy status, Calcium/Vitamin D Randomized Trial randomization group (time-dependent) and extended follow-up (time-dependent).

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
WCRF, 2017 ¹⁰	5 cohort, case- control & nested	3,512 premenopausal	Weight gain Dose response (per	Premenopausal breast cancer	RR=0.99 (0.96–1.03); I²=13%, p(heter)=0.33	Model: NR
Studies published to 2015	studies	Cases	5 kg)			Adjustments: NR
Asia, Europe &	15 cohort, case- control & nested	16,600 postmenopausal	Overall	Postmenopausal breast cancer	RR=1.06 (1.05–1.08); I²=38%, p(heter)=0.07	No publication bias (p>0.05)
North America	case-control studies	Cases	Hormone therapy use			Limitations: NR
			Current		RR=1.00 (0.98-1.03); I2=19%	
			Ever		RR=1.08 (1.00-1.16); I ² =44%	
			Never		RR=1.06 (1.03-1.09); I ² =0%	
			Never/former	_	RR=1.09 (1.07-1.12); I ² =37%	
				ER+PR+	RR=1.13 (1.04-1.22); I ² =91%	
				ER+ PR-	RR=1.00 (0.95-1.04); I2=0%	
				ER-PR-	RR=1.02 (0.98-1.06); I ² =4%	
Cohort studies						
Nitta et al., 2016 ⁵¹	Japan Collaborative	38,610 women	Weight gain since age 20	Premenopausal breast cancer		Cox proportional hazards regression model
Japan	Cohort study	273 cases	<3.3 kg		HR=1 (referent)	
	Cohort dates:	9.367	3.3–6.6 kg		HR=0.89 (0.42-1.89)	Adjustments: Age at baseline survey, age
	1988-2009	premenopausal	6.7–9.9 kg		HR=1.27 (0.59–2.70)	at menarche, number of live
	Prospective study	women	≥10.0 kg		HR=1.46 (0.78–2.73); p-trend=0.221	births and age at first delivery
		84 premenopausal	<3.3 kg	Postmenopausal	HR=1 (referent)	Limitations:
	Age at enrolment: 40–79 y	cases 29,243	3.3–6.6 kg	breast cancer	HR=1.45 (0.78-2.70)	Possible misclassification of menopausal status
	·	postmenopausal	6.7–9.9 kg		HR=2.48 (1.40-4.41)	

Table D.36 Adiposity—weight gain and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Mean follow-up:	women	≥10.0 kg		HR=2.94 (1.84–4.70); p-trend<0.001	Self-reported information at baseline
13 y	189 postmenopausal cases					
Neuhouser et al., 2015 ³²¹	WHICT study	67,142 postmenopausal	Weight gain >5% (per BMI range)	Postmenopausal breast cancer		Cox proportional hazards regression model†
	Cohort dates:	women	Overall		HR=1.12 (1.00-1.25)	Limitations: Fewer race/ethnic minority
USA	1993-1998	3,388 cases	<25 kg/m ²		HR=1.36 (1.11–1.65)	
	Prospective		25–<30 kg/m ²		HR=0.98 (0.81–1.18)	participants
			30– <35 kg/m²		HR=1.14 (0.92–1.42)	
	Age at enrolment: 50–79 y		≥30 kg/m²		HR=1.00 (0.74-1.34)	molecular characteristics
	Median follow-up: 13 y					Fewer data on longer term weight and body composition changes
						Inability to distinguish from unintentional weight loss

Abbreviations: AICR, American Institute for Cancer Research; BMI, body mass index; ER, oestrogen receptor; HR, hazard ratio; kg/m², kilograms per square metre; p, p-value; p(heter), p-value for the measure of heterogeneity; p-trend, p-value for trend; PR, progesterone receptor; RR, relative risk or risk estimate; USA, United States of America; WCRF, World Cancer Research Fund; WHICT, Women's Health Initiative Clinical Trial; y, year/s.

†Adjusted for age, race/ethnicity, education, parity, age at first birth, bilateral oophorectomy, family history of breast cancer, estrogen-alone use and duration, oestrogen and progesterone use and duration, smoking status, diabetes mellitus, alcohol consumption, baseline BMI group, and stratified by baseline age group, hormone therapy trial randomization group, dietary trial randomization group, hysterectomy status, Calcium/Vitamin D Randomized Trial randomization group (time-dependent), and extended follow-up (time dependant).

Table D.37 Adiposity—weight loss and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Winder et al., 2017 ³²⁷	4 meta–analyses, cohort studies &	9,235 bariatric cases (114 breast	Bariatric surgery vs control	Breast cancer	OR=0.585 (0.247–1.386); p=0.223; l²=90.53%, p(heter)<0.0001	Random effects model
	case series	cancer cases)				Publication bias: NR
Studies published to		1/100 controls				
2016	Follow-up: 11.7 y	(516 breast cancer				Adjustments: NR
Canada, Sweden &		cases)				Limitations:
USA						Selection bias
		temale patients				Difference in ages between
		BMI ≥35 kg/m ²				groups may be significant
						Non-randomised studies in
						analysis
						Matching cases for controls to bariatric patients is difficult
Cohort studies						
Chlebowski et al., 2017 ³²⁸	Women's Health Initiative	61,335 postmenopausal	Weight loss ≥5%	Breast cancer	HR=0.88 (0.78-0.98)	Multivariable Cox proportional hazards regression models
(Conference		women				
abstract)	Cohort dates: 1993–1998	BMI≥18.5				Adjustments: NR
USA		3,061 cases	≥15%		HR=0.63 (0.45–0.90)	Limitations: NR
	Prospective study					
	Age at enrolment:					
	50-79 y					
	Mean follow-up:					
	11.4 y					
Neuhouser et al.,	Women's Health	67,142	Weight loss >5%	Breast cancer		Cox regression model
2013021		women	Main effect		HR=1.00 (0.89-1.12)	Adjustments¶

Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Cohort dates:		BMI <25		HR=1.03 (0.81-1.32)	Limitations:
1993–1998	3,388 cases	BMI 25-<30		HR=1.05 (0.87-1.27)	Fewer race/ethnic minority
		BMI 30-<35		HR=0.92 (0.74–1.14)	participants
Prospective conorr		BMI ≥35		HR=0.99 (0.77-1.27)	Lack of data on tumour
Age at enrolment:					molecular characteristics
50–79 y		Weight loss 2–5%			
		Main effect		HR=1.07 (0.95–1.21)	Lack of data on longer term
Median follow-up:		BMI <25		HR=1.02 (0.80-1.31)	weight & body composition
13 y		BMI 25-<30		HR= 1.17 (0.96–1.43)	changes
		BMI 30-<35		HR=1.01 (0.79-1.29)	
	BMI≥3	BMI≥35		HR=1.03 (0.76-1.40)	Inability to distinguish from unintentional weight loss
	Study details Cohort dates: 1993–1998 Prospective cohort Age at enrolment: 50–79 y Median follow–up: 13 y	Study detailsStudy sampleCohort dates: 1993–19983,388 casesProspective cohortAge at enrolment: 50–79 yMedian follow–up: 13 y13 y	Study detailsStudy sampleExposuresCohort dates: 1993–19983,388 cases $BMI < 25$ 1993–19983,388 cases $BMI < 25$ Prospective cohort $BMI < 35$ Age at enrolment: $50-79 y$ Weight loss 2–5% Main effectMedian follow-up: $13 y$ $BMI < 25$ BMI > 25 $BMI < 25$ BMI > 35 $BMI > 35$	Study detailsStudy sampleExposuresOutcomesCohort dates: 1993-19983,388 cases $BMI < 25$ $BMI < 25$ 1993-19983,388 cases $BMI < 25$ $BMI < 35$ Prospective cohort $BMI < 35$ $BMI > 35$ Age at enrolment: $50-79 y$ Weight loss $2-5\%$ Main effect $Main < 25$ Median follow-up: 	$ \begin{array}{c c c c c c } \hline Study details & Study sample & Exposures & Outcomes & Risk estimates \\ \hline Cohort dates: 1993-1998 & 3,388 cases & BMI < 25 & HR = 1.03 (0.81 - 1.32) & HR = 1.05 (0.87 - 1.27) & BMI 30 - <35 & HR = 0.92 (0.74 - 1.14) & BMI \geq 35 & HR = 0.92 (0.74 - 1.14) & BMI \geq 35 & HR = 0.99 (0.77 - 1.27) & Meight loss 2 - 5\% & Main effect & HR = 0.97 (0.95 - 1.21) & Median follow-up: BMI < 25 & HR = 1.07 (0.95 - 1.21) & HR = 1.02 (0.80 - 1.31) & BMI 25 < S0 & HR = 1.02 (0.80 - 1.31) & BMI 25 & HR = 1.01 (0.79 - 1.29) & BMI 30 - <35 & HR = 1.01 (0.79 - 1.29) & BMI 30 - <35 & HR = 1.01 (0.79 - 1.29) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 - 1.40) & BMI < 35 & HR = 1.03 (0.76 -$

Abbreviations: BMI, body mass index; HR, hazard ratio; NR, not reported; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; USA, United States of America; y, year/s.

¶Analyses were adjusted for age, race/ethnicity, education, parity, age at first birth, bilateral oophorectomy, family history of breast cancer, oestrogen alone use and duration, oestrogen and progesterone use and duration, smoking status, diabetes, alcohol consumption, baseline BMI group, and stratified by baseline age group, hormone therapy trial randomisation group, dietary trial randomisation group, hysterectomy status, calcium plus vitamin D trial randomisation group (time-dependent) and extended follow-up (time-dependent).

Table D.38 Alcohol consumption and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
WCRF, 2017 ¹⁰	23 cohort studies	98,046 cases	Consumption of alcoholic drinks	Breast cancer	RR=1.07 (1.05–1.09); I ² =74%, p<0.001	Most studies adjusted at least for age
Studies published to 2015	10 cohort studies	4,277 cases	(total) (per 10 g	Premenopausal breast cancer	RR=1.05 (1.02–1.08); l²=0%, p(heter)=0.79	No publication bias
Asia, Europe &	22 cohort studies	35,221 cases	ethanol/day)	Postmenopausal breast cancer	RR=1.09 (1.07-1.12); l²=70.9%, p(heter)<0.001	
North America	23 cohort studies	44,780 cases	Alcohol from beer	Breast cancer		-
			(per 10 g		RR=1.05 (1.03–1.08); I²=0%, p=0.75	
	3 cohort studies	818 cases	ethanol/day)	Premenopausal breast cancer	RR=1.32 (1.06–1.64); l ² =0%, p=0.71	
	7 cohort studies	7,798 cases		Postmenopausal breast cancer	RR=1.06 (0.94–1.21); l ² =66%, p=0.007	
	24 cohort studies	66,318 cases	Alcohol from wine (per 10 g	Breast cancer	RR=1.06 (1.02–1.10); l²=60%, p=0.04	-
	3 cohort studies	818 cases	ethanol/day)	Premenopausal breast cancer	RR=1.17 (0.79–1.73); l²=74%, p=0.02	
	6 cohort studies	3,913 cases		Postmenopausal breast cancer	RR=1.12 (1.08–1.17); l2=0%, p=0.96	
	23 cohort studies	43,574 cases	Alcohol from liquor (per 10 g	Breast cancer	RR=1.04 (0.99-1.09); l ² =80%, p=0.002	-
	3 cohort studies	818 cases	ethanol/day)	Premenopausal breast cancer	RR=1.10 (0.92-1.30) ;l2=0%, p=0.92	
	7 cohort studies	7,798 cases		Postmenopausal breast cancer	RR= 1.05 (0.93–1.17); I²=73%, p=0.001	
Chen et al., 2016 ³³⁶	26 studies	21,149 breast cancer cases	Wine drinking Highest vs lowest	Breast cancer	RR=1.36 (1.20–1.54); p<0.001; l²=67.0%, p(heter)<0.001	Random effects model
Studies published to	8 cohort studies					No publication bias
2015	18 case–control	2,062 premenopausal		Premenopausal breast cancer	RR=1.79 (1.34-2.40); p=0.344	(p=0.151)
Europe & North America	studies	cases		Postmenopausal breast cancer	RR=1.20 (0.94–1.53); p=0.027	Adjustments: Family history, body mass

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		7,396 postmenopausal cases	Per 1 g ethanol from wine/day	Breast cancer	RR=1.0059 (0.9670-1.0464); p=0.6156	index, total energy, other alcohol beverage, smoking, menopause, hormone therapy, pregnancy, education, physical activity
						Limitations: Majority of the cases were extracted from case–control studies
						All the studies included only covered the Whites, lacking the diversity of races
						Potential misclassification of wine ingestion dose
Jayasekara et al., 2016 ³³⁷	16 studies	Age at baseline: >20 y	Alcohol consumption Highest vs lowest	Breast cancer	RR=1.28 (1.07-1.52); l²=73.5%, p(heter)= 0.000	Random effects model
Studies published to	3 cohort studies	- Population			RR=1.48 1.33–1.64; l²=0%, p(heter)=0.434	No publication bias: p=0.62 for cohorts & p=0.98 for case-
2015	13 case–control studies	characteristics: NR			RR=1.25 (0.99-1.57); l ² =73.9%, p(heter)<0.001	- controls
Europe & North America						Limitations: Incompleteness of the literature search
						Heterogeneity between studies Confounding
						Misclassification of alcohol intake
Jung et al., 2016 ³³⁹	Pooling Project of Prospective Studies	1,089,273 women	Total alcohol consumption	Breast cancer		Random-effects model
Dates of	of Diet & Cancer	37,191 cases	Non-drinker	ER+	RR=1 (referent)	Adjustments†

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
publication: NR	20 prospective	21,624 ER+ cases	≥30 g/day		RR=1.35 (1.23–1.48); p-trend<0.001, p(heter)=0.13	Limitations:
Australia, Canada,	cohort studies	5,113 ER- cases 11-86% of women were drinkers	Non-drinker	ER-	RR=1 (referent)	Baseline alcohol intake data
Italy, Netherlands, Sweden & USA	Baseline age:		≥30 g/day		RR 1.28 (1.10–1.49); p– trend<0.001, p(heter)=0.55	may not incorporate possible diet changes during follow–up
	18–104 y		Non-drinker	PR+	RR=1 (referent)	
	Maximum follow-		≥30 g/day		RR=1.36 (1.21–1.54); p– trend<0.001, p(heter)=0.01	Could not distinguish breast cancers detected by symptoms from those diagnosed by mammography
	0p. 0-10 y		Non-drinker	PR-	RR=1 (referent)	
			≥30 g/day		RR=1.30 (1.16–1.46); p– trend<0.001, p(heter)=0.86	
			Past use postmenopausal hormone therapy	Breast cancer	RR=1.10 (1.04-1.15)	
			Current use postmenopausal hormone therapy		RR=1.07 (1.02–1.13)	
Seitz et al., 2012 ³³²	113 studies	44,552 cases (non– drinkers)	– Light drinking ≤12.5g ethanol/day	Breast cancer	RR=1.05 (1.02–1.08); l²=59%, p(heter)=0.0002	Random effects model
Studies published to 2011	39 cohort studies	 77,539 cases (light	or ≤1 drink/day vs non–drinking		RR=1.05 (1.02–1.09); l²=46%, p(heter)=0.0013	Publication bias: NR
Asia, Europe, North America, other	74 case–control studies	drinkers) 51% of studies from North America, 38% from Europe, 6% from Asia 10% from other regions or from more than one region			RR=1.05 (1.00–1.10); I²=64%, p(heter)=0.030	Adjustments: 36% of estimates were adjusted for age, family history, parity, menopausal status, oral contraceptive/hormonal replacement therapy use) Limitations: NR
Bagnardi et al., 2012 ³³⁸	110 studies	41,995 cases in reference group	Light drinking ≤12.5 g ethanol/day	Breast cancer	RR=1.05 (1.02–1.08); p=0.0002	Random effects model

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	39 cohort studies		or ≤1drink per day vs			No publication bias
Studies published to 2010	71 case–control studies	72,902 cases in light drinking category	no drinking			Adjustments: NR
						Limitations:
Asia, Europe, North America & other						Heterogeneity across studies
						Could not investigate the role of different drinking patterns in modifying the effect of the total amount of alcohol consumed Possible interaction effect between alcohol consumption &tobacco smoking Possible existence of publication bias
						Under-reporting of alcohol
						consumption & misclassification

Abbreviations: AICR, American Institute for Cancer Research; ER-, oestrogen receptor negative; ER+, oestrogen receptor positive; HR, hazard ratio; PR-, progesterone receptor negative; PR+, progesterone receptor positive; RR, relative risk or risk estimate; NR, not reported; p(heter), p-value for the measure of heterogeneity; p-trend; p-value for trend across tertiles; USA, United States of America; WCRF, World Cancer Research Fund; y, year/s.

 \uparrow Adjusted for ethnicity (Caucasian, African American, Hispanic, Asian, others), education (< high school, high school, >high school), body mass index (<23, 23-<25, 25-<30, >30 kg/m²), height (<1.60, 1.60-<1.65, 1.65-<1.70, 1.70-<1.75, >1.75 m), physical activity (low, medium, high), smoking status (never, past, current), age at menarche (<11, 11-12, 13-14, >15 years), joint effects of menopausal status and hormone therapy (premenopausal; perimenopausal; or uncertain; postmenopausal, never user of hormone therapy; postmenopausal, past user of hormone therapy; and postmenopausal, current user of hormone therapy), oral contraceptive use (never, ever), joint effects of parity and age at first birth (nulliparous, parity 1-2 and age at first birth <30 years, parity 1-2 and age at first birth <30 years, parity 3 and age at first birth <30 years disease (yes, no) and total energy intake (continuous, kcal/day); age in years and year of questionnaire return were included as stratification variables.

Table D.39 Bras and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
So et al., 2015 ³⁴⁵	6 case–control studies	1,484 cases	Wearing a bra during sleep time vs not	Breast cancer	OR=2.04 (1.65–2.52); l²=none detected, p(heter)=0.44	Fixed effect model
Studies published to 2014	5 case-control studies that adjusted for	1,874 controls Hospital-based	wearing		OR=2.30 (1.79–2.96); I²=none detected, p(heter)=0.81	Publication bias: NR Adjustments: varies across studies
China, Europe & USA	confounders 1 case–control study that did not adjust for confounders	_ case-controls			OR=1.50 (1.01-2.22)	Limitations: Only 6 studies (out of 12 identified) reported data on wearing a bra while sleeping
						Inconsistent results among studies that did report numerical data
						Case-control studies prone to recall bias
						Poor adjustment for confounders across most studies
Case-control studies						
Chen et al., 2014 ⁷⁵	Population-based case-control	Postmenopausal women	Lifetime average hours/day wearing a	Postmenopausal IDC		Polytomous logistic regression
USA	Study duration: 2000–2004 Age at enrolment: 55–74 y	454 IDC cases 590 ILC cases	bra ≤10 hours 10.1–11.5 hours 11.6–13.9 hours ≥14 hours		OR=1.00 (referent) OR=0.9 (0.6-1.3) OR=1.1(0.7-1.6) OR=0.9 (0.6-1.3); p=0.801	Adjustments: Age at the reference date (5- year categories) Reference year (continuous) &
	00-/ 4 y	(general	≤10 hours 10.1–11.5 hours	Postmenopausal ILC	OR=1 (referent) OR=0.7 (0.5-1.0)	Limitations:

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Use of the Cancer	population)	11.6–13.9 hours		OR=0.9 (0.7–1.4)	Recall bias and/or non-
	Surveillance System		≥14 hours		OR=0.8 (0.6–1.2); p=0.609	differential misclassification
	& the region's population-based cancer registry participating in the Surveillance, Epidemiology and End Results program of the National Cancer Institute	Mostly non-	Currently wearing a	IDC	OR=1.0 (0.8–1.4)	
		Hispanic Caucasian	n bra vs not wearing a bra	ILC	OR=0.9 (0.7–1.1)	

Abbreviations: IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; NR, not reported; United States of America, USA: y, years.

Table D.40 Coffee, tea, caffeine and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Lafranconi et al.,	21 cohort studies	1,068,098	Coffee consumption			Random effects model†
2018347		participants	Highest vs lowest intake	Breast cancer	RR=0.96 (0.93-1.00); l²=7%, p(heter)=0.37	No publication bias (p>0.05)
Studies published to 2017		36,597 cases		Premenopausal breast cancer	RR=0.98 (0.89-1.07); l²=0.0%, p(heter)=0.46	Limitations:
Denmark, France,		Follow–up: 5–26 y		Postmenopausal breast cancer	RR=0.92 (0.88-0.98); l ² =0.0%, p(heter)=0.57	No data on methods of preparation have been
Germany, Greece,			0 cup/d	Breast cancer	RR=1 (referent)	provided in the studies
Netherlands,			1 cup/d		RR=0.99 (0.98-1.00)	Possibility of rocall bias 8
Norway, Spain,			2 cups/d		RR=0.98 (0.96-0.99)	reverse causation
Sweden, UK & USA			3 cups/d		RR=0.97 (0.94-0.99)	
			4 cups/d		RR=0.96 (0.93-0.99)	
			5 cups/d		RR=0.95 (0.91-0.98)	
			6 cups/d		RR=0.93 (0.89-0.98)	
			7 cups/d		RR=0.92 (0.88-0.98); p(heter)=0.58	
			0 cup/d	Postmenopausal	RR=1 (referent)	
			l cup/d	breast cancer	RR=0.97 (0.95-1.00)	
			2 cups/d		RR=0.95 (0.90-1.00)	
			3 cups/d		RR=0.92 (0.86-1.00)	
			4 cups/d		RR=0.90 (0.82-0.99)	
			5 cups/d		RR=0.88 (0.78-0.99)	
			6 cups/d		RR=0.85 (0.74-0.99)	
			7 cups/d		RR=0.83 (0.70-0.99); l2=39.6%, p(heter)=0.14	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Grosso et al., 2017 ³⁴⁹	9 prospective case–control	15,775 cases	Caffeine Highest vs lowest	Breast cancer	RR=0.99 (0.94–1.04); l2=0%	Model: NR
	studies		intake			Adjustments: NR
2016	Follow-up: NR					Publication bias: NR
Countries: NR						Limitations: Lack of consistency among studies in exposure dose
						Most of the evidence referred to 'the highest compared with the lowest' category of exposure
						Lack of information on concerns relative to genetic polymorphisms.
						Lack of consistent information on how the coffee was processed, prepared or consumed
WCRF, 2017 ¹⁰	14 cohort studies	25,335 cases	Coffee per 1 cup/d	Breast cancer	RR=0.99 (0.98–1.00); p=borderline sig; l ² =3.1%,	Model: NR
Studies published to	7 abudiaa	_			p(nelel)=0.41	Adjustments: NR
2013	7 studies			breast cancer	l ² =44.4%, p(heter)=0.095	No publication bias: Fager tests
Asia, Europe &	7 studies	_		Postmenopausal	RR=0.98 (0.95–1.00);	P=NS
North America				breast cancer	p=borderline sig; l²=45.6%, p(heter)=0.09	Limitations: NR
	14 cohort studies	16,808 cases	Tea	Breast cancer	RR=1.03 (0.98-1.09); p=NS;	
	6 studies	_	per 1 cup/d		l ² =71.6%, p(heter)=0.003	
	4 studies			Premenopausal breast cancer	RR=1.00 (0.96–1.05); l²=0%, p(heter)=0.46	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	5 studies			Postmenopausal breast cancer	RR=1.05 (0.99–1.11); p=NS; l²=68.2%, p(heter)=0.01	
	6 studies	-	Green tea per 1 cup/d	Breast cancer	RR=0.99 (0.97–1.02); p=NS; l2=0%, p(heter)=0.56	_
Jiang et al., 2013 ³⁵⁴	37 case-control &	41,805 cases	Coffee intake	Breast cancer		Fixed effects model (I ² <50.0%)‡
	cohort studies		Highest vs lowest		RR=0.97 (0.92-1.01); I ² =14.2%,	
Studies published to	20 studies on coffee	Age: all ages	intake		p(heter)=0.09	No publication bias: Egger test
2012			per 2 cups/d		RR=0.98 (0.96-1.00); p=0.053	p=143
Australia, Canada,						Limitations:
Denmark, Finland,						Only 3 studies included for
France, Greece,						BRCA1 mutation carriers
Netherlands,						Micologification of coffee
Norway, Poland,						consumption in original studies
Sweden,						
Switzerland, UK &						Confounder adjustment varied
03/(between studies included
						Potential publication bias
Li et al., 2013 ³⁵⁵	26 studies	863,067 participants	Coffee intake	Breast cancer		Random effects model
			Highest vs lowest		Pooled RR=0.96 (0.93-1.00);	
Studies published to	10 case-control	49,497 incident	intake		l ² =0%, p(heter)=0.769	Adjustments: NR
2012	studies	cases		ER-	Pooled RR=0.81 (0.67-0.97);	
Denne ante Fielen el	1 (c c lo c rt ctu clic c				l²=26.1%, p(heter)=0.211	No publication bias (p>0.05)
France, Germany,	16 CONOR STUDIES			ER+	Pooled RR=1.01 (95% CI 0.93-	Limitations
Japan, Israel, Italy,				Due aut e au e au	1.09); I ² =0%, p(heter)=0.909	Misclassification of intake due
Netherlands,			per 2 cups/d	Breast cancer	Pooled RR=0.98 (0.97-1.00); l2=0% p(beter)=0.795	to self-reported data
Norway, Sweden &						
USA						Residual inherent confounding
						Most studies conducted in
						Europe, USA & Asia

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
						Potential publication bias

Abbreviations: AICR, American Institute for Cancer Research; *BRCA1*, *BRCA1* gene mutation; d, day; ER, oestrogen receptor; NR, not reported; NS, not significant; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; sig., significant; WCRF, World Cancer Research Fund; UK, United Kingdom; USA, United States of America; y, year/s.

†Adjustments to individual risk estimates; smoking, alcohol intake, physical activity and education.

‡Adjustments to individual risk estimates; smoking and/or alcohol, body mass index, energy intake, physical activity, oral contraceptive use, postmenopausal hormone therapy, family history of breast cancer and history of benign breast disease.

§Adjusted for menopausal status at baseline, smoking status, duration of education, body mass index, physical activity level, alcohol consumption (g/day), number of children, age at first birth, use of hormone therapy, and maternal history of breast cancer.

Table D.41 Diet—calcium and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments	
Meta–analyses							
WCRF, 2017 ¹⁰	5 cohort studies	17,483 cases	Dietary calcium intake	Breast cancer	RR=0.97 (0.94-1.00); p=NS; l²=22.0%, p(heter)=0.275	Adjustments: Age, alcohol intake (except for	
Studies published to 2013			per 300 mg/day			singaporean study), BMI & reproductive factors	
Asia, Europe & Norin America						No publication bias (p=0.061)	
	5 cohort studies	2,980 cases		Premenopausal breast cancer	RR=0.87 (0.76-0.95); l²=66.9%, p(heter)=0.017	Publication bias (p=0.013)	
	6 cohort studies	10,137 cases		Postmenopausal breast cancer	RR=0.96 (0.94-0.99); l2=0.0%, p(heter)=0.675	No publication bias (p=0.790)	
Hidayat et al.,	11 prospective	872,895 women	Calcium intake	Breast cancer		Random effects model	
2016 ³⁵⁶	cohort studies	26,606 cases	Highest vs lowest intake		RR=0.92(0.85-0.99); l²=44.2%, p(heter)=0.026	Adjustments†	
Studies published to 2016		Follow–up: 7–25 y	Total calcium		RR=0.93 (0.84-1.03); I²=46.1%, p(heter)=0.063	Publication bias (p<0.05)	
Europe, Singapore		Ethnicity: European	Dietary calcium		RR=0.90 (0.84-0.97); l²=43.9%, p(heter)=0.051	Limitations:	
& USA		North American & Singaporean	North American & Singaporean	Supplemental calcium		RR=0.98 (0.92-1.03); l ² =0, p(heter)=0.426	Publication bias
		Chinese	per 300 ma/d		··· /	 Difficult to assess effects of 	
			p or occg, a		RR=0.98 (0.96-0.99); l2=30.8%, p(heter)=0.123	calcium intake due to its relationship with vitamin D	
			Dietary calcium		RR=0.97 (0.95-0.98); l²=18.7%, p(heter)=0.277	Moderate heterogeneity	
			Supplemental calcium		RR=0.99 (0.97-1.01); I²=12.9%, p(heter)=0.328	Residual confounding factors	
			Highest vs lowest	Premenopausal breast cancer	RR=0.75 (0.59–0.96); l²=55.2%, p(heter)=0.048		
				Postmenopausal breast cancer	RR=0.94 (0.87–1.01); I²=7.3%, p(heter)=0.373		

Abbreviations: AICR, American Institute for Cancer Research; BMI, body mass index; NS, not significant; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; WCRF, World Cancer Research Fund; USA, United States of America; y, year/s.

†Studies individually adjusted for a wide range of potential confounding factors, such as age, BMI, family history of breast cancer, hormone therapy use and total energy intake.

Table D.42 Diet-dairy and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
WCRF, 2017 ¹⁰	6 studies	7,766 women	Dairy intake (per 200 g)	Breast cancer	RR=0.96 (0.94–0.99); l²=0%, p=0.75	Publication bias (Egger's test=0.51)
Studies published to 2015						
Asia, Europe &	7 cohort studies	2,862 cases	-	Premenopausal breast cancer	RR=0.95 (0.92–0.99), I2=59%, p(heter)=0.59	Publication bias (Egger's test=0.66)
North America	8 cohort studies	8,145 women	-	Postmenopausal breast cancer	RR=0.97 (0.93–1.01); I ² =39%, p=0.12	Publication bias (Egger's test=0.74)
						All studies adjusted for multiple confounders, including age, reproductive factors, BMI, & alcohol consumption
Wu et al., 2016 ³⁶⁰	46 studies	Follow–up: 3.9–65 y				Random effects model
Studies published to 2015						All studies adjusted at least for age
	5 cohort studies	586,726 women	Skim milk	Breast cancer		
Asia, Europe & North America	8 cohort studies	16,664 cases	per 200 g High vs low intake	_	RR=0.96 (0.92–1.00); l ² =11.9% RR=0.93 (0.85–1.00); l ² =40.1%	Publication bias (Begg's test (p=0.266–1.000),
	11 cohort studies	775,778 women 19,747 cases	Total milk per 200 g		RR=0.97 (0.93–1.01) 2=36.4%	Egger's lest (p=0.292-0.77))
	18 cohort studies		High vs low intake		RR=0.92 (0.84–1.02); I ² =53.5%	Confounders
	5 cohort studies	554,775 women 13,781 cases	Whole milk per 200 g	_	RR=1.02 (0.92–1.13); I2=32.8%	- Most studies used a single FFQ
	9 cohort studies		High vs low intake		RR=0.99 (0.87-1.12); I ² =37.4%	& assumed diet did not
	3 cohort studies	225,057 women 6,793 cases	Yogurt per 200 g	_	RR=0.87 (0.72-1.06); l ² =0.0%	 change over years of follow- up

-

-

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	7 cohort studies		High vs low intake		RR=0.90 (0.82–1.00); I2=0.0%	Different studies used different units to measure food
Zana et al. 2015358	22 prospective	1 566 940 women	Dainvintake	Breast cancer		Random effects model
Lang of al., 2010	cohort studies	1,000,740 Wolfholf	High (>600 g/d) vs		RR=0.90 (0.83-0.98): 12=32.2%	
Studies published to		37,925 breast	low intake (<400 g/d)		p(heter)=0.111	No significant publication bias
2014	Most cohorts are population–based	cancer cases	Modest intake (400–600 a/d) vs low	_	RR=0.94 (0.91-0.98): n=NS: 12=0%	(Egger's test)
Japan, Europe & USA	(3 studies conducted in nurses)	Median follow-up: 10 y	intake (<400 g/d)		p=0.975	Most studies adjusted for age, BMI, family history of breast cancer, reproductive factors
			No dairy		RR=1 (referent)	hormone therapy & total energy
			250 g/d		RR=0.97 (0.95-0.99)	intake
			500 g/d		RR=0.94 (0.89-0.99)	
			750 g/d		RR=0.91 (0.85–0.98)	Limitations:
			1,000 g/d		RR=0.88 (0.80–0.98); p– trend=0.016	Residual or unknown confounders
	5 case–control studies (from Asia only)	33,372 women	High (>600 g/d) vs low intake (<400g/d)	_	OR=0.74(0.62–0.88); I²=62.5%, p(heter)=0.014	Possible misclassification of dairy consumption due to self-
		/) 7,418 cases	No dairy		OR=1 (referent)	report methods Possible misreporting of
			250 g/d		OR=0.85 (0.76–0.94)	consumption or changes in
			500 g/d		OR=0.71 (0.58–0.88)	consumption during tollow-up
			750 g/d		OR=0.60 (0.44–0.83)	Heterogeneity due to
			1,000 g/d		OR=0.51 (0.33–0.78); p– trend=0.002	methodological differences between studies
						Case–control studies may provide a lower level of evidence

Abbreviations: AICR, American Institute for Cancer Research; BMI, body mass index; FFQ, food frequency questionnaire; g, grams; g/d, grams per day; NR, not reported; NS=not significant; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; p-trend, p-value for trend; RR, relative risk or risk estimate; y, year/s.

†HR values adjusted for age, area, tobacco smoking status, drinking status, family history of breast cancer, age at menarche, age at first birth, parity, energy intake, hormone therapy, daily walking, education and BMI.
Table D.43 Diet—dietary fibre and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Chen et al., 2016 ³⁶³	24 studies	3,662,421 participants	Dietary fibre	Breast cancer	RR=0.88 (0.83–0.93); l²=59.1%, p(heter)=0	Random effects model
Studies published to March 2016 Canada, China, Europe, Italy,	20 cohort studies 4 case–control studies	51,939 cases	per 10 g/d		RR=0.96 (0.92-0.98); p=0.002; p(heter)=0.43	Adjustments: Smoking, age, BMI, total energy intake, family history of cancer.
France, Germany, Malaysia,	3 studies	_	Overall intake	Premenopausal breast cancer	RR=0.78 (0.62–0.94); l ² =43.2%,	No publication bias (p>0.05)
Netherlands, Sweden, Switzerland, UK, USA	10 studies			Postmenopausal breast cancer	RR=0.88 (0.79–0.97); l²=52.1%, p(heter)=0.027	
WCRF, 2017 ¹⁰ Studies published to 2015	16 cohort studies	35,910 cases	Dietary fibre intake per 10 g/d	Breast cancer	RR=0.95 (0.93–0.98); I²=0.0, p(heter)=0.81	Adjustments: All studies adjusted for at least
	4 studies	2,013 cases		Premenopausal breast cancer	RR=0.91 (0.75–1.10); I²=43.0%, p(heter)=0.15	age & most studies adjusted for most of the established breast
Asia, Europe & North America	11 studies	18,591 cases		Postmenopausal breast cancer	RR=0.95 (0.92–0.99); I²=0.0, p(heter)=0.73	age, parity, age at menarche, age at menopause, physical activity, BMI & alcohol consumption.
						No publication bias (p=0.74)
	5 studies	14,976 cases	Soluble fibre intake per 10 g/d	Breast cancer	RR=0.74 (0.63–0.88); l²=0%, p(heter)=0.76	No publication bias (p=0.29)
	6 studies	14,976 cases	Insoluble fibre intake Per 10 g/d	-	RR=0.97 (0.87-1.07); I ² =30.0%, p(heter)=0.21	No publication bias (p=0.97)
Cohort studies						
Narita et al., 2017 ³⁶⁴ Japan	JPHC study cohort Data collected:	44,444 women 180 cases 164 cases	Total fibre Q1 (7.9 g/d) Q2 (11.3 g/d)	Breast cancer	HR=1 (referent) HR=0.89 (0.70-1.13)	Multivariable Cox proportional hazards model†

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	1995 & 1998	170 cases	Q3 (14.1 g/d)		HR=0.83 (0.63-1.10)	Limitations:
	Prospective	167 cases	Q4 (18.1 g/d)		HR=0.78 (0.55–1.09); p-trend=0.15	Bias from self-reported
		52 cases	Subtertile 3 (highest)		HR=0.63 (0.40-0.98)	questionnaire
	Age at enrolment: 45–74 y	52 cases	Subtertile 2 (middle)		HR=0.68 (0.45–1.04)	FEQ method may attenuate
		63 cases	Subtertile 1 (lowest)	t) HR=0.93 (0.64–1.34); p-trend=0.04 HR:	HRs compared to a 24-hour	
		52 cases	Q1 (8.3 g/d)	Premenopausal	HR=1 (referent)	recall method
	Mean follow–up:	54 cases	Q2 (11.6 g/d)	breast cancer	HR=1.09 (0.71-1.67)	health conscious hohaviours
	14 y	48 cases	Q3 (14.3 g/)		HR=0.91 (0.54–1.53)	due to breast screening
		28 cases	Q4 (18.3 g/d)		HR=0.62 (0.32–1.20); p-trend=0.11	9
		116 cases	Q1 (8.0 g/d)	Postmenopausal	HR=1 (referent)	-
		104 cases	Q2 (11.4 g/d)	breast cancer	HR=0.80 (0.59–1.07)	
		114 cases	Q3 (14.2 g/d)		HR=0.78 (0.56–1.08)	
		131 cases	Q4 (18.1 g/d)		HR=0.82 (0.56–1.22); p-trend=0.48	

Abbreviations: AICR, American Institute for Cancer Research; BMI, body mass index; FFQ, food frequency questionnaire; g/d, grams per day; HR, hazard ratio; JPHC, Japan Public Health Centre; p, p-value; p(heter), p-value for the measure of heterogeneity; p-trend, p-value for trend; Q[1-4/5], quartile[1-4]/quintile[1-5]; RR, relative risk or risk estimate; WCRF, World Cancer Research Fund; y, year/s.

 \uparrow Age, areas of public health centres, BMI at 5-year follow-up (<18.5, 18.5–23.9, >23.9), age at menarche (≤13, 14, 15, ≥16 years), age at first birth (<26, ≥26 years), parity (nulliparous, 1–2, 3, ≥4), age at menopause (pre-menopause, ≤44, 45–54, ≥55 years), use of exogenous female hormones (never, ever), smoking status (never: non-smokers, ever: past or current smokers), leisure-time physical activity (≤3 days/month, 1–2 days/week, ≥3 days/week), alcohol intake (regular drinker: >150 g of ethanol/week, non-regular drinker: ≤150 g of ethanol/week), total energy intake, and total energy adjusted intakes of fat, isoflavones, carbohydrates, and vitamin D.

Table D.44 Diet—fruit and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
WCRF, 2017 ¹⁰	11 cohort studies	25,059 cases	Fruit intake per 200 g/day	Breast cancer	RR=0.94 (0.90-0.98); l²=31.4%, p(heter)=0.14	Publication bias (Egger's test
Studies published to 2015	3 studies	1,635 cases		Premenopausal breast cancer	RR=1.00 (0.81-1.23); I²=64.1%, p(heter)=0.06	p=0.07)
Asia, Europe, North America	8 studies	10,891 cases		Postmenopausal breast cancer	RR=0.92 (0.87–0.98); I²=11.3%, p(heter)=0.34	Adjustments¶
Fabiani et al., 2016 ³⁷⁰	8 studies	Study sample: NR	Apple intake Highest vs lowest	Breast cancer	RR=0.89 (0.79–1.00); p=0.047; l²=68.7%, p(heter)=0.002,	Random effects model
						Adjustments: NR
Studies published to 2015	3 cohort studies				RR=0.97 (0.94–1.01); p=0.192; l²=0%, p(heter)=0.631	No publication bias (Egger's &
Brazil, China, Italy, Mexico, multinational & USA	5 case-control studies	_			OR=0.79 (0.73–0.87); p<0.001; l ² =0.88%, p(heter)=0.401	Begg) Limitations: Heterogeneity
						Confounding effect
						Wide variations in dietary assessments of apple intake.
						Low number of data available
Cohort studies						
Emaus et al., 2016 ³⁶⁵	EPIC cohort	335,054 women without a	Fruit intake (citrus, apples, pears,	Breast cancer		Cox proportional hazard models
Europe	Recruitment: 1 992–2000	prevalent cancer diagnosis (excluding non–	grapes, stone fruit, berries, bananas, kiwi fruit). Juice was			Adjustments†
	Enrolment age:	melanoma skin cancer)	excluded Q1, 36–86 g/day		HR=1.00 (referent)	Limitations:

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	25–70 y Median follow–up: 11.5 y	10,197 cases Mean age: 50.8 y	Q2, 20–153 g/day Q3, 189–230 g/day Q4, 269–323 g/day Q5, 399–565 g/day		HR=1.01 (0.95–1.08) HR=0.96 (0.90–1.02) HR=1.00 (0.94–1.07) HR=1.01 (0.94–1.09); p-trend=0.70	Fruit intake was assessed only once & could have changed during follow–up
Farvid et al., 2016 ³⁶⁶	Nurses' Health Study II cohort	90,476 premenopausal women	Fruit intake Highest vs lowest			Multivariable adjusted models Adjustments‡
USA	Prospective 1991–2013 Age at baseline: 27–44 y	3,235 cases Study sample: Nurses & predominantly white women	intake during adolescence	Invasive breast cancer Premenopausal breast cancer Postmenopausal breast cancer	HR=0.75 (0.62–0.90); p-trend=0.01 HR=0.69 (0.52–0.90); p-trend=0.02 HR=0.80 (0.60–1.05); p-trend=0.17	Limitations: Sample were nurses, who were also predominantly white women Adolescent diet might be
	Follow–up: 22 y		Highest vs lowest intake during early adulthood	Invasive breast cancer Premenopausal breast cancer Postmenopausal breast cancer	HR=0.96 (0.85–1.09); p-trend=0.46 HR=0.99 (0.84–1.17); p-trend=0.94 HR=0.91 (0.74–1.11); p-trend=0.46	misclassified due to recall bias Residual confounding, where women who eat a lot of fruit & vegetables have healthier lifestyles Possibility of type I errors due to multiple comparisons
Pooled analysis						
Farvid et al., 2018 ³⁷¹	Nurses' Health Study dates: 1980–2012	182,145 women	Total fruit consumption excluding juices§	Invasive breast cancer		Cox proportional hazards regression model
USA			Dose response	All subtypes	HR=0.94 (0.88-1.00)	Adjustments†
	Dietary auestionnaire		(per 2 servings/day)	ER+	HR=0.94 (0.88-1.01)	
	completed in			-ER-	HR=0.90 (0.79-1.03)	Limitations:

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	1980, 1984, 1986 &			ER+PR+	HR=0.96 (0.89-1.04)	Possibility of type I error due
	every 4 years thereafter			ER+ PR-	HR=0.89 (0.75-1.04)	to multiple comparisons
				ER-PR-	HR=0.87 (0.75-1.01)	Note that there was a
	Nurses' Health			HER2+	HR=0.58 (0.40-0.82)	significantly lower risk of
	Dietary questionnaire completed every 4 years from 1991 onwards			Luminal A	HR=0.90 (0.80-1.02)	with 8–12 years of fruit and
		Dietary		Luminal B	HR=1.02 (0.86-1.22)	
				Basal–like	HR=0.88 (0.64-1.20)	There was a more strongly
			≤4 servings/week	Invasive breast	HR=1 (referent)	associated decreased breast
			>4 to 6 servings/week	cancer	HR=1.01 (0.94-1.08)	total fruit intake alone prior to breast cancer diagnosis
	Prospective study		>6 servings/week to 1.5 servings/day		HR=0.95 (0.90-1.01)	
	Age at baseline: 27–59 y		>1.5 to 2.5 servings/day		HR=0.99 (0.93-1.05)	
	Mean follow-up:		>2.5 servings/day		HR=0.91 (0.84-0.99); p-trend=0.07	
	23.7 у		Lagged analyses	_		_
			0-4 y lag			
			≤4 servings/week		HR=1 (referent)	
			>4 to 6 servings/week		HR=0.99 (0.92-1.06)	
			>6 servings/week to 1.5 servings/day		HR=0.98 (0.92-1.04)	
			>1.5 to 2.5 servings/day		HR=0.97 (0.91-1.03)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			>2.5 servings/day		HR=0.93 (0.86-1.01);	
				_	p-trend=0.08	
			4-8 y lag			
			≤4 servings/week		HR=1 (referent)	
			>4 to 6		HR=0.99 (0.92-1.07)	
			servings/week			
			>6 servings/week to		0.99 (0.93–1.05)	
			1.5 servings/day			
			>1.5 to		1.00 (0.94–1.07)	
			2.5 servings/day			
			>2.5 servings/day		HR=0.97 (0.90-1.06);	
				_	p-trend=0.66	
			8-12 y lag			
			≤4 servings/week		HR=1 (referent)	
			>4 to 6		HR=0.95 (0.88-1.03)	
			servings/week			
			>6 servings/week to		HR=0.92 (0.86-0.99)	
			1.5 servings/day			
			>1.5 to		HR=0.97 (0.90-1.04)	
			2.5 servings/day			
			>2.5 servings/day		HR=0.96 (0.88-1.04);	
				_	p-trend=0.67	
			12–16 y lag			
			≤4 servings/week		HR=1 (referent)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			>4 to 6 servings/week		HR=0.99 (0.90-1.08)	
			>6 servings/week to 1.5 servings/day		HR=0.92 (0.85-0.99)	
			>1.5 to 2.5 servings/day		HR=0.93 (0.86-1.01)	
			>2.5 servings/day		HR=0.91 (0.83-1.00); p-trend=0.05	_
			16-20 y lag	_		-
			≤4 servings/week		HR=1 (referent)	
			>4 to 6 servings/week		HR=1.03 (0.93-1.13)	
			>6 servings/week to 1.5 servings/day		HR=0.92 (0.84-1.00)	
			>1.5 to 2.5 servings/day		HR=0.93 (0.85-1.02)	
			>2.5 servings/day		HR=0.91 (0.82-1.02);	
				_	p-trend=0.05	-
			Total fruit & vegetable intake (lagged analyses)			
			0-4 y lag			
			≤2.5 servings/day		HR=1 (referent)	
			>2.5 to 3.5 servings/day		HR=0.95 (0.89-1.02)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			>3.5 to 4.5 servings/day		HR=0.98 (0.91-1.05)	
			>4.5 to 5.5 servings/day		HR=0.95 (0.88-1.02)	
			>5.5 servings/day	_	HR=0.94 (0.87-1.00); p-trend=0.10	_
			4-8 y lag			
			≤2.5 servings/day		HR=1 (referent)	
			>2.5 to 3.5 servings/day		HR=0.98 (0.92-1.05)	
			>3.5 to 4.5 servings/day		HR=0.91 (0.85-0.98)	
			>4.5 to 5.5 servings/day		HR=0.97 (0.89-1.04)	
			>5.5 servings/day		HR=0.99 (0.92-1.06);	
				-	p-trend=0.94	-
			8-12 y lag			
			≤2.5 servings/day		HR=1 (referent)	
			>2.5 to 3.5 servings/day		HR=0.90 (0.84-0.97)	
			>3.5 to 4.5 servings/day		HR=0.89 (0.83-0.96)	
			>4.5 to 5.5 servings/day		HR=0.92 (0.85-1.00)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			>5.5 servings/day		HR=0.90 (0.83-0.97); p-trend=0.05	
			12–16 y lag	_		-
			≤2.5 servings/day		HR=1 (referent)	
			>2.5 to 3.5 servings/day		HR=0.95 (0.88-1.03)	
			>3.5 to 4.5 servings/day		HR=0.94 (0.86-1.02)	
			>4.5 to 5.5 servings/day		HR=0.93 (0.85-1.02)	
			>5.5 servings/day		HR=0.89 (0.82-0.97);	
				_	p-trend=0.01	-
			16-20 y lag			
			≤2.5 servings/day		HR=1 (referent)	
			>2.5 to 3.5 servings/day		HR= 0.97 (0.89-1.06)	
			>3.5 to 4.5 servings/day		HR=0.94 (0.86-1.03)	
			>4.5 to 5.5 servings/day		HR=0.94 (0.85-1.04)	
			>5.5 servings/day		HR=0.89 (0.80-0.98);	
					p-trend=0.02	

Abbreviations: AICR, American Institute for Cancer Research; ER, oestrogen receptor; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; NR, not reported; OR, odds ratio; PR, progesterone receptor; p, p-value; p(heter), p-value for the measure of heterogeneity; p-trend, p-value for trend across quintiles; RR, risk estimate or relative risk; Q[1–5], quintiles [1–5] RR, relative risk or risk estimate; USA, United States of America y, year/s.

¶All studies adjusted for age and most studies also adjusted for parity, age at menarche, age at menopause, physical activity, BMI, and alcohol consumption.

 \pm Stratified by age in months at state of follow-up and calendar year of current questionnaire cycle, smoking (never, past, current 1–14/day, current 15–24/day, current $\ge 25/day$), race (white/non-white), parity and age at first birth (nulliparous, parity ≤ 2 and age at first birth < 25, parity ≤ 2 and age at first birth $\ge 25/day$), race (white/non-white), parity and age at first birth (nulliparous, parity ≤ 2 and age at first birth < 25, parity ≤ 2 and age at first birth $\ge 25/day$), and age at first birth $\ge 25/day$, race (white/non-white), parity and age at first birth ≥ 20 , parity ≤ 2 and age at first birth $\ge 25/day$), and age at first birth ≤ 25 , parity ≤ 2 and age at first birth $\ge 25/day$), and age at first birth ≥ 25 , parity ≤ 2 and age at first birth $\ge 25/day$, parity ≥ 4 and age at first birth ≤ 25 , parity ≤ 2 and age at first birth $\ge 25/day$, parity ≥ 4 and age at first birth ≤ 25 , parity ≤ 2 and age at first birth $\ge 25/day$, parity ≥ 4 and age at first birth ≤ 25 , parity ≤ 2 and age at first birth $\ge 25/day$, parity ≥ 4 and age at first birth ≤ 25 , parity ≥ 2 and age at first birth $\ge 25/day$, parity ≥ 4 and age at first birth $\le 25/day$, parity ≥ 2 and age at first birth $\ge 25/day$, parity ≥ 2 and age at first birth $\ge 25/day$, parity ≥ 2 and age at first birth $\ge 25/day$, parity ≥ 2 and age at first birth $\ge 25/day$, parity ≥ 2 and age at first birth $\ge 25/day$, parity ≥ 2 and age at first birth $\ge 25/day$, parity ≥ 2 and age at first birth $\ge 25/day$, parity ≥ 2 and age at first birth $\ge 25/day$, parity ≥ 2 and age at first birth $\ge 25/day$, parity ≥ 2 and age at first birth $\ge 25/day$, parity ≥ 2 and age at first birth $\ge 25/day$, parity ≥ 2 , and age at first birth $\ge 25/day$, parity ≥ 2 , and age at first birth $\ge 25/day$, and age at first birth $\ge 25/day$, adult alcohol intake (non-drinker, $\le 5/2day$), adolescent energy intake (fifth). In postmenopausal women, additionally adjusted for hormone use and menopausa

 \pm Stratified on cohort, calendar year, and age in months and adjusted for family history of breast cancer (yes, no), history of benign breast disease (yes, no), height (<1.60, 1.60 to <1.65, 1.65 to <1.70, 1.70 to <1.75, and ≥1.75 meters), BMI at age 18 years (<18.5, 18.5 to <20, 20 to <22.5, 22.5 to <25, 25.0 to <30, ≥30.0 kg/m2), weight change since age 18 (continuous), smoking (never, past, current 1 to 14/day, current 15 to 24/day, current ≥25/day), physical activity (quintiles of MET–h per week, missing), oral contraceptive use (never, <2 years, 2 to <5 years, 5 to <10 years, ≥10 years), alcohol intake (g/day, quintiles), total energy intake (kcal/day, quintiles), age at menarche (<12, 12, 13, 14, >14 years), parity and age at first birth (nulliparous, parity ≤2 and age at first birth <25 years, parity 3 to 4 and age at first birth <25 years, parity 3 to 4 and age at first birth ≥30 years, parity 3 to 4 and age at first birth ≥25 years), and menopausal status, age at menopause, and postmenopausal hormone use, postmenopausal and age at menopause<50 years and past postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and

§Cumulative average

Table D.45 Diet—vegetables and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes		Risk estimates	Author comments
Meta–analyses							
WCRF, 2017 ¹⁰	12 studies	24,756 cases		Breast cancer		RR=0.98 (0.93-1.02); l ² =27%, p(heter)=0.18	No publication bias (p=0.75)
Studies published to 2015	3 studies	1,635 cases	_	Premenopausal breast cancer		RR=0.96 (0.83-1.11); l²=0%, p(heter)=0.43	
			_				Publication bias (p=0.004)
North America	8 studies	10,891 cases	Non-starchy vegetables consumption per 200 g/d	Postmenopausal breast cancer		RR=1.03 (0.97–1.09); l²=0%, p(heter)=0.45	Adjustments: All studies adjusted for at least age Most studies also adjusted for
							parity, age at menarche, age at menopause, physical activity, BMI & alcohol consumption
Pooled analysis							
Jung et al., 2013 ³⁶⁹				Breast cancer		RR=0.99 (0.95-1.04)	Random-effects model
Europe, Japan,					ER+	RR=1.04 (0.97-1.11)	Adjustments§
North America					ER-	RR=0.82 (0.74–0.90)	
Studies commenced 1980–1995 and ended 1986–2008	993,466 Pooling Project of Prospective Studies 19,869 E of Diet & Cancer 4,821 ER 20 cohort studies Follow-u	993,466 women 19,869 ER+ 4,821 ER-	Vegetable intake Highest vs lowest		PR+ RR=1.02 (0.96–1.10)	RR=1.02 (0.96–1.10)	Limitations: Between–studies variation in the dietary assessment methods & confounding
ended 1700-2000		Follow–up: 11–20 y	intake		PR–	RR=0.94 (0.84–1.03)	Single measurement of fruit & vegetable consumption at baseline
							Misclassification in estimated fruit and vegetable intake

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Cohort studies						
Emaus et al., 2016 ³⁶⁵	EPIC		Total vegetables			Cox proportional hazards models
Denmark, France, Germany, Greece	Prospective	335,054 female participants	Intake Q1(57–92 g/d)	-	HR=1.00 (referent)	Adjustments¶
Italy, Norway, Spain, Sweden, Netherland, UK	Cohort dates: 1992–2000	10,197 incident cases		Breast cancer		Misclassification due to single exposure measurement
	Follow-up: median 11.5 y	Cohort: without a prevalent cancer diagnosis from 10	Q5 (352–489 g/d)		HR=0.87 (0.80–0.94)	Risk factor information was only available at recruitment
	Age at baseline: 25–70 y	European countries				Lack of data on breast cancer subtypes
Farvid et al., 2016 ³⁶⁶			Fruit & vegetable intake			Cox proportional hazards regression model
USA		90,476				
	Nurses' Health Study II	premenopausal women 3,235 cases	Highest vs lowest intake during adolescence		HR=0.86 (0.73–1.01)	Adjustments: Adjusted for age in months at state of follow–up & calendar year of current questionnaire
	Prospective study					cycle
	Cohort dates: 1991	implausible total energy intake were		Breast cancer		Limitations: Participants were restricted to
	Age at baseline: 27–44 y	excluded (<600 or >3500 kcal/d)	Highest vs lowest intake during early		HR=0.96 (0.86–1.07)	nurses & predominantly white women
	Follow–up: 22 y	Adolescent dietary information for 1,347 cases	adulthood			Adolescent diet might be misclassified
						Residual confounding is possible
Pooled analysis						
Farvid et al., 2018371	Nurses' Health	182,145 women	Total vegetable	Invasive breast		Cox proportional hazards

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
USA	Study dates: 1980–2012	10,911 cases	consumption excluding potatoes§	cancer		regression model
				All subtypes	HR=0.95 (0.91-0.99)	Adjustments†
	Dietary auestionnaire			ER+	HR=0.96 (0.91-1.00)	-
	completed in			ER-	HR=0.85 (0.77-0.93)	- Limitations: Possibility of type Lerror due to
	1980, 1984, 1986 & every 4 years			ER+PR+	HR=0.95 (0.90-1.00)	multiple comparisons
	Nurses' Health		Dose response (per 2	ER+ PR-	HR=0.99 (0.89-1.11)	_
			servings/day)	ER-PR-	HR=0.85 (0.77-0.94)	Note that there was a lower risk
				HER2+	HR=0.77 (0.61-0.99)	8–12 years of fruit and vegetable
	1991–2013			Luminal A	HR=0.93 (0.85-1.01)	intake combined There was an association for
	Dietary			Luminal B	HR=0.95 (0.85-1.07)	
	questionnaire			Basal–like	HR=0.85 (0.68-1.06)	breast cancer risk with 12–16
	completed every 4 vears from 1991		≤1.5 servings/day >1.5 to 2.5 servings/day	Invasive breast	HR=1 (referent)	alone prior to breast cancer
	onwards			cancer	HR=0.93 (0.88-0.99)	diagnosis
	Prospective study		>2.5 to 3.5 servings/ day		HR=0.94 (0.88-1.00)	
	Age at baseline: 27–59 y		>3.5 to 4.5 servings/day		HR=0.89 (0.82-0.96)	
	Mean follow–up: 23.7 y		>4.5 servings/day		HR=0.91 (0.84-1.00); p-trend=0.03	
			(lagged analyses)			-
			0-4 y lag			
			≤1.5 servings/day		HR=1 (referent)	
			>1.5 to 2.5 servings/day		HR=0.97 (0.91-1.03)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			>2.5 to 3.5 servings/ day		0.95 (0.89–1.01)	
			>3.5 to 4.5 servings/day		0.95 (0.87–1.02)	
			>4.5 servings/day		HR=0.94 (0.86-1.02); p-trend=0.11	
			4-8 y lag		-	-
			≤1.5 servings/day		HR=1 (referent)	
			>1.5 to 2.5 servings/day		0.95 (0.89-1.02)	
			>2.5 to 3.5 servings/ day		0.89 (0.83–0.96)	
			>3.5 to 4.5 servings/day		0.95 (0.88–1.03)	
			>4.5 servings/day		HR=0.95 (0.87-1.03);	
			8-12 v laa	-		-
			≤1.5 servings/day		HR=1 (referent)	
			>1.5 to 2.5 servings/day		HR=0.90 (0.84-0.96)	
			>2.5 to 3.5 servings/ day		HR=0.87 (0.81-0.94)	
			>3.5 to 4.5 servings/day		HR=0.91 (0.83-0.99)	
			>4.5 servings/day		HR=0.90 (0.82–0.98); p-trend=0.09	
			12-16 y lag	- 		-

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			≤1.5 servings/day		HR=1 (referent)	
			>1.5 to 2.5 servings/day		HR=0.93 (0.86-1.00)	
			>2.5 to 3.5 servings/ day		HR=0.92 (0.84-0.99)	
			>3.5 to 4.5 servings/day		HR=0.91 (0.83-1.00)	
			>4.5 servings/day		HR=0.88 (0.80-0.97); p-trend=0.03	
			16-20 y lag	-		-
			≤1.5 servings/day		HR=1 (referent)	
			>1.5 to 2.5 servings/day		HR=0.97 (0.89-1.06)	
			>2.5 to 3.5 servings/ day		HR=0.98 (0.89-1.07)	
			>3.5 to 4.5 servings/day		HR=0.93 (0.84-1.04)	
			>4.5 servings/day		HR=0.90 (0.80-1.02); p-trend=0.08	
			Total fruit & vegetable intake (lagged analyses)	-		-
			0-4 y lag			
			≤2.5 servings/day		HR=1 (referent)	
			>2.5 to 3.5 servings/ day		HR=0.95 (0.89-1.02)	
			>3.5 to		HR=0.98 (0.91-1.05)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			4.5 servings/day			
			>4.5 to 5.5 servings/day		HR=0.95 (0.88-1.02)	
			>5.5 servings/day		HR=0.94 (0.87-1.00); p-trend=0.10	
			4-8 y lag	-		-
			≤2.5 servings/day		HR=1 (referent)	
			>2.5 to 3.5 servings/ day		HR=0.98 (0.92-1.05)	
			>3.5 to 4.5 servings/day		HR=0.91 (0.85-0.98)	
			>4.5 to 5.5 servings/day		HR=0.97 (0.89-1.04)	
			>5.5 servings/day		HR=0.99 (0.92-1.06); p-trend=0.94	
			8-12 y lag	-	HR=0.90 (0.83-0.97); p-trend=0.05	
			≤2.5 servings/day		HR=1 (referent)	
			>2.5 to 3.5 servings/ day		HR=0.90 (0.84-0.97)	
			>3.5 to 4.5 servings/day		HR=0.89 (0.83-0.96)	
			>4.5 to 5.5 servings/day		HR=0.92 (0.85-1.00)	
			>5.5 servings/day		HR=0.90 (0.83-0.97)	
			12-16 y lag	-		-
			≤2.5 servings/day		HR=1 (referent)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			>2.5 to 3.5 servings/ day		HR=0.95 (0.88-1.03)	
			>3.5 to 4.5 servings/day		HR=0.94 (0.86-1.02)	
			>4.5 to 5.5 servings/day		HR=0.93 (0.85-1.02)	
			>5.5 servings/day		HR=0.89 (0.82-0.97);	
			14.00	-		-
			16-20 y lag			
			≤2.5 servings/day		HR=1 (referent)	
			>2.5 to 3.5 servings/ day		HR= 0.97 (0.89-1.06)	
			>3.5 to 4.5 servings/day		HR=0.94 (0.86-1.03)	
			>4.5 to 5.5 servings/day		HR=0.94 (0.85-1.04)	
			> E E continge (day		HR=0.89 (0.80-0.98);	
				_	p-trend=0.02	_
			Cruciferous			
			vegetable intake§			
			≤2 servings/week		HR=1 (referent)	
			>2 to 3 servings/week		HR=0.97 (0.92-1.02)	
			>3 to 4 servings/week		HR=0.92 (0.87-0.98)	
			>4 to 5 servings/week		HR=0.94 (0.87-1.01)	
			>5 servings/week		HR=0.90 (0.84–0.96); p-trend=0.0002	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			Yellow/orange vegetable intake§			
			≤2 servings/week		HR=1 (referent)	
			>2 to 3 servings/week		HR=0.98 (0.93-1.03)	
			>3 to 4 servings/week		HR=0.95 (0.89-1.01)	
			>4 to 5 servings/week		HR=0.93 (0.85-1.01)	
			>5 servings/week		HR= 0.91 (0.84-0.99); p-trend=0.004	

Abbreviations: AICR, American Institute for Cancer Research; BMI, body mass index; d, day; EPIC; European Prospective Investigation into Cancer and Nutrition; ER, oestrogen receptor; g/d, grams per day; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; kcal/d, kilocalories per day; kg/m2, kilograms per square metre; m, metre; NR, not reported; p, p-value; p(heter), p-value for the measure of heterogeneity; PR, progesterone receptor; Q[1–5], quintile [1–5]; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; WCRF, World Cancer Research Fund; y, year/s.

†Adjusted for age, area, tobacco smoking status, drinking status, family history of breast cancer, age at menarche, age at first birth, parity, energy intake, hormone therapy, daily walking, education, and BMI.

¶Stratified by age and centre and adjusted for energy intake (kcal/d, continuous) divided into energy from fat and energy from non-fat sources, saturated fat intake (g/d, continuous), age at menarche (never, 12, 12–14, or >14 y), oral contraceptive use (never, past, or current), age at first full term pregnancy (nulliparous; ≤ 20 , ≥ 20 and ≤ 25 , ≥ 25 and ≤ 30 , or ≥ 30 y), menopausal status (premenopausal, perimenopausal/unknown, or postmenopausal), hormone therapy use (never, past, or current), BMI (kg/m2, continuous), BMI 3 menopausal status, physical activity (inactive, moderately inactive, moderately active, or active), smoking status and intensity (never; former: quit ≥ 20 y ago, quit 11–20 y ago, or quit ≤ 10 y ago; current: pipe/cigar smoking, 1–15 cigarettes/d, 16–25 cigarettes/d, or ≥ 26 cigarettes/d), alcohol user (yes or no), alcohol consumption (g/d, continuous), educational level (none, primary school, technical/professional school, secondary school, or university degree).

§The relative risks were adjusted for ethnicity (White, African–American, Hispanic, Asian, others), family history of breast cancer (yes, no), personal history of benign breast disease (yes, no), alcohol consumption(non–drinkers, >0 to <5, 5–<15, 15–<30, \geq 30 g/d), smoking status (never, past, current), education (<high school, high school, >high school), physical activity (low, medium, high), age at menarche (<11, 11–12, 13–14, \geq 15 y), body mass index (<23, 23–<25, 25–<30, \geq 30 kg/m²), height (<1.60, 1.60–<1.65, 1.65–<1.70, 1.70–<1.75, \geq 1.75 m), oral contraceptive use (never, ever), menopausal status (premenopausal women, never user of hormone therapy among postmenopausal women, past user of hormone therapy among postmenopausal women), energy intake (kcal/d, continuous), combination between parity (0, 1–2, \geq 3) and age of first birth (<25, >25 y). Age in years and year of questionnaire return were included as stratification variables.

 \pm Stratified on cohort, calendar year, and age in months. Adjusted for family history of breast cancer (yes, no), history of benign breast disease (yes, no), height (<1.60, 1.60 to <1.65, 1.65 to <1.70, 1.70 to <1.75, and \ge 1.75 meters), BMI at age 18 years (<18.5, 18.5 to <20, 20 to <22.5, 22.5 to <25, 25.0 to <30, \ge 30.0 kg/m2), weight change since age 18 (continuous), smoking (never, past, current 1 to 14/day, current 15 to 24/day, current \ge 25/day), physical activity (quintiles of MET-h per week, missing), oral contraceptive use (never, < 2 years, 2 to <5 years, 5 to <10 years, \ge 10 years), alcohol intake (g/day, quintiles), total energy intake (kcal/day, quintiles), age at menarche (<12, 12, 13, 14, >14 years), parity and age at first birth (nulliparous, parity \le 2 and age at first birth <25 years, parity \le 2 and age at first birth <25 years, parity \ge 2 and age at first birth 25 to <30 years, parity \ge 2 and age at first birth 25 to <30 years, parity \ge 2 and age at first birth 25 to <30 years, parity \ge 2 and age at first birth 25 to <30 years, parity \ge 2 and age at first birth 25 to <30 years, parity \ge 2 and age at first birth 25 to <30 years, parity \ge 2 and age at first birth 25 to <30 years, parity \ge 2 and age at first birth 25 to <30 years, parity \ge 2 and age at first birth 25 to <30 years, parity \ge 2 and age at first birth 25 to <30 years, parity \ge 5 and age at first birth \ge 25 years), and menopausal status, age at menopause, and postmenopausal hormone use (premenopausal, postmenopausal and age at menopause<50 years and current postmenopausal hormone use, postmenopausal and age at menopause \ge 50 years and never postmenopausal hormone use, postmenopausal and age at menopause \ge 50 years and current postmenopausal hormone use, postmenopausal and age at menopause \ge 50 years and current postmenopausal hormone use, missing).

§Cumulative average

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
WCRF, 2017 ¹⁰	18 cohort studies	3,055 participants	Dietary β–carotene per 5000 μg/day	Breast cancer	RR=1.00 (0.98-1.02); l²=0%, p(heter)=0.98	
2015 Asia Australia	11 cohort studies	3,558 participants	Circulating β– carotene per 50 μg/dL	-	RR=0.78 (0.66–0.92); l²=0%, p(heter)=0.77	
Europe & North America	10 cohort studies	3,506 participants	Circulating a– carotene per 10 µg/dL	-	RR=0.90 (0.77-1.05); l²=0%, p(heter)=NR	
	9 cohort studies	3,407 participants	Circulating total carotenoids per 100 µg/dL	-	RR=0.82 (0.71–0.96); l²=0%, p(heter)=NR	
	7 cohort studies	1,296 participants	Circulating lutein per 25 µg/dL	-	RR=0.72 (0.55–0.93); l²=0%, p(heter)=0.82	
	10 cohort studies	3,517 participants	Circulating β– cryptoxanthin per 15 μg/dL	_	RR=0.87 (0.68–1.11); l²=59%, p(heter)=0.09	
	10 cohort studies	3,506 participants	Circulating lycopene per 25 µg/d	-	RR=0.90 (0.70-1.16); l²=39%), p(heter)=0.19	
Cohort studies						
Bakker et al., 2016 ³⁷⁵	EPIC cohort study		Plasma β–carotene levels (nmol/L)			Conditional logistic regression
Denmark, France, Germany, Greece	Enrolment: 1992–1998	3.004 participants	Q1 (24.87–348.94) Q2 (348.94–497.32)		OR=1 (referent) OR=0.42 (0.28–0.64)	Limitations: Long term exposure and also
Italy, Netherlands, Norway, Spain,	Prospective study	1,502 cases 1,502 controls	Q3 (497.32–718.63) Q4 (718.63–1066.96)	ER-	OR=0.66 (0.44–1.00) OR=0.51 (0.33–0.79)	day–to–day variations in biomarker levels
Sweden & UK	Mean age at enrolment:		Q5 (1066.96– 7698.56)	-	OR=0.41 (0.26–0.65); p-trend=0.002	Carotenoids are fat soluble — and plasma lipid levels were
	49.98 y in cases	49.98 y in cases	carotene (nmol/L)		_	not adjusted for

Table D.46 Diet—foods high in carotenoids and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	50.00 y in controls		Q1 (14.00–56.95)		OR=1 (referent)	
			Q2 (56.95–88.31)		OR=1.08 (0.74–1.57)	Residual confounding
	Median follow–up: 11.5 y		Q3 (88.31–124.03)		OR=0.73 (0.49-1.09)	
			Q4 (124.03–198.07)		OR=0.81 (0.53-1.24)	
			Q5 (198.07–1520.25)		OR=0.61 (0.39-0.98); p-trend=0.02	
			Plasma beta– carotene levels (nmol/L)	ER+		
			Q1 (24.87–348.94)		OR=1 (referent)	
			Q2 (348.94–497.32)		OR=0.95 (0.63-1.42)	
			Q3 (497.32–718.63)		OR=1.06 (0.71-1.57)	
			Q4 (718.63–1066.96)		OR=1.00 (0.66-1.51)	
			Q5 (1066.96– 7698.56)		OR=1.02(0.66–1.57); p-trend=0.91	
			Plasma a–carotene (nmol/L)			
			Q1 (14.00–56.95)		OR=1 (referent)	
			Q2 (56.95–88.31)		OR=1.00 (0.67-1.50)	
			Q3 (88.31–124.03)		OR=0.79 (0.52–1.19)	
			Q4 (124.03–198.07)		OR=1.22 (0.81-1.83)	
			Q5 (198.07–1520.25)		OR=0.77(0.49-1.19); p-trend=0.28	
			Plasma vitamin C levels (µmol/L)			
			Q1(2.50–28.5)		OR=1 (referent)	
			Q2 (28.5–39.4)	EDTDDT	OR=0.99 (0.61–1.60)	
			Q3 (39.4–46.4)		OR=0.81 (0.49-1.36)	
			Q4 (46.4–56.1)		OR=0.61 (0.37-1.02)	
			Q5 (56.1–145.30)		OR=0.64 (0.35–1.17); p-trend=0.04	
			Plasma vitamin C	ER-PR-		

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			levels (µmol/L)			
			Q1(2.50–28.5)		OR=1 (referent)	
			Q2 (28.5–39.4)		OR=0.74 (0.44–1.26)	
			Q3 (39.4–46.4)		OR=0.63 (0.35-1.13)	
			Q4 (46.4–56.1)		OR=0.86 (0.50-1.48)	
			Q5 (56.1–145.30)		OR=0.59 (0.33–1.05); p-trend=0.16	
			Retinol (µmol/L)	ER-		-
			Q1(0.32–1.37)		OR=1 (referent)	
			Q2 (1.37–1.63)		OR=1.05 (0.64–1.73)	
			Q3 (1.63–1.90)		OR=1.67 (1.01–2.77)	
			Q4 (1.90–2.25)		OR=1.35 (0.81-2.25)	
			Q5 (2.25–6.70)		OR=1.65 (0.97-2.81); p-trend=0.08	
			Retinol (µmol/L)	ER+		-
			Q1(0.32–1.37)		OR=1 (referent)	
			Q2 (1.37–1.63)		OR=1.10 (0.74–1.63)	
			Q3 (1.63–1.90)		OR=0.92 (0.62–1.37)	
			Q4 (1.90–2.25)		OR=1.15 (0.76–1.75)	
			Q5 (2.25–6.70)		OR=1.02 (0.64-1.63); p-trend=0.92	
			a–Tocopherol (µmol/L)	ER-		-
			Q1(8.93–18.29)		OR=1 (referent)	
			Q2 (18.29–21.54)		OR=1.26 (0.64-2.50)	
			Q3 (21.54–24.84)		OR=0.78(0.40-1.54)	
			Q4 (24.84–29.34)		OR=0.85 (0.44–1.63)	
			Q5 (29.34–84.65)		OR=0.88 (0.46–1.68); p-trend=0.51	_
			a–Tocopherol (µmol/L)	ER+		
			Q1(8.93–18.29)		OR=1 (referent)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			Q2 (18.29–21.54)		OR=1.04 (0.73-1.49)	
			Q3 (21.54–24.84)		OR=1.04 (0.70-1.56)	
			Q4 (24.84–29.34)		OR=0.77 (0.50-1.18)	
			Q5 (29.34–84.65)		OR=0.88 (0.56–1.40); p-trend=0.40	
			γ–Tocopherol (µmol/L)	ER-		
			Q1(0.07–2.33)		OR=1 (referent)	
			Q2 (2.33–3.59)		OR=1.00 (0.69-1.45)	
			Q3 (3.59–5.15)		OR=1.14 (0.75–1.74)	
			Q4 (5.15–7.87)		OR=1.16 (0.74–1.82)	
			Q5 (7.87–28.95)		OR=1.54 (0.87–2.71); p-trend=0.13	
			γ–Tocopherol (µmol/L)	ER+		
			Q1(0.07–2.33)		OR=1 (referent)	
			Q2 (2.33–3.59)		OR=1.18 (0.70–1.97)	
			Q3 (3.59–5.15)		OR=1.01 (0.61-1.68)	
			Q4 (5.15–7.87)		OR=1.08 (0.64–1.82)	
			Q5 (7.87–28.95)		OR=0.91 (0.53–1.58); p-trend=0.38	
Case-control studies						
Wang et al., 2015 ³⁷⁶	Nested case– control from CPSII		Plasma alpha– carotene (µg/L)			Multivariable-adjusted
USA	Nutrition cohort		Q1 (<47)		OR=1 (referent)	logistic regression model‡
	study		Q2 (47.0–<69.8)		OR=0.56 (0.36–0.89)	
		496 matched cases	Q3 (69.8-<111.0)	Postmenopausal	OR=0.55 (0.35–0.88)	Limitations:
	1999–2007	& controls	Q4 (≥111.0)	breast cancer	OR=0.50 (0.29–0.85); p-trend=0.041	A single measurement of blood carotenoids may result
	Prospective study		Plasma beta– carotene (µg/L)			in misclassitication of exposures during long term follow–up
	Mean age at		Q1 (<150.3)		OR=1 (referent)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	enrolment: 69.4 y		Q2 (150.3-<246.9)		OR=0.98 (0.62-1.54)	Residual confounding
			Q3 (246.9–<400.3)		OR=1.06 (0.64–1.75)	
	Follow–up: NR		Q4 (≥400.3)		OR=1.56 (0.90–2.72); p-trend=0.051	
			Plasma beta– cryptoxanthin (µg/L)	-		
			Q1 (<79.3)		OR=1 (referent)	
			Q2 (79.3–<113.6)		OR=0.75 (0.47-1.18)	
			Q3 (113.6-<174.9)		OR=1.23 (0.77-1.97)	
			Q4 (≥174.9)		OR=1.01 (0.60–1.70); p-trend=0.65	
			Lycophene	-		
			Q1 (<273.6)		OR=1 (referent)	
			Q2 (273.6-<366.2)		OR=0.77 (0.50-1.16)	
			Q3 (366.2–<484.8)		OR=0.70 (0.45–1.09)	
			Q4 (≥484.8)		OR=0.95 (0.60–1.50); p-trend=0.84	
			Lutein+zeaxanthin	-		
			Q1 (<153.0)		OR=1 (referent)	
			Q2 (153.0-<206.0)		OR=1.15 (0.74–1.79)	
			Q3 (206.0-<281.6)		OR=1.01 (0.62-1.64)	
			Q4 (≥281.6)		OR=1.08 (0.65–1.80); p-trend=0.90	
			Total cartenoids	-		
			Q1 (<822.4)		OR=1 (referent)	
			Q2 (822.4-<1,061.6)		OR=0.61 (0.41–0.93)	
			Q3 (1,061.6-<1,412.0)		OR=0.76 (0.50-1.16)	
			Q4 (≥1,412.0)		OR=0.86 (0.56–1.33); p-trend=0.74	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments		
Pooled analysis								
Farvid et al., 2018 ³⁷¹	Nurses' Health Study dates: 1980–2012	182,145 women	Fruit and vegetables high in a–carotene (≥3000 mcg/100 g)§	Invasive breast cancer		Cox proportional hazards regression model		
	Dietary questionnaire completed in 1980, 1984, 1986 & every 4 years thereafter Nurses' Health Study II dates: 1991–2013 Dietary questionnaire completed every 4 years from 1991	Dietary questionnaire	Dietary questionnaire	,,	<2 servings/month		HR=1 (referent)	Adjustments††
			2 to <4 servings/month		HR=0.95 (0.88-1.01)	limitations:		
			1 to <2 servings/week		HR=0.92 (0.86-0.99)	Possibility of type I		
			2 to <3 servings/week		HR=0.89 (0.82-0.96)	error due to multiple comparisons		
			≥3 servings/week		HR=0.91 (0.84-0.98); p-trend=0.02			
			Fruits and vegetables high in β–carotene (≥3000 mcg/100 g)§	_				
	onwards		≤2 servings/week		HR=1 (referent)			
	Prospective study		>2 to 4 servings/week		HR=0.94 (0.86-1.01)			
	Age at baseline:		>4 to 6 servings/week		HR=0.90 (0.83-0.98)			
	27–59 y Mean follow–up: 23.7 y		>6 servings/ week to 1 serving/day		HR=0.92 (0.84-1.01)			
			>1 serving/day		HR=0.87 (0.80-0.94); p-trend=0.00	04		
			Fruits and vegetables high in lutein (≥10 mg/100 g)§	-				
			≤1 serving/month		HR=1 (referent)			
			>1 to 3 servings/month		HR=1.01 (0.95-1.07)			

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			>3 to 4 servings/month		HR=1.00 (0.93-1.07)	
			>1 to 3 servings/ week		HR=0.97 (0.92-1.04)	
			>3 servings/week	:	HR=0.94 (0.86-1.03); p-trend=0.07	

Abbreviations: AICR, American Institute for Cancer Research; BMI, body mass index; CPSII, Cancer Prevention Study II; EPIC, European Prospective Investigation into Cancer and Nutrition; ER, oestrogen receptor; HR, hazard ratio; MET, metabolic equivalent; MHT, menopausal hormone therapy; nmol/L, nanomoles per litre; NR, not reported; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; PR, progesterone receptor; p-trend, p-value for trend; Q[1–5], quintile[1–5]; Q[1–4], quartile[1–4]; RR, relative risk or risk estimate; µg/d, micrograms per day; µg/L, micrograms per litre; µmol/L, micromoles per litre; UK, United Kingdom; USA, United States of America; WCRF, World Cancer Research Fund; y, year/s.

†Adjusted for matching factors [study centre, age (within 1 y), menopausal status at recruitment, use of exogenous hormones, and phase of menstrual cycle, fasting status at blood collection, and time of blood collection (61 h). Also adjusting for BMI (continuous), height (continuous), age at menarche(<12,12–14,14 y, missing), age at first full-term pregnancy (nulliparous, <20, >20–<25, >25–<30, >30 y, missing), oral contraceptive use (ever/never/missing, for premenopausal women), hormone therapy use (ever/never/missing, for postmenopausal women), smoking status (never, past, current, missing), alcohol consumption (g/d), educational level (none, primary school, technical/professional school, secondary school, university degree, missing), intake of saturated fatty acids (g/d), energy intake(kcal/d), and season of blood collection (winter, spring, summer, fall).

‡Adjusted for matching factors, further adjusted for history of benign breast disease, combination of age of mother at first birth and number of live births, BMI, alcohol consumption, smoking status, MHT use, other plasma carotenoids (except for total carotenoids) and total fruit and vegetable intake (as a continuous variable).

 \dagger the stratified on cohort, calendar year, and age in months and adjusted for family history of breast cancer (yes, no), history of benign breast disease (yes, no), height (<1.60, 1.60 to <1.65, 1.65 to <1.70, 1.70 to <1.75, and ≥1.75 meters), BMI at age 18 years (<18.5, 18.5 to <20, 20 to <22.5, 22.5 to <25, 25.0 to <30, ≥30.0 kg/m2), weight change since age 18 (continuous), smoking (never, past, current 1 to 14/day, current 15 to 24/day, current ≥25/day), physical activity (quintiles of MET–h per week, missing), oral contraceptive use (never, < 2 years, 2 to <5 years, 5 to <10 years, ≥10 years), alcohol intake (g/day, quintiles), total energy intake (kcal/day, quintiles), age at menarche (<12, 12, 13, 14, >14 years), parity and age at first birth (nulliparous, parity ≤2 and age at first birth <25 years, parity 3 to 4 and age at first birth <25 years, parity 3 to 4 and age at first birth ≥25 years, parity 3 to 4 and age at first birth ≥30 years, parity ≥5 and age at first birth <25 years, and menopausal status, age at menopause, and postmenopausal hormone use, postmenopausal and age at menopause<50 years and past postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and never postmenopausal hormone use, postmenopausal and age at menopause≥50 years and neve

§Cumulative average

Table D.47 Diet—Mediterranean diet and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Schwingshackl et al., 2017 ³⁷⁷	7 cohort studies				RR=0.94 (0.90–0.99); p=0.03; l²=11%, p(heter)=0.34	Random effects model
Studies published to						Adjustments: NR
2017						No publication bias (p>0.05)
Australia, China, Europe, France, Iran, Italy,	9 case-control	1,804 participants	Adherence to MedD Highest vs lowest	Breast cancer	OR=0.89 (0.85–0.94); p<0.0001; l²=0%, p(heter)=0.51	Limitations: MedD diet not defined well
Netherlands, Singapore, Spain, Sweden, UK & USA	studies					MedD diet has changed since the 1960s
						Food frequency questionnaires may not reflect impact on chronic disease
van den Brandt & Schulpen, 2017 ³⁷⁸	5 cohort studies			Postmenopausal breast cancer		
Studies published to	2 studies	Number of participants: NR		ER+	HR=0.98 (0.82–1.17); p=NS; I²=47.6%, p(heter)=0.167	Random effects model
2016	2 studies	_	Adherence to MedD Highest vs lowest	ER-	HR=0.73 (0.57–0.93); I²=6.0%, p(heter)=0.302	Adjustments: NR
Netherlands, UK &						Publication bias: NR
USA	2 studies				HR=0.77 (0.63–0.94); I²=0.0%, p(heter)=0.340	Limitations: NR

Bloomfield et al						
2016 ³⁷⁹						Random effects model
Studies published						Adjustments: NR
1990–2016			Adherence to MedD Highest vs lowest			Publication bias: NR
Canada, Europe, Italy, Spain, Sweden, UK & USA	13 cohort studies	Number of participants: NR		Breast cancer	RR=0.96 (0.90–1.03); I2=53%	Limitations: English–language publications included only
						Exaggerated estimates due to random effects model
						Possible selective reporting and publication bias
WCRF, 2017 ¹⁰ †	8 cohort studies		MedD score	Breast cancer	RR=0.84 (0.59–1.20) to 1.42 (0.99–2.05)	Model: NR
Studies published to		Number of participants: NR	Highest vs lowest	Premenopausal	RR=0.65 (0.42–1.02) to	Adjustments: NR
2015	4 cohort studies			breast cancer	2.17 (1.42–3.30)	Publication bias: NR
Furone North				ER+PR+	RR=0.86 (0.66-1.13)	
America, Southeast			_	ER-PR-	RR=1.09 (0.65-1.82)	Limitations: NR
Asia & UK				Postmenopausal	RR=0.59 (0.34–1.03) to	
				breast cancer	1.10 (0.80–1.51)	
	8 cohort studies			ER+PR+	RR=0.92 (0.85-1.01)	
				ER-PR-	RR=0.80 (0.65–0.99)	
Cohort studies						
van den Brandt & Schulpen, 2017 ³⁷⁸	NLCS sub-cohort	1,665 subcohort women & 2,321	MedD by aMED & mMED scores	Breast cancer		Multivariate case-cohort analyses
Netherlands	Cohort dates:	cases included in analysis				Adjustments‡
	1986-2007	100 cases	0–3 points	E	ER- HR=1 (referent)	

		116 cases	4–5 point		HR=0.92 (0.67-1.25)	Limitations:
	Prospective study Age at enrolment: 55–69 y Duration of follow–	32 cases	6–8 points	_	HR=0.60 (0.39–0.93); p-trend=0.032	The proportion of breast cancer cases where ER/PR status was known was moderate
	ир: 20.3 у					
Randomised controlle	ed trials					
Toledo et al., 2015 ³⁸⁰			Control diet	_	HR=1 (referent)	Cox regression model
Spain		4,282 women	Mediterranean diet with EVOO	_	HR=0.32 (0.13-0.79)	Adjustments§
		1,391 control diet	Mediterranean diet with nuts		HR=0.59 (0.26-1.35)	Limitations:
	PREDIMED study	1,476 Mediterranean diet with EVOO 1,285				Breast cancer was not the primary end point
	Participant enrolment: 2003–2009			Invasive breast		Mammograms may have had suggestive findings at baseline
	Trial end: Dec 2010	with nuts				Breast cancer case number was small
	Median follow–up: 4.8 y	lian follow-up: 35 incident cases of , malignant breast cancer	Both Mediterranean	HR=0.43 (0.21–0.88)	Cancers could potentially be missed without mammograms	
	Age at enrolment: 60–80 y free of CVD at enrolment,				Only white postmenopausal women at high cardiovascular risk included	
		& had either type 2 diabetes mellitus or at least 3 major				Reproductive factors not adjusted for
		cardiovascular risk factors				Non-invasive cases not included in analyses
						Study protocol was amended in

Abbreviations: AICR, American Institute for Cancer Research; aMED, alternate Mediterranean Diet score; ER, oestrogen receptor; EVOO, extra virgin olive oil; HR, hazard ratio; MedD, Mediterranean Diet; mMED, modified Mediterranean Diet score; NLCS, Netherlands Cohort Study; NR, not reported; p, p-value; p(heter), p-value for the measure of heterogeneity; PREDIMED, Prevención con Dieta Mediterránea (Prevention with Mediterranean Diet); PR, progesterone receptor; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; WCRF, World Cancer Research Fund; y, year/s.

†WCRF reported the risk estimates of primary studies. WCRF did not conduct their own meta-analysis of the data obtained in their systematic review due to the low number of studies.

‡Adjusted for age at baseline (55–59, 60–64, 65–69 years), cigarette smoking (status (never, former, current), frequency (number of cigarettes per day; continuous, centred), duration (number of years; continuous, centred), body height (continuous, cm), body mass index (<18.5, 18.5–<25, 25–<30, >30 kg/m2), non–occupational physical activity (<30, >30–60, >60–90, >90 min/day), highest level of education (primary school or lower vocational, secondary or medium vocational, and higher vocational or university), family history of breast cancer in mother or sisters (no, yes), history of benign breast disease (no, yes), age at menarche (<12, 13–14, 15–16, >17 years), parity (nulliparous, 1–2, >3 children), age at first birth (<25, >25 years), age at menopause (<45, 4,549, 50–54, >55 years), oral contraceptive use (never, ever), postmenopausal HT (never, ever), energy intake (continuous, kcal/day) and alcohol intake (0, 0.1–<5, 5–<15, 15–30, >30 g/day). Models that 'included alcohol' did not have additional adjustments for alcohol.

§Adjusted for age, study site, body mass index, waist to height ratio, use of hormone therapy, leisure-time physical activity, total energy intake, alcohol consumption, age at menopause, and baseline adherence to the Mediterranean diet. Four cases were excluded: 1 in the Mediterranean diet with EVOO group, 1 in the Mediterranean diet with nuts group, and 2 in the control group.

Table D.48 Diet—phytoestrogens and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Grosso et al., 2017 ³⁸³			Total flavonoids Highest vs lowest		RR:=0.96 (0.89-1.0); l²=0.0%, p(heter)=0.99	Random effects model
Studies published to			Flavonol Highest vs lowest		RR=0.96 (0.90–1.03); l²=0.0%, p(heter)=0.64	Adjustments: Most studies adjusted for age
June 2016			Proanthocyanidins Highest vs lowest	-	RR=0.94 (0.87–1.0); l²=0.0%, p(heter)=0.69	 No evidence of publication bias Limitations: Recall bias Potential co-linearity between polyphenols with foods that are sources of other compounds that may be responsible for the observed associations Assessment of dietary intake in prospective studies does not take into account changes in dietary intake over time Limited number of cases in some studies Lack of data on individual polyphenols
Brazil, Canada, China, Europe, France, Germany,			Flavanones Highest vs lowest	-	RR=1.04 (0.97-1.11); l²=0%, p(heter)=0.99	
Italy, Japan, Mexico, Singapore,	39 studies		lsoflavones Highest vs lowest	- Breast cancer	RR=0.90 (0.81-1.01); I ² =60%, p(heter)=0.002	
Mexico, Singapore, Sweden, UK & USA	16 prospective studies 23 case–control studies	Individuals of 40–70 y age range Population description: NR	Lignans Highest vs lowest		RR=0.98 (0.89–1.08); I²=28%, p(heter)=0.23	
Wu et al., 2016 ³⁶⁰	10 cohort studies	452,916 participants	Soy food Highest vs lowest		RR=0.92 (0.84–1.00); l²=0.0%, p(heter)=NR	Greenland and Longnecker method
Studies published to 2015	7 cohort studies	12,888 cases	Dose response (per	-	RR=0.91(0.84-1.00); l2=0.0%,	Adjustments: NR
China, France	/ conort studies	roliuw up. 3.7-63 y	'serving')		p(heter)=NR	No publication bias (p=0.764)

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Japan & USA						Limitations: Unmeasured or residual confounders
						Few studies assessed the influence of hormone receptor status
						Single FFQ assessment assumes no change in diet over follow– up Different studies used different units for food intake
WCRF, 201710						No publication bias (p=0.498)
Asia, Europe & Western countries	6 cohort studies	12,962 cases	Dietary isoflavones Dose response (per 3 mg/day)	Postmenopausal breast cancer	RR=0.99 (0.98–1.00); I²=85.4%, p(heter)=0.243	Limitations: Insufficient data to conduct a meta–analysis for risk of breast cancer overall
Cohort studies						
Baglia et al., 2016 ³⁸⁵ China	Shanghai Women's Health Study		Adult soy protein intake (median) Q1(3.5 a/day)		RR=1.00 (referent)	Cox proportion hazard regression
	Enrolment: 1996–		$Q^{2}(6.0 a/day)$		RR=1.01 (0.83–1.22)	model
	2000	70 578 womon	Q3 (8.2 g/day)	Breast cancer	RR=1.00 (0.82–1.21)	Adjustments*
		70,370 Women	Q4 (10.9 g/day)		RR=0.87 (0.71–1.06)	
	Prospective study	1,034 cases	Q5 (16.0 g/day)		RR=0.78 (0.63–0.97); p-trend=0.007	Limitations: For some subgroup analyses,
	Age at enrolment		Q1(3.5 g/day)		RR=1.00 (referent)	 the statistical power of these study was low
	-0 / 0 y		Q2 (6.0 g/day)	Premenopausal	RR=0.97 (0.69-1.36)	
	Duration of follow-		Q3 (8.2 g/day)	breast cancer	RR=0.86 (0.60-1.24)	Possible measurement errors
	up: median 13.2 y		Q4 (10.9 g/day)		RR=0.98 (0.68-1.42)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			Q5 (16.0 g/day)		RR=0.46 (0.29-0.74);	
					p-trend=0.004	
			Q1(3.5 g/day)		RR=1.00 (referent)	-
			Q2 (6.0 g/day) Q3 (8.2 g/day) Q4 (10.9 g/day)		RR=1.03 (0.82-1.30)	
				Postmenopausal	RR=1.06 (0.84-1.33)	-
				breast cancer	RR=0.83 (0.65–1.06)	
			Q5 (16.0g/day)		RR=0.90 (0.71–1.16); p-trend=0.15	

Abbreviations: ER, oestrogen receptor; FFQ, food frequency questionnaire; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; NR, not reported; p, p-value; p(heter), p-value for the measure of heterogeneity; PR, progesterone receptor; Q[1–5], quintiles 1–5RR, relative risk or risk estimate; T[1–3], tertiles 1–3; UK, United Kingdom; USA, United States of America; WCRF, World Cancer Research Fund; y, year/s.

*Adjusted for age, body mass index, age at first live birth, physical activity, education, family history of breast cancer, season of recruitment and menopause (time-varying) were used for analyses. Adult intakes additionally adjusted for total energy intake and juvenile intakes adjusted for total juvenile rice intake.

Table D.49 Diet—glycaemic index and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
WCRF, 2017 ¹⁰	5 cohort studies	17,767 cases	Glycaemic index dose-response (per	Breast cancer	RR=1.02 (0.96–1.10); p=NS; I²=51.9%, p(heter)=0.08	Model: NR
Studies published to 2015	6 studies	21,859 cases	10 units/day)	Premenopausal breast cancer	RR=1.01 (0.93-1.10); p=NS; l²=34%, p(heter)=0.18	Adjustments: main confounders
Canada, China,	10 studies	37,846 cases		Postmenopausal breast cancer	RR=1.06 (1.02–1.10); p=sig.; I²=18.9%, p(heter)=0.27	Publication bias for GI and GL in premenopausal breast cancer
Denmark, France, Germany, Greece,	6 studies	17,767 cases	Glycaemic load dose-response (per	Breast cancer	RR=1.02 (0.93-1.11); p=NS; l²=58.7%, p(heter)=0.03	- (p<0.05)
Italy, Netherlands, Norway, Spain, Sweden, UK & USA	7 studies	22,573 cases	50 units/day)	Premenopausal breast cancer	RR=1.07 (0.92–1.24); p=NS; I²=71.8%, p(heter)=0.0002	Limitations: NR
	10 studies	37,846 cases		Postmenopausal breast cancer	RR=1.02 (0.99–1.06); p=NS; l²=3.2%, p(heter)=0.41	
Schlesinger et al., 2017 ³⁸⁷	14 prospective studies	1,102,422 women	Glycaemic index dose response (per 10 units/day)	Breast cancer		Random effects model
Studies published to 2015	10 studies	50,700 Cases	Overall		RR=1.04 (1.00–1.07); p=NS; I²=27%, p(heter)=0.194	No publication bias (p>0.05)
Canada, China,	5 studies		BMI<25		RR=1.08 (0.99-1.17); l ² =52.5%, p(heter)=0.077	Limitations:
Denmark, European countries, Finland,	5 studies		BMI>25		RR=1.03 (0.97-1.11); l ² =0%, p(heter)=0.442	Potential errors in measurement diet
Sweden & USA	4 studies	_		ER+	RR=1.04 (0.97-1.12); l²=0%, p(heter)=0.911	- Confounding factors such as
	4 studies			ER-	RR=1.03 (0.90–1.18); l²=0%, p(heter)=0.870	low physical activity, smoking, overweight and obesity, excess
	3 studies			PR+	RR=1.02 (0.91-1.14); l²=31.1%, p(heter)=0.234	total energy and alcohol intake
	4 studies			PR-	RR=1.03 (0.89–1.20); l²=0%, p(heter)=0.577	FFQs not specific to GI and GL
	3 studies			ER+PR+	RR=1.02 (0.91-1.14); l²=31.1%, p(heter)=0.234	Dietary information assessed at

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	2 studies			ER+ PR-	RR=1.29 (0.96–1.73); l²=42.2%, p(heter)=0.188	baseline only
	4 studies			ER-PR-	RR=1.01 (0.88–1.17); I²=0%, p(heter)=0.822	Limited studies by hormone receptor status
	6 studies	-	Overall	Premenopausal breast cancer	RR=1.01 (0.93–1.10); p=NS; l²=34.0%, p(heter)=0.181	_
	2 studies		BMI<25		RR=0.98 (0.89–1.08); I²=0%, p(heter)=0.472	
	2 studies		BMI>25		RR=0.88 (0.97-1.20); I²=0%, p(heter)=0.849	
	10 studies	-	Overall	Postmenopausal breast cancer	RR=1.06 (1.02–1.10);	
	3 studies		BMI<25		RR=1.15 (1.01–1.32); I²=71.9%, p(heter)=0.029	
	3 studies		BMI>25		RR=1.11 (1.02–1.20); I²=0%, p(heter)=0.683	
	3 studies			ER+	RR=1.02 (0.93–1.13); I²=0%, p(heter)=0.938	
	3 studies			ER-	RR=1.16 (0.96–1.40); I²=0%, p(heter)=0.864	
	2 studies			PR+	RR=0.99 (0.85–1.15); I²=48.5%, p(heter)=0.164	
	2 studies			PR-	RR=1.19 (0.92–1.54); I²=0%, p(heter)=0.579	
	2 studies			ER+PR+	RR=0.99 (0.85–1.15); I²=48.5%, p(heter)=0.164	
	2 studies			ER+ PR-	RR=1.29 (0.96–1.73; l²=42.2%, p(heter)=0.188	
	3 studies			ER-PR-	RR=1.15 (0.94–1.39); I²=0%, p(heter)=0.950	
	11 studies	-	Glycaemic load dose response (per 50 units/day)	Breast cancer	RR=1.01 (0.98–1.04); p=NS; l²=42.7%, p(heter)=0.065	_
	6 studies		BMI<25		RR=1.02 (0.99-1.04); l ² =80.7%,	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	6 studies		BMI>25		p(heter)<0.001 RR=1.01 (0.99-1.02); I²=0%, p(heter)=0.515	
	3 studies			ER+	RR=0.99 (0.95–1.02); l²=53.8%, p(heter)=0.116	
	3 studies			ER-	RR=1.20 (1.05–1.38); l²=0%, p(heter)=0.976	
	2 studies			PR+	RR=0.91 (0.83–1.00); l²=0%, p(heter)=0.487	
	3 studies			PR-	RR=1.05 (0.96–1.14); I²=72.9%, p(heter)=0.025	
	2 studies			ER+PR+	RR=0.91 (0.83–1.00); I²=0%, p(heter)=0.487	
	2 studies			ER+ PR-	RR=1.16 (0.54–2.51); I²=92.8%, p(heter)<0.001	
	3 studies			ER-PR-	RR=1.19 (1.02–1.38), I²=0, p(heter)=0.987	
	7 studies	_	Overall	Premenopausal breast cancer	RR=1.07 (0.92–1.24); l²=72.0%, p(heter)=0.002	
	2 studies		BMI<25		RR=0.99 (0.86–1.15); l²=0%, p(heter)=0.579	
	2 studies		BMI>25		RR=0.79 (0.65–0.97); l²=0%, p(heter)=0.325	
	11 studies	_	Overall	Postmenopausal breast cancer	RR=1.02 (0.99–1.06); l²=3.5%, p(heter)=0.409	
	4 studies		BMI<25		RR=1.01 (0.99–1.03); I²=39.9%, p(heter)=0.172	
	4 studies		BMI>25		RR=1.01 (1.00–1.03); I²=0%, p(heter)=0.394	
	3 studies			ER+	RR=0.99 (0.95–1.03); I²=53.8%, p(heter)=0.115	
	3 studies			ER-	RR=1.28 (1.08–1.52); I²=0%, p(heter)=0.589	
Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
-----------------	----------------------------	------------------------------	---------------------------	---------------	--	---
	2 studies			PR+	RR=0.91 (0.83–1.00); l2=0%, p(heter)=0.487	
	3 studies			PR-	RR=1.08 (0.96–1.21); l²=82.6%, p(heter)=0.003	
	2 studies			ER+PR+	RR=0.91 (0.95–1.03); l²=0%, p(heter)=0.487	
	2 studies			ER+PR-	RR=1.16 (0.54–2.51); l²=92.8%, p(heter)<0.001	
	2 studies			ER-PR-	RR=1.29 (1.08–1.54); l²=0%, p(heter)=0.494	
Cohort studies						
Makarem et al.,	Framingham	1,689 women	Glycaemic index	Breast cancer		Cox proportion hazard models
2017388	Offspring cohort	551 participants	T1<53.3		HR=1.00 (referent)	
		48 cases				Adjustments†
USA	Cohort dates: 1991–2013	572 participants 31 cases	T2 53.3–56.2		HR=0.67 (0.42-1.06)	Limitations:
	Prospective study	566 participants 45 cases	T3 >56.2		HR=0.90 (0.59-1.37)	FFQ not specific to GI and GL
	Mean age at		Glycaemic load (g/day)			 Self-reported intakes measured by FFQ
	Median follow-up:	557 participants 46 cases	<96.7		HR=1.00 (referent)	Measure of dietary GI and GL
	13 1 v	575 participants	96.7–136.0		HR=0.75 (0.47–1.22)	Tor individual toolas
	10.1 y	44 cases				Reference GL values limited to
		557 participants 34 cases	>136.0		HR=0.54 (0.26-1.09)	Australian and American foods
						Gl and GL may not reflect glycaemic response
						Limited power for hormone receptor subtype analysis

	Sludy defails	Study sample	Exposures	Outcomes	Risk estimates	Author comments
						Diet and lifestyle variables may
						not capture changes over time
						Possible residual confounding
Sieri et al., 2017 ³⁸⁶	EPIC-Italy study	47,749 participants	Glycaemic index	Breast cancer		Cox multivariate model
			Q1		HR=1 (referent)	
Italy	Cohort dates:	1,362 cases	Q2		HR=0.91 (0.77-1.07)	Adjustments‡
	concluded in 2010		Q3		HR=1.00 (0.85–1.18)	Limitations
			Q4		HR=0.98 (0.82-1.16)	FFQs not specific to GI and GL
	Prospective study		Q5		HR=1.00 (0.84-1.19);	·
					p-trend=0.744	Only one dietary measurement
	Age at enrolment:		Glycaemic load			and long term dietary intake
	INK		Highest vs lowest§		HR=1.34 (1.02–1.76);	not estimated
	Median follow-up:				p-trend=0.049	Estimates derived from FEQs
	14.9 y		Q1		HR=1 (referent)	may not account for meal
			Q2		HR=1.16 (0.97–1.38)	frequency, cooking methods,
			Q3		HR=1.07 (0.87-1.28)	or chewing habits
			Q4		HR=1.19 (0.97–1.46)	
			Q5		HR=1.14 (0.89–1.46); p-trend=0.303	kesiabai contounaing

Abbreviations: AICR, American Institute for Cancer Research; BMI, body mass index; EPIC-Italy, European Prospective Investigation of Cancer cohort in Italy (Florence, Milan, Ragusa province, Turin and Naples); ER, oestrogen receptor; FFQ, food frequency questionnaire; g/day, grams per day; GI, glycaemic index; GL, glycaemic load; HR, hazard ratio; NR, not reported; NS, not significant; p, p-value; p(heter), p-value for the measure of heterogeneity; Q[1–5], quintiles 1 to 5; PR, progesterone receptor; RR, relative risk or risk estimate; sig., significant; UK, United Kingdom; USA, United States of America; y, year/s.

†Adjusted for age, smoking, alcohol, energy (multivariable method for GI and GL), menopausal status, hormone therapy use, age at menopause and number of live births.

‡Stratified by food frequency questionnaire and adjusted for sex, education, smoking status, BMI, alcohol intake, fibre intake, saturated fat intake, non-alcohol energy intake and physical activity.

§Excludes participants who reported at recruitment that they were dieting.

Table D.50 Diet—total energy and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
WCRF, 2017 ¹⁰						Model: NR
Studies published to 2015	9 cohort studios	7,803 cases hort studies	Total energy intake	Postmenopausal breast cancer	RR=1.02 (0.97-1.06); p=NS; I2=45%,	Adjustments: Age, alcohol intake, reproductive factors (n=6) and
Greece, Netherlands,	9 CONON STUDIES		Linear dose response (per 500		p(heter)=0.07	
Sweden & USA			kcal/d)			No publication bias (p=0.36)
						Limitations: Insufficient data for analysis of premenopausal breast cancer
Cohort studies						
Thomson et al., 2018 ³⁹¹	Women's Health		Dietary energy density†			Cox proportion hazards regression model
USA	Initiative cohort		Q1 (lowest)		HR=1.00 (referent)	No adjustments
	Cohort dates:		Q2		HR=1.0 (0.9–1.1)	limitations:
	1993–1998	92,295 women	Q3 Q4		HR=1.0 (0.9–1.1) HR=1.0 (0.9–1.1)	Calculation for dietary energy
	Prospective study	5,565 cases		Postmenopausal		density excludes beverages
	Age at enrolment:Mean time to50-79 ydiagnosis: 8.2 y	OF (bisbast)	breast cancer		Database may not have fully accounted for water loss during cooking or for cup weights	
	Duration ot tollow- up: 14.6 y		(ریما را روم (ریوا ا		111-1.00 (0.77-1.1)	Errors in dietary energy reporting
						Residual confounding
Hartman et al.,	Cancer Prevention	56,795 women		Postmenopausal		Cox proportional hazards

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
2016 ³⁹⁰	Study II Nutrition Cohort	2,509 cases		breast cancer		regression model
USA	Cohort dates:		Dietary energy density			Adjustments‡
	1999-2011	438 cases	Q1 (<1.23 kcal/d)	-	RR=1.00 (referent)	Limitations:
Prospective study Age at enrolment:	Prospective study	539 cases	Q2 (1.23-<1.38 kcal/d)		RR=1.16 (1.02-1.32)	Measurement errors associated with dietary assessment
	489 cases	Q3 (1.38-<1.52 kcal/d)	RR=1.09 (0.96-1.24)	methods		
	50–74 y	517 cases	Q4 (1.52-<1.71 kcal/d)		RR=1.09 (0.96-1.24)	Use of single questionnaire
	Mealan follow-up: 11.7 y	526 cases	Q5 (≥1.71 kcal/d)		RR=1.17 (1.03-1.33); p-trend=0.09	Residual contounding
			Energy–dense food (g/d)	_		older, white middle-class women
		457 cases	<]]4		RR=1.00 (referent)	
		507 cases	114-<149		RR=1.10 (0.97-1.25)	
		515 cases	149-<186		RR=1.12 (0.98-1.27)	
		543 cases	186-<237		RR=1.16 (1.03-1.32)	
		487 cases	≥237		RR=1.06 (0.93–1.21); p-trend=0.40	

Abbreviations: AICR, American Institute for Cancer Research; BMI, body mass index; g/d, grams per day; HR, hazard ratio; kcal/d, kilocalories per day; n, number of studies; NR, not reported; NS, not significant; p, p-value; p(heter), p-value for the measure of heterogeneity; p-trend, p-value for trend; Q[1–5], quintiles [1–5]; RR, relative risk or risk estimate; WCRF, World Cancer Research Fund; USA, United States of America; y, year/s.

† Defined as the ratio of a diet's energy content to its weight.

‡Adjusted for age, education, race/ethnicity, age at menarche, age at first birth/parity, age at menopause, family history of breast cancer, and hormone therapy use, and BMI.

Table D.51 Diet—sugar and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Schlesinger et al., 2017 ³⁸⁷		384,651 women	Total sugar intake			Random effects models
Studies published to	4 prospective studies	12,414 cases	Dose response (per 10 a/day)†		RR=0.99 (0.98–1.01); l²=53%, p(heter)=0.10	Adjustments: NR
2015						No publication bias (p=0.21 for total sugar and p=0.73 for
Europe & North America				-		fructose)
						Limitations:
		352,627 women		Breast cancer		Contounding tactors such as low physical activity, smoking, overweight and obesity, excess
	3 prospective studies	11,542 cases	Fructose intake Dose–response (per 10 g/day)†		RR=0.99 (0.96–1.01); l²=14%, p(heter)=0.31	intake of total energy, & alcohol intake
		Women aged 40–79 v				Measurement error of diet
		,				Dietary information assessed at baseline; no information on
						change in dietary behaviour over time was available
Boyle et al., 2014 ³⁹³						Random effects model
Studies published to	2 retrospective studies	NR	Sugar-sweetened beverages;	Breast cancer	No association	No publication bias
2012			consumption of colas		(no risk estimates reported)	Limitations:
Countries: NR					Poor methodology and small numbers of studies	
Cohort studies						
Hodge et al., 2018 ³⁹²	The MCC study	Wave 1: 35,593 participants	Sugar-sweetened soft drinks	Postmenopausal breast cancer		Cox proportional hazards regression model

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Australia	Firstwave of	21,492 women	<1/month		HR=1 (referent)	Adjustments+t
	recruitment:	946	1-3/month		HR=0.90 (0.75-1.08)	
	End of follow–up: Jun 2013 121–item FFQ completed at both waves for	postmenopausal breast cancer	1-6/week		HR=1.21 (1.03-1.43)	Limitations: Intake of beveraaes was self–
		cases	≥1/day		HR=1.11 (0.85-1.45)	reported by FFQ
			Linear model		HR=1.26 (1.00-1.58); p-trend=0.05	Data on energy intake not
			Artificially sweetened soft drinks	-		- Included
	consumption in the last 12 months		<1/month		HR=1 (referent)	added sugars intake
	Prospective study		1–3/month		HR=0.94 (0.73-1.22)	
			1-6/week		HR=0.90 (0.72-1.12)	
	Age at recruitment: 40–69 y		≥1/day		HR=0.95 (0.73-1.25)	
	Follow–up duration: NR		Linear model		HR=0.92 (0.71-1.18); p-trend=0.51	

Abbreviations: g/day, grams per day; NR, not reported; FFQ, food frequency questionnaire; HR, hazard ratio; MCC, Melbourne Collaborative Cohort; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; y, year/s.

†Linear dose-response meta-analysis.

+Sugar-sweetened soft drinks adjusted for Socio-Economic Index for Areas, country of birth, alcohol intake, smoking status, physical activity, Mediterranean diet score.

‡Artificially sweetened soft drinks adjusted for all variables mentioned above plus sugar-sweetened soft drink consumption and waist circumference.

Table D.52 Diet—fat and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes		Risk estimates	Author comments
Meta–analyses							
Cao et al., 2016 ³⁹⁵			Total fat intake				Random effects model†
Studies published to			Highest vs lowest			RR=1.10 (1.02–1.19); I ² =48.05%, p(heter)=0.009	Publication bias: p=0.03
2015 Canada, China,			Adjusted for family history of breast	Breast cancer		RR=1.02 (0.93–1.11); p=0.02; l ² =38.18%, p(heter)=NR RR=1.06 (0.98–1.13); l ² =36.49%, p(heter)=NR	Limitations:
Netherlands, Norway, Finland,	24 cohort studies	1,387,366 participants	Adjusted for BMI				subgroup analyses
France, Ifaly, Japan, Sweden & USA	France, Italy, Japan, Sweden & USA	38,262 cases	Adjusted for reproductive variables			RR=1.05 (0.98–1.12); I²=30.56%, p(heter)=NR	Other fatty acids (such as long– chain n–3 fatty acids and linolenic acid) were not
					ER+	RR range=1.05-1.27	- included
			Highest vs lowest		ER-	RR range=0.47-0.84	Adjustment for confounders varied between studies
WCRF, 2017 ¹⁰	10 och ort studies	16,404 cases	Total fat intake Linear dose			RR=1.02 (0.97–1.07); p=NS; l²=27%, p(heter)=0.23	Model: NR
Studies published to	12 CONOTI STUDIES		response (per 20 g/d)	Broast cancor			Adjustments:
Europe, Japan, Singapore & North	13 cohort studies	17,807 cases	Percentage of energy from fat Linear dose	bleast cancer		RR=1.01 (0.99-1.02); l²=0%, p(heter)=0.63	No publication bias (p>0.05)
America			energy)				Limitations: NR
Randomised controlle	ed trials	<u></u>					
Chlebowski et al., 2017 ³⁹⁶	WHI Dietary Modification Trial	Intervention group: 19,541 participants	Reduced fat intake vs normal fat intake				Cox proportional hazard regression model
USA	Study intervention: 20% fat-reduced diet with an increased intake in	Control group: 29,294 participants 1,764 cases during	16.1 y cumulative follow–up period	Breast cancer		HR=0.97 (0.90–1.04); p=0.34	Adjustments: Stratified by age at random assignment, random assignment status in the WHI hormone trials

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	fruits, vegetables & grains	intervention time				and study period
	Study dates: 1993–1998	3,030 cases during follow–up				Limitations: Dietary intake measurement error
	Median follow-up: 16.1 y					Limited variation in dietary intake
	Mean intervention time: 8.5 y					Common reliance on single dietary intake made before diagnosis

Abbreviations: AICR, American Institute for Cancer Research; BMI, body mass index; g/d, grams per day; HR, hazard ratio; NR, not reported; NS, not significant; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; WCRF, World Cancer Research Fund; USA, United States of America; WHI, Women's Health Initiative; y, year/s.

†Most studies adjusted for energy intake, BMI and reproductive factors. Around 50% of the included studies adjusted for family history of breast cancer, exogenous female hormones use, alcohol intake and education, while part of studies adjusted for smoking.

Table D.53 Diet—processed meat and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Farvid et al., 2018401	18 studies overall	1,254,452 women	Processed meat consumption (highest	Breast cancer	RR=1.09 (1.03–1.16); l²=44.4%, p(heter)=0.033	Random effects model
Studies published to January 2018	15 studies investigated breast	37,070 cases	vs lowest category)	Premenopausal breast cancer	RR=1.09 (0.95–1.25); l²=50.0%, p(heter)=0.062	Adjustments made in individual studies
Canada, Europe, France, Japan,	cancer and processed meat			Postmenopausal breast cancer	RR=1.10 (1.03–1.17); I²=30.8%, p(heter)=0.137	No publication bias (p=0.67)
Netherlands, Sweden, UK, USA	7 studies pooled for risk of					Limitations
	premenopausal breast cancer					Low statistical power among premenopausal women
	10 studies pooled for risk of postmenopausal					Possibility of residual confounding
	breast cancer					Highest vs lowest categorisation did not always match across studies
						Not direct generalisable to racial and ethnic groups
Anderson et al., 2018 ⁴⁰²	10 cohort studies combined with UK	1,648,994 women	Processed meat consumption	Breast cancer	RR=1.06 (1.01–1.11); l²=61.5%, p(heter)=0.011	Random effects model
Biobank Studies published	Biobank	40,257 cases		Premenopausal breast cancer	RR=0.99 (0.88–1.10); l²=39.5%, p(heter)=0.158	No publication bias (p>0.05)
January 2017	8 studies pooled for overall risk of breast			Postmenopausal breast cancer	RR=1.09 (1.03–1.15); l²=40.2%, p(heter)=0.137	Adjustments: NR
Sweden, UK, USA	5 studies pooled for					Limitations:
	risk of					No data on hormone receptor status

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	premenopausal breast cancer					Confounders included were inconsistent between studies
	6 studies pooled for risk of postmenopausal breast cancer					
Wu et al., 2016 ³⁶⁰	12 cohort studies	Number of participants: NR	Processed meat Dose response (per	Breast cancer	RR=1.09 (1.02–1.17); l²=11.8%, p(heter)=0.329	Random effects model (highest vs lowest)
Studies published to 2015	4 studies		50 g/d)	Premenopausal breast cancer	RR=1.09 (0.94–1.26); l²=21.5%, p(heter)=NR	Adjustments†
Asia, Europe & USA	7 studies			Postmenopausal breast cancer	RR=1.10 (0.97 –1.26); l²=34.7%, p(heter)=NR	No publication bias
	14 cohort studies	1,235,085 participants	Highest vs lowest		RR=1.07 (1.01–1.14); I²=34.6%, p(heter)=0.098	(p>0.05)
		26,952 cases				Limitations: Unmeasured or residual confounders
						Different units used between studies
WCRF, 2017 ¹⁰	13 cohort studies	22,735 cases	Processed meat Dose response	Breast cancer	RR=1.08 (0.96–1.22); p=NS; I2=72%, p(heter)=0.002	Model: NR
Studies published to 2015	4 cohort studies	3,409 cases	(per 50 g/d)	Premenopausal breast cancer	RR=1.02 (0.84–1.24); p=NS; I²=31%, p(heter)=0.23	Adjustments: NR
Europe & North	8 cohort studies	13,708 cases		Postmenopausal breast cancer	RR=1.13 (0.99–1.29); p=NS; l²=47%, p(heter)=0.07	No publication bias (p>0.05)
America						Limitations: NR
Cohort studies						
Diallo et al., 2017403	The French NutriNet–Santé	61,476 participants	Processed meat (pork and beef	Breast cancer		Cox proportional hazard model
France	cohort	544 cases	preserved by methods other than freezing)			Adjustments§

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Cohort dates:		Q1 (0–0.06 g/d)		HR=1 (referent)	Limitations:
	2009-2015‡		Q2 (0.06–5.36 g/d)		HR=1.19 (0.88-1.62)	Sample may be biased
			Q3 (5.36–14.64 g/d)		HR=1.08 (0.83-1.39)	towards health-conscious
	Prospective study		Q4 (14.64–29 g/d)		HR=1.28 (1.00-1.64)	population
	Age at enrolment: ≥35 y		Q5 (>29 g/d)		HR=1.05 (0.80–1.38), p-trend=0.4	
		169 cases	Q1 (0–11 g/d)	Premenopausal	HR=1 (referent)	
	Median follow-up:): 	Q2 (11–6.79 g/d)	breast cancer	HR=1.62 (0.96-2.73)	
	4.1 Y		Q3 (6.79–16.43 g/d)		HR=1.09 (0.66-1.80)	
			Q4 (16.43– 31.89 g/d)		HR=1.34 (0.83–2.17)	
			Q5 (>31.89 g/d)		HR=1.30 (0.79–2.15); p-trend=0.5	
		375 cases	Q1 (0–0.06 g/d)	Postmenopausal	HR=1 (referent)	
			Q2 (0.06–5.14 g/d)	breast cancer	HR=1.08 (0.73-1.60)	
			Q3 (5.14–14.29 g/d)		HR=1.07 (0.79-1.44)	
		Q4 27.2	Q4 (14.29– 27.26 g/d)		HR=1.28 (0.95–1.72)	
			Q5 (>27.26 g/d)		HR=0.95 (0.69–1.32); p-trend=0.7	

Abbreviations: AICR, American Institute for Cancer Research; g/d, grams per day; HR, hazard ratio; n, number of studies; NR, not reported; NS, not significant; p, p-value; p(heter), p-value for the measure of heterogeneity; p-trend, p-value for trend; Q[1–5], quintile [1–5]; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; y, year/s.

+Studies (n) adjusted for the following: age at menarche (n=6), age at first birth (n=7), fat (n=1), smoking (n=7), alcohol (n=7), body mass index (BMI) (n=5), BMI + alcohol (n=7), energy (n=7), OC use (n=4), hormone therapy (n=9).

‡2015 end date is reported in the Study's method section. Data tables reported Study's end date as 2016.

§Adjusted for age (timescale), sex, energy intake without alcohol, number of 24 hour dietary records, smoking status, educational level, physical activity, height, BMI, alcohol intake, family history of cancers, lipids intake, fruits, vegetables, hormone replacement therapy (for postmenopausal group), contraception (for premenopausal group), menopausal status, number of children and red meat intake.

Table D.54 Diet—red meat and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
	UK Biobank cohort combined with 10					Random effects model
Anderson et al., 2018 ⁴⁰²	other cohort studies			Breast cancer	RR=1.03 (0.99–1.08); l²=44.0%, p(heter)=0.065	Adjustments: NR
Studies published to	Median follow–up: 7 y	1.65 million women	Red meat consumption			No publication bias (Begg's test, Egger's test >0.05)
2017	6 cohort studies	40,257 cases		Premenopausal breast cancer	RR=1.02 (0.92–1.11); I²=0.0%, p(heter)=0.530	Limitations:
Europe, France, Sweden, UK, USA	6 cohort studies			Postmenopausal breast cancer	RR=1.03 (0.97–1.08); I²=34.6%, p(heter)=0.177	Inconsistent approaches in the number and range of confounders individual studies included
	13 studies			Breast cancer	Pooled RR=1.06 (0.99–1.14); I ² =56.3%	Model: NR
	6 cohort studies		Unprocessed red meat consumption Highest vs lowest	Premenopausal breast cancer	RR=1.07 (0.97-1.18); 2=30.9%	Adjustments: NR Publication bias: NS
	9 studies			Postmenopausal breast cancer	RR=1.08 (0.99–1.17); I ² =53.2%	
Farvid et al., 2018 ⁴⁰¹ Studies published to	1,133,110 women	NAT2 acetylator genotype: fast		OR=1.18 (0.93–1.50); I ² =67.8%	 Limitations Residual confounding cannot be excluded 	
2018		33,493 cases	meat	-		— Most studies assessed diet by
Europe, Japan and North America	2 studies		NAT2 acetylator	Breast cancer		food frequency questionnaire, potentially leading to under or over reporting
			genotype: slow Per 25 g/d red meat		OR=0.99 (0.91-1.08); I ² =0%	Majority of studies conducted in North America and Europe, and results may not be generalisable to other ethnic groups

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	12 cohort studies	1,154,364 participants	Fresh red meat Hiahest vs lowest		RR=1.07 (0.98–1.17); l²=53.3%, p(heter)=NR	Random effects model (highest vs lowest)
Wu et al., 2016 ³⁶⁰		23,667 cases		-		Adjustments†
Studies published to 2015				Breast cancer		No publication bias (p>0.05)
Asia, Europe & USA	8 cohort studies		Dose response (per 120 g/d)		RR=1.13 (1.01–1.26); I²=56.4%, p(heter)=NR	Limitations: Unmeasured or residual confounders
						Different units used between studies
WCRF, 2017 ¹⁰		9,614 cases	Unprocessed red meat			Model: NR
Studies published to 2015	6 cohort studies		Linear dose response (per 100 g/d)	Breast cancer	RR=1.12 (1.01–1.24); I²=13.7%, p(heter)=0.33	Adjustments: NR
Asia, Europe & North America	3 cohort studies	2,555 cases	Linear dose response (per 100 g/d)	Premenopausal breast cancer	RR=1.04 (0.84–1.29); p=NS; I2=47%, p(heter)=0.15	No publication bias (p>0.05) for breast cancer overall and
The first stronged	5 cohort studies	8,784 cases	Linear dose response (per 100 g/d)	Postmenopausal breast cancer	RR=1.11 (0.97-1.27); p=NS; l²=45%, p(heter)=0.12	postmenopausal breast cancer Limitations: NR
Cohort studies						
Diallo et al., 2017 ⁴⁰³	The French NutriNet-Sante	61,476 participants	Red meat (fresh, minced and frozen			Multivariable Cox proportional hazard model
France	cohort	45,930 women	beef, veal, pork & lamb)			Adjustments§
	Cohort dates:	544 cases	Q1 (0-0.14 g/d)	Breast cancer	HR=1 (referent)	
	2009-2015‡		Q2 (U.14-24.67 g/d) Q3 (24.67-42.15		HK=1.08 (1.23-2.31)	Limitations: Study participants were more
			g/d)		HR=1.58 (1.14–2.17)	health conscious and had
			Q4 (42.15–65.71		HR=1.70 (1.24–2.34)	higher professional and/or

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Prospective study		g/d)			educational level than general
	Age at enrolment:		Q5 (>65.71 g/d)		HR=1.83 (1.33–2.51); p-trend=0.002	population
	≥35 y		Q1 (0–0.29 g/d)	Premenopausal breast cancer	HR=1 (referent)	Limited cases per receptor
			Q2 (0.29–24 g/d)		HR=3.36 (1.77-6.38)	subtype
	Median follow-up:		Q3 (24–42.14 g/d)		HR=2.37 (1.22-4.60)	Unmeasured or residual confounders
	4.1 y		Q4 (42.14–67.7 g/d)		HR= 2.91 (1.52–5.57)	
			Q5 (>67.7 g/d)		HR= 2.04 (1.03–4.06); p-trend=0.4	
			Q1 (0-2.68 g/d)		HR=1 (referent)	
			Q2 (2.68–25.37 g/d)		HR=1.28 (0.88-1.86)	
			Q3 (25.37–42.68 g/d)	Postmenopausal breast cancer	HR=1.46 (1.02-2.09)	
			Q4 (42.68–65 g/d)		HR=1.40 (0.97-2.01)	
			Q5 (>65 g/d)		HR=1.79 (1.26–2.55); p-trend=0.002	

Abbreviations: AICR, American Institute for Cancer Research; BMI, body mass index; g/d, grams per day; HR, hazard ratio; NAT2, N-acetyltransferase 2; NR, not reported; NS, not significant; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; Q[1–5], Quintile[1–5]; RR, relative risk or risk estimate; WCRF, World Cancer Research Fund; UK, United Kingdom; USA, United States of America; y, year/s.

+Studies (n) adjusted for the following: age at menarche (n=3), age at first birth (n=3), smoking (n=3), alcohol (n=1), BMI (n=3), BMI + alcohol (n=1), energy (n=2), OC use (n=2), hormone therapy (n=2).

‡2015 end date is reported in the Study's method section. Data tables reported Study's end date as 2016.

§Adjusted for age (timescale), sex, energy intake without alcohol, number of 24 hrs-dietary records, smoking status, educational level, physical activity, height, BMI, alcohol intake, family history of cancers, lipids intake, fruits, vegetables, menopausal status and number of children (breast cancer models), red meat intake (where processed meat was analysed) and processed meat intake (where red meat was analysed).

Table D.55 Environmental tobacco smoke and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Lee & Hamling, 2016 ⁴⁰⁵	47 studies	Number of cases and controls: NR	Environmental tobacco smoke	Breast cancer		Random effects multivariable adjusted model
Studies published to 2015	15 prospective cohort studies 30 case–control		All studies Spouse		RR=1.15 (1.07–1.23); l ² =139.64%, p(heter)<0.001 RR=1.14 (1.00–1.28); l ² =25.69%, p(heter)<0.05	Individual studies adjusted for various factors. Majority of studies adjusted for at least age.
Asia, Europe, Mexico & North America	studies		Home		p(heter)<0.00 RR=1.09 (1.03–1.16); l²=70.05%, p(heter)<0.001	Some publication bias, all studies p<.05
	studies nested in		Workplace		RR=1.03 (0.97–1.10); l²=25.87%, p(heter)<0.05	Limitations:
	prospective studies		Adulthood	nood RR=1.13 (1.04- p(heter)<0.01	RR=1.13 (1.04–1.22); l²=28.96%, p(heter)<0.01	Study weaknesses and publication bias
			Childhood		RR=1.00 (0.95–1.06); l²=21.27%, p(heter) <ns< td=""><td></td></ns<>	
			Prospective studies		RR=1.02 (0.97–1.08); l²=19.69%, p(heter)=NS	
			Spouse		RR=1.07 (0.93–1.22); l²=8.28%, p(heter)=NS	
			Home		RR=1.02 (0.97–1.07); l²=17.86%, p(heter)=NS	
			Workplace		RR=1.01 (0.95–1.09); l²=9.77%, p(heter)<0.1	
			Adulthood		RR=1.04 (0.99–1.80); l²=0.57%, p(heter)=NS	
			Childhood		RR=0.98 (0.92–1.04); l²=9.48%, p(heter)<0.1	
			Case-control studies		RR=1.26 (1.13–1.41); l²=100.78%, p(heter)<0.001	
			Spouse		RR=1.24 (1.00–1.55); l²=16.39%, p(heter)<0.05	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			Home		RR=1.18 (1.06-1.31); l²=42.04%, p(heter)<0.01	
			Workplace		RR=1.08 (0.95–1.23); l²=15.55%, p(heter)<0.05	
			Adulthood		RR=1.28 (1.11–1.49); l²=15.10%, p(heter)<0.1	
			Childhood		RR=1.05 (0.97–1.15); I²=8.60%, p(heter)=NS	
			All studies	Premenopausal breast cancer	RR=1.36 (1.15–1.60); l²=68.33%, p(heter)<0.001	-
				Postmenopausal breast cancer	RR=1.12 (1.00–1.25); I²=58.28%, p(heter)<0.001	
			Prospective studies	Premenopausal breast cancer	RR=1.28 (0.92–1.77); I²=15.48%, p(heter)<0.05	_
				Postmenopausal breast cancer	RR=0.95 (0.90–1.00); I²=4.95%, p(heter)=NS	
			Case-control studies	Premenopausal breast cancer	RR=1.40 (1.14–1.71); I²=52.77%, p(heter)<0.001	-
				Postmenopausal breast cancer	RR=1.23 (1.06–1.44); I²=37.64%, p(heter)<0.001	
Macacu et al., 2015 ⁴⁰⁶	31 Studies	34,715 cases	Ever passive smoking	Breast cancer	RR=1.20 (1.07–1.33); I ² =67%	Random effects meta–analysis models
Studies published to	11 prospective cohort studies	18,022 cases	_		RR=1.07 (1.02-1.13); I2=1%	Adjustments: NR
2015	20 retrospective studies	16,693 cases	_		RR=1.30 (1.10–1.54); I2=74%	Publication bias was unlikely
North America						Limitations: Difficulty to assess exposure
Chen et al., 2014407	27 studies	9,591 cases	Passive smoking	Breast cancer		Random effects model
Studies published to 2013	2 cohort studies	11,652 controls			OK=1.60 (1.39−1.82); I²=75.1%, p<0.001	Adjustments: NR

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
China	25 case-control		Cohort studies		OR=1.29 (0.25–2.33); l²=74.2%, p=0.049	No evidence of publication bias
	studies*	*	Case-control studies	-	OR=1.64 (1.42-1.86); l ² =72.0%, p<0.001†	Limitations:
			Heavy passive smoking from husband	-	OR=1.41 (0.95-2.09); l²=81.6%, p<0.001	observed in the primary analysis for passive smoking
		Light passive smoking from husband	-	OR=1.11 (0.98–1.26); l ² =0.7%,p=0.412	Cannot overcome the limitations of the original studies	
			Heavy passive smoking from workplaces	OR=1.87 (0.94-3.72); l ² =62.7%, p=0.101 OR=1.07(078-1.48); l ² =44.3%, p=0.180	OR=1.87 (0.94–3.72); l²=62.7%, p=0.101	Potential confounding bias caused by other genetic and environmental factors
			Light passive smoking from workplaces		OR=1.07(078-1.48); l ² =44.3%, p=0.180	
Yang et al., 2013 ⁴⁰⁸	10 prospective cohort studies	782,534 non– smokers	Passive smoking	Breast cancer		Random effects model and fixed effects model
Studies published to 2011		14,831 cases	Overall		RR=1.01(0.96-1.06); l ² =41.3%, p=0.73	Adjustments‡
Asia, Europe & USA		Follow–up: mean	Childhood		RR=1.09 (0.99–1.20); I²=0.0%, p=0.10	No evidence of publication bias
		,	Adulthood		RR=1.03 (0.91–1.17); I²=0.0%, p=0.63	Limitations: Variation in exposure
			Home		RR=0.96 (0.81–1.14); I²=55.5%, p=0.67	measurement
			Workplace		RR=1.01 (0.93-1.10);	Heterogeneity between studies
					l²=0.0%, p=0.76	Dose response could not be conducted
						Language bias
Chen et al., 2015 ⁷⁰⁵	8 case-control studies	4,542 cases 5,114 controls	Tobacco smoke pollution	Breast cancer	OR=1.67 (1.27-2.21)§	Random effects model and fixed effects model

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Studies published						
2001–2011						Adjustments: NR
China						Publication bias identified
						Linsitetiana
						Limitations:
						Possibility of selection bias and
						information bias

Abbreviations: NR, not reported; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; USA, United States of America; y, year/s.

*This value is from Figure 3 in the study. In Table 1, 27 case–control studies are reported.

†This value is from Figure 3 in the study. In the results section of the study this value is represented as OR=1.66 (1.42–1.90).

‡All studies included adjustment for more than three variables, such as age, ethnicity, body mass index, menstrual status, family history of breast cancer, hormone use, socioeconomic status, alcohol, etc.

§This value is presented in the abstract. In the results section this is presented as OR=1.73 (1.29–2.33); χ^2 =64.71, p(heter)=<0.00001.

Table D.56 Tobacco smoking and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Gaudet et al., 2017 ⁴¹⁴	14 member cohort studies from the	934,681 women	Smoking status vs never smoked	Breast cancer		Multivariable adjusted Cox proportion hazard models
	National Cancer	36,060 cases	Current		HR=1.07 (1.04–1.10); I ² =39%	
Member cohort studies	Consortium	Mean follow–up period: 12.2–14.7 y Mean age at baseline: 53.9 y	Former		HR=1.06 (1.04–1.09); I ² <1%	Results adjusted*
commenced			Smoking prior to first birth			Limitations:
1700 2004			Never		HR=1.00 (referent)	Unable to define a reference aroup that excluded passive
Australia, Norway,		,	After first birth		HR=1.05 (1.00–1.11); I ² <1%	smokers or lifelong never
Singapore, Sweden & USA			≤5 years before birth		HR=1.06 (1.02–1.09); I2=34% drini	drinkers
			6–10 years before birth		HR=1.10 (1.06–1.14); I ² =55%	Unable to harmonise variables
			>10 years before birth		HR=1.18 (1.12–1.24); l²=36%, p–trend=2x10 ^{_7}	
Macacu et al.,	7 studies	125,251 cases	Active smoking	Breast cancer		Random effects model
2015406			Ever		SRR=1.09 (1.06–1.12); I ² =46%	
Studies published to	27 cohort studies	68,440 cases			SRR=1.10 (1.09–1.12); 12=0%	Adjustment; NR
2015	44 case–control	56,811 cases			SRR=1.08 (1.02–1.14); I ² =59%	No evidence of publication bias
Asia Europe &	studies	100.000				Limitations:
North America	49 studies	103,893 cases			SRR=1.11 (1.06–1.16); 12=56%	Observational epidemiologic
	27 cohort studies	63,087 cases	Current		SRR=1.13 (1.09–1.17); I ² =35%	studies limitations (selection bias)
	22 case-control	e-control 40,806 cases			SRR=1.08 (0.97-1.20); I2=69%	Residual confounding
	studies					Limited number of available data
						Difficulty to assess exposure

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Gaudet et al., 2013 ⁷⁰⁶	15 cohort studies	991,100 women	Active smoking vs never	Breast cancer		Fixed effects model
Studies published to		31,198 cases	Current		HR=1.12(1.08–1.16); I ² =6.9%, p=0.38	Adjustments: none
2012			Former		HR=1.09 (1.04–1.15); I²=56.3%, p=0.004	No publication bias: Begg test
Canada, Japan, Norway, Sweden & USA			Smoking initiation before first birth		HR=1.21(1.14–1.28); I ² =0.0%, p=0.62	Limitations: Unable to define a reference group that excluded passive smokers or lifelong never drinkers
Cohort studies						
Jones et al., 2017 ⁴¹⁵	Generations Study cohort	102,927 women	Smoking vs never smoked	Breast cancer		Cox proportional hazards regression model
UK	June 2003– December 2013	1,815 cases Participants did not				Adjustments†
	Mean follow–up: 7.7 y, or 788,361 person–y Age at recruitment:	invasive or in situ breast cancer or other malignant cancer or prior mastectomy				No direct information on passive smoking, so risk estimates may be underestimated if never- smokers were exposed to
	16–102 y	1,073 cases	Never smoked		HR=1.00 (referent)	passive smoking and if passive
		742 cases	Ever smoked vs never smoked		HR=1.14 (1.03-1.25); p=0.010	smoking is a risk factor for breast cancer
			Age started smoking vs never smoked	-		-
		261 cases	<17 y	-	HR=1.24 (1.08-1.43); p=0.0023	-
		304 cases	17–19 y		HR=1.15 (1.01-1.031); p=0.030	
		151 cases	20+ y		HR=1.00 (0.84–1.18); p=0.96	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		26 cases	Age unknown		HR=0.94 (0.64–1.39); p=0.76, p-trend=0.18	
			Years started after menarche	_		-
		266 cases	1–4 y		HR=1.23 (1.07-1.41); p=0.0040	
		295 cases	5–9 y		HR=1.13 (0.99-1.29); p=0.071	
		43 cases	10–14 y		HR=1.04 (0.76-1.41); p=0.82	
		18 cases	15+ y		HR=0.81 (0.51-1.30); p=0.39	
		86 cases	Interval unknown		HR=0.99 (0.77–1.27); p=0.92, p-trend=0.031	
			Duration of smoking:			-
		1,073 cases	Never smoked		HR=1.00 (referent)	
		177 cases	1–9 y		HR=1.00 (0.85-1.18); p=0.97	
		225 cases	10–19 y		HR=1.21 (1.05-1.41); p=0.009	
		141 cases	20–29 у		HR=1.21 (1.02-1.45); p=0.033	
		159 cases	30+ y		HR=1.22 (1.02-1.44); p=0.026	
		40 cases	Duration unknown		HR=0.93 (0.68–1.28); p=0.66, p-trend=0.24	
			Pack-years smoked	_		-
		1,073 cases	Never smoked		HR=1.00 (referent)	
		182 cases	1 to <5 y		HR=1.10 (0.94-1.29); p=0.25	
		103 cases	5 to <10 y		HR=1.05 (0.85–1.28); p=0.66	
		138 cases	10 to <20 y		HR=1.27 (1.06-1.52); p=0.010	
		114 cases	20+ y		HR=1.45 (1.19-1.77); p=0.0002	
		205 cases	Amount unknown		HR=1.03 (0.88–1.20); p=0.70, p-trend=0.0069	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Dartois et al., 201644	E3N-EPIC cohort	67,634 participants	Tobacco smoking			Multivariable adjusted Cox
France	1993–2008	497 premenopausal	Current smoker	Premenopausal breast cancer	HR=0.96 (0.71-1.28)	proportional hazard regression model
		cases		Postmenopausal	HR=0.99 (0.88-1.13)	
Prospective cohort			breast cancer		Adjustments‡	
	study	3,138 postmenopausal cases	Past smoker	Premenopausal breast cancer	HR=1.15 (0.95–1.40)	- Limitations:
	Women aged 47–72 y at baseline			Postmenopausal breast cancer	HR=1.01 (0.94-1.09)	representative of the general population and is prone to a healthy cohort effect
	Follow-up: 15 v or	03,777 1101-60363				
	876,468 person-y; median follow-up of 7 y for cases and 13 y for non-cases					Limited number of premenopausal breast cancer cases observed

Abbreviations: BMI, body mass index; E3N, Étude épidémiologique auprés des femmes de la mutuelle générale de l'éducation nationale; ER, oestrogen receptor; HR, hazard ratio; NR, not reported; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; SSR, summary relative risk; UK, United Kingdom; USA, United States of America; y, year/s.

*Multivariable-adjusted models included age, cohort, race/ethnicity, education, birth year, family history of breast cancer, history of benign breast disease, ever use of oral contraceptives, menopausal status and age at menopause, age at menarche, ever use of menopausal hormone therapy, age at first birth and number of live births, BMI, and amount and frequency of alcohol use.

†Adjusted for time since recruitment to cohort; birth cohort; benign breast disease; family history of breast cancer in first-degree relatives; socio-economic score; age at menarche; age at first pregnancy; parity; duration of breastfeeding; current oral contraceptive use during follow-up, before menopause; alcohol consumption; physical activity; premenopausal BMI at age 20 years; post-menopausal BMI; menopausal hormone therapy use; menopausal status (premenopausal or postmenopausal); and age at menopause.

‡HRs were adjusted for age (as the time scale), first-degree family history of breast cancer, level of education, height at adulthood, history of benign breast diseases, age at menarche, birth weight, age at menopause (for postmenopausal women only), tobacco smoking, number of children and age at first full term pregnancy, physical activity level, body shape at menarche, breastfeeding, dietary pattern, alcohol consumption, vitamin D intake and ultraviolet (UV) radiation, oral contraceptives or progesterone alone use, body mass index and menopausal hormone therapy use (for postmenopausal women only).

Table D.57 Physical activity and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Kyu et al., 2016 ⁴²³	35 prospective cohort studies	Women's age 15–102 y, with one	MET minutes/week	Breast cancer		Bayesian meta-regression tool
Canada, China,		study reporting	<600		RR=1.00 (referent)	Adjustments: NR
Finland, Japan, Norway, Sweden &		45+ y	600–3,999		RR=0.967 (0.937–0.998)	No significant evidence of
USA Studios publishod	Follow Up: median 48 months-	4,000–7,999		RR=0.941 (0.904–0.981)	publication bias for breast cancer	
1980–2016		50,949,108 person-y	≥8,000		RR=0.863 (0.829–0.900)	Limitations: Missed articles as a result of restricting our search to two databases & studies published in English
						Could not account for the potential for residual confounding or effect modification
						Dose-response meta-analysis included studies that measured physical activity qualitatively could lead to regression dilution bias
WCRF, 2017 ¹⁰	7 cohort studies	10,633 cases	Total physical activity			
Studies published to			Highest vs lowest	Breast cancer	RR=0.91 (0.82–1.02); I²=38%, p(heter)=0.14	
2015	4 cohort studies	1,834 cases		Premenopausal breast cancer	RR=0.93 (0.79–1.08); l²=0%, p(heter)=0.95	
Asia, Europe & North America	8 cohort studies	11,798 cases		Postmenopausal breast cancer	RR=0.87 (0.79–0.96); l²=16%, p(heter)=0.30	
	7 cohort studies	17,688 cases	Occupational			

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			physical therapy Highest vs lowest	Breast cancer	RR=0.93 (0.87–0.99); l²=0%,	
	6 cohort studies	4,494 cases		Premenopausal breast cancer	RR=0.82 (0.59–1.15); I2=76%, p(heter)=0.001	-
	8 cohort studies	22,352 cases		Postmenopausal breast cancer	RR=0.89 (0.83–0.96); l²=0%, p(heter)=0.57	
	19 cohort studies	28,659 cases	Recreational physical activity			-
			Highest vs lowest	Breast cancer	RR=0.92 (0.89–0.96); l²=10%, p(heter)=0.33	
	10 cohort studies	>3,901* cases		Premenopausal cancer	RR=0.93 (0.74–1.16); I²=59%, p(heter)=0.01	
	17 cohort studies	>24,253* cases		Postmenopausal cancer	RR=0.87 (0.81–0.94); l²=37%, p(heter)=0.06	
	5 cohort studies	15,453 cases	Per 10 MET– hour/week			-
				Breast cancer	RR=0.95 (0.92–0.99); l²=60%, p(heter)=0.04	
	3 cohort studies	2,331 cases		Premenopausal breast cancer	RR=0.96 (0.90–1.03); I²=69%, p(heter)=0.04	
	5 cohort studies	18,486 cases		Postmenopausal breast cancer	RR=0.98 (0.97–0.99); I²=0%, p(heter)=0.68	
	7 cohort studies	7,694 cases	Vigorous physical activity			_
			Highest vs lowest	Breast cancer	RR=0.86 (0.79–0.93); l²=0%, p(heter)=0.72	
	6 cohort studies	4,452 cases		Premenopausal breast cancer	RR=0.83 (0.73–0.95); l²=17%, p(heter)=0.31	
	11 cohort studies	20,171 cases		Postmenopausal breast cancer	RR=0.90 (0.85–0.95); l²=0%, p(heter)=0.96	
	6 cohort studies	6,944 cases	Per 30 minutes/day	Breast cancer	RR=0.95 (0.91–1.00); l²=37%, p(heter)=0.16	-

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	3 cohort studies	1,473 cases		Premenopausal breast cancer	RR=0.91 (0.83–1.01); l²=0%, p(heter)=0.63	
	3 cohort studies	3,293 cases		Postmenopausal breast cancer	RR=0.94 (0.86–1.02); l²=0%, p(heter)=0.95	
	5 cohort studies	6,472 cases	Walking			
			Highest vs lowest	Breast cancer	RR=0.88 (0.81–0.96); l²=0%, p(heter)=0.47	
	4 cohort studies	7,300 cases		Postmenopausal breast cancer	RR=0.94 (0.86–1.04); l²=0%, p(heter)=0.99	
Neilson et al., 2017 ⁴²²	36 case–control studies	Baseline age: all ages	Moderate–vigorous recreational physical	Premenopausal breast cancer	RR=0.80 (0.74–0.87); l²=71.1%, p(heter)<0.001	Random effects model
			activity			Adjustments: NR
Studies published to 2015	13 cohort studies	Total number of participants & cases: NR				Possible publication bias
Australia, Canada,	38 case–control	-		Postmenopausal	RR=0.79 (0.74–0.84); I ² =76.1%,	Limitations:
China, Denmark,	studies			breast cancer	p(heter)<0.001	Substantial heterogeneity
France, Germany,						observed: measurement error,
Japan, Mexico	26 cohort studies					covariate adjustment, &
Norway, Poland,						probably all contributed
Spain, Switzerland,						, ,
Netherlands, UK &						Subgroup analyses were
USA						limited by the low number of
						premenopausal studies
Moore et al., 2016 ⁴²⁵	10 prospective cohort studies from	35,178 cases	Leisure-time physical activity	Breast cancer	HR=0.90 (0.87–0.93); p(heter)=0.30	Cox proportional hazards models
Studies	the Physical Activity	Median age:	Higher vs lower	BMI adjusted	HR=0.93 (0.90-0.96)	Adjustments†
commenced	Collaboration of	45–63 y (including				
1987-2004	Cancer Institute's	male participants)				Limitations:
Furope & LISA	Cohort Consortium					Residual contounding by diet,
						affect results
	Median follow-up:					
	7–21 y					Self-reported physical activity

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
						entails some error in recall
						Not all cohorts assessed moderate & vigorous intensity activities separately
						Several cohorts lacked key details needed to calculate MET-hours per week of physical activity
Pizot et al., 2016 ⁴²⁴ Studies published	38 prospective cohort studies	4,124,275 women 116,304 cases	Physical activity Highest vs lowest	Breast cancer	RR=0.88 (0.85–0.90); I²=29%, Q=52.19	Dose-response meta-analysis using all studies was not performed because
1987–2014	18 prospective cohort studies	- Age: all ages		Premenopausal breast cancer	RR=0.87(0.78–0.96); I ² =51%	quantification & reporting of physical activity was too
Canada, Europe, Japan & USA	32 prospective cohort studies	Follow–up: 4–32 y		Postmenopausal breast cancer	RR=0.88 (0.85–0.91); I ² =19%	 heterogeneous across studies
	12 prospective cohort studies	_		ER+PR+ Breast cancer	RR=0.89 (0.83–0.95); l ² =0%	Inclusion of in situ breast
	11 prospective cohort studies	_		ER–PR– Breast cancer	RR=0.80 (0.69–0.92); I ² =7%	the preventive effect of physical activity
	11 prospective cohort studies	-	≥5 hours/week vs no/limited vigorous physical activity	Breast cancer	RR=0.82 (0.77–0.87)	Stratified results on menopausal status could be biased as menopausal status of women was unknown in 43% of women & many studies did not report results according to menopausal status
Cohort studies						
Johnsson et al., 2017 ⁴²⁶	Population-based cohort study	29,524 women	Sedentary occupation	Breast cancer	HR=1.20 (1.05–1.37); p<0.05	Cox regression
		1,506 cases	<55 y		HR=1.54 (1.20–1.96); p<0.05	Adjustments‡

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Sweden	Cohort dates: 1990– 2013		>55 y		HR=1.03 (0.88–1.22); p>0.05	Limitations:
	Aged 25–64 y at enrolment					activity exposure (sedentariness vs light physical activity)
	Duration of follow– up: 583,293 person–y, average 19.8 y					No inclusion of leisure time physical activity in the analyses
						Missing data on BMI included later in follow up
Harris et al., 2016 ⁴²⁷	Swedish	31,514 women	Physical activity	Breast cancer	HR=0.84 (0.72–0.99)§	Cox proportional hazard model
Sweden	Mammography Cohort	1,388 cases	≥30 minutes/day combined walking/ cycling & leisure time		HR=0.86 (0.73–1.01)¶	Adjustments§
	Follow–up: 15 y	Women born	activity			Limitations:
	Women recruited 1987–1990	1914–1948				Measurement errors due to questionnaires being self– administered
						Possible misclassification in level of exposure of physical activity

Abbreviations: AICR, American Association for Cancer Research; BMI, body mass index; ER, oestrogen receptor; g/d, grams per day; HR, hazard ratio; NR, not reported; MET, metabolic equivalent; p, p-value; p(heter), p-value for the measure of heterogeneity; PR, progesterone receptor; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; WCRF, World Cancer Research Fund.

*Number of pre- and postmenopausal cancer cases unclear in some publications.

†Adjusted for age, sex, smoking status (never, former, current), alcohol consumption (0, 0.1–14.9, 15.0–29.9, and 30.0 g/d), education (did not complete high school, completed high school, post-high-school training, some college, completed college), and race/ethnicity (white, black, other), postmenopausal hormone therapy use (ever, never), oral

contraceptive use (ever, never), age at menarche (<10, 10–11, 12–13, \geq 14 years), age at menopause (premenopausal, 40–44, 45–49, 50–54, \geq 55 years), and parity (0, 1, 2, >=3 children).

‡Adjusted for: age at inclusion, competitive sports, family history of breast cancer (first degree relatives), age at birth of first child, age at menarche, use of oral contraceptive, education in years and BMI.

BR was adjusted for age (continuous), height (continuous), education (primary school, high school, university), oral contraceptive use (ever, never), hormone therapy use (ever, never), age at menarche (≤ 12 , 13, ≥ 14 years), age at menopause (premenopausal, <51, ≥ 51 years), family history of breast cancer (yes, no), history of benign breast disease (yes, no) and smoking status (never, former <20 pack–years, former ≥ 20 pack–years, current <20 pack–years, current ≥ 20 pack–years).

¶Adjusted as for § and with all WCRF/AICR recommendations included.

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Travis et al., 2016434	10 cohort studies	1.4 million women	Shift work	Breast cancer		Cox regression model
Studies published to 2015		4,660 cases	Ever		RR=0.99 (0.95–1.03); p(heter)=0.052	Adjustments*
China. Europe &	8 studies		≥20 y		RR=1.01 (0.93–1.10); p(heter)=0.011	Publication bias: NR
USA	4 studies		≥30 y		RR=1.00 (0.87-1.14); p(heter)=0.067	Limitations: Small number of women reporting shift work
Lin et al., 2015 ⁴³⁵	16 cohort studies	2,020,641 participants	Rotating shift work vs day shift	Breast cancer	ES=1.09 (1.02–1.17); l²=0.0%, p(heter)=0.838	Random effects and fixed effects model
Studies published to		10.004 00000	Fixed night shift work	_	ES=0.87 (0.72-1.05)	
2014		10,004 cases	Night shift work	_		Adjustment: NK
China, Japan, Scandinavia,			Total		ES=1.06 (1.01–1.10); l²=9.2%, p(heter)=0.358	Publication bias: Begg's &Egger's test
Netherlands & USA			<5 y		ES=1.03 (0.97—1.09); l²=31.6%, p(heter)=0.223	Limitations:
			5 y		ES=1.02 (1.00–1.04); I²=17.7%, p(heter)=0.302	Heterogeneity
			5—10 y		ES=1.03 (1.01–1.04); I²=43.7%, p(heter)=0.149	Some unmeasured or inadequately measured factors might affect the true
			10–20 y		ES=1.07 (1.01–1.14); l²=0.0%, p(heter)=0.531	association
			>20 y		ES=1.09 (1.01–1.17); l²=37.8%, p(heter)=0.185	Insufficient investigation on the mortality of each tumour in
		Night shift work 5–year incremental	_	ES=1.03 (1.01–1.04; l ² =43.7%,	— relation to night shift work	

Table D.58 Shift work disrupting circadian rhythm and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			risk		p(heter)=0.149	
He et al., 2015 ⁴³⁶	15 studies	1,728,237 participants	Night shift work	Breast cancer	RR=1.19 (1.08–1.32); I²=76.1%, p(heter)<0.001	Random effects model
Studies published to 2014	4 cohort 3 nested case–	included in meta– analysis of 28 studies				Adjustments: NR
Australia, China,	7 case–control					No publication bias: Egger's test p=0.548.
Europe, Canada & USA	12 studies	_	Per 10 y increment of	-	RR=1.06 (0.98-1.15); p=NS	— ⁻
	9 case–control studies		SNITT WORK		RR=1.16 (1.06–1.27); p=sig.	Limitations: Large variation in the definition of sleep disruption
	3 cohort studies				RR=1.03 (0.95-1.11); p=NS	
						The dose-response meta- analysis only includes 3 cohort studies
						Some of the primary studies in the meta–analyses did not appropriately adjust for confounders
Wang et al., 2013 ⁴³⁸	10 studies	8116 participants	Shift work	Breast cancer	DD-1 10-(1 OF 1 251,12-ND	Generalised least-squared trend
Studios published to	3 conori siudies	1510 cohort study	Ever	_	RR=1.19=(1.05-1.35); 1 ² =NR	 and fixed effects model
2013	3 nested case-	participants	work (5 y		RR=1.03 (1.01—1.05); I²=70.0%, p(heter)<0.001	Adjustments: NR
China,	connor stocies	control participants	incrementaly			Publication bias: NS, p=0.365
Scandinavia, Germany & USA	4 case-control studies (3 population-based)	2,266 case–control participants				Limitations: All cohort studies had low
	Cohort studies only	-			RR=1.02 (1.00–1.04); l²=34.3%, p(heter)=0.22	— quality scores

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Nested case– control and case– control studies only				RR=1.06 (1.02–1.09); I²=74.6%, p(heter)=0.001	Variations in the definition of night shift work across studies—misclassification of studies
						Residual confounding effect in some studies with less adjustment cannot be ruled out
Jia et al., 2013437	13 studies	Number of participants: NR	Night work	Breast cancer	RR=1.20 (1.08–1.33); p(heter)<0.001	Random effects model
Studies published to 2012	5 cohort studies	-			RR=1.08 (0.97-1.21); p=0.146; p(heter)=0.019	 Most studies adjusted for age or parity
China, Scandinavia,	8 case-control studies	-			RR=1.36 (1.24-1.48); p<0.001; p(heter)=0.137	No publication bias: Egger's test p=0.086
France, Germany & USA						Limitations: Only 4 studies reported data on women who had worked for 15 years or longer exposure to shift work
						Most of the estimates of risk are 'crude' based on variable definitions of night–work, different study designs with high–risk of bias, and lack of controlling for confounders
Kamdar et al., 2013 ⁴³⁹	15 studies		Ever worked night shift work vs never	Breast cancer	RR=1.21(1.00-1.47); p=0.056; l²=75.8%, p(heter)<0.001	Random effects model
Studies published to	5 cohort studies	1,422,189 women 4,569 cases	— worked night shift		RR=1.14 (0.85–1.53); l²=76%, p(heter)=NR	Adjustments: NR
China Europe &						No evidence of publication bias: Egger's test
Crima, Europe a						

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
USA	10 case-control studies	10,635 cases 15,716 controls			RR=1.28 (1.03—1.60); I²=52%, p(heter)<0.01	Limitations: Some studies did not adjust for any confounders
						No quality appraisals of any of the included studies
Cohort studies						
James et al., 2017441	NHS II cohort	109,672 women	Cumulative outdoor	Breast cancer	HR=1.05 (1.00-1.11)	Cox proportion hazard model
USA	1989–2013	3,549 incidence	light at night exposure (per IQR increase)	Premenopausal breast cancer	HR=1.07 (1.01-1.14)	Adjustments†
	Prospective study	cases		Postmenopausal breast cancer	HR=1.00 (0.91-1.09)	Limitations: Exposure misclassification
	Registered nurses Age at enrolment: 95% Caucasian 25–42 y ethnicity	Registered nurses 95% Caucasian	No night shift work since 1989	Breast cancer	HR=1.03 (0.97-1.09)	Participant self-selection
		ennicity	Any night shift work since 1989		HR=1.09 (1.01-1.18)	Insufficient power to detect associations with ethnicity
	Follow–up: over 2,187,425 person–y					Correlation between outdoor light at night activity and other risk factors for breast cancer may explain the association observed
Wegrzyn et al., 2017 ⁴⁴⁰	NHS I & NHS II cohorts	193,075 women	Rotating night shift work history (1988–	Breast cancer		Multivariable Cox proportion hazard adjusted model
		9,541 cases	2012)			
USA	Cohort enrolment		None		HR=1.00 (referent)	Adjustments‡§
	1989 (NHS II)		1—14 y		HR=1.01 (0.96-1.07)	Limitations: Exposure definition may not
		ge at baseline: 67 y	15–29 y		HR=1.06 (0.94, 1.19)	
	Age at baseline: 25–67 y		≥30 y		HR=0.95 (0.77–1.17); p-trend=0.63	have captured the intensity or pattern of night shift work that
				NHS II rotating night-	_	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Prospective study		shift work history (1989–2013)			the identification of a dose- response relationship
	Follow–up: 24 y		None		HR=1.00 (referent)	
			1—9 y		HR=1.05 (0.98-1.13)	exposure categories
			10—19 y		HR=1.00 (0.85-1.17)	
			≥20 y		HR=2.15 (1.23–3.73); p-trend=0.23	Unable to evaluate breast cancer risk by histologic type

Abbreviations: ES, pooled estimate; HR, hazard ratio; NHS, Nurses' Health Study; NHS II, Nurses' Health Study II; NR, not reported; NS, not significant; p, p-value; p(heter), p-value for the measure of heterogeneity; p-trend, p-value for the measure of trend; RR, relative risk or risk estimate; USA, United States of America; y, year/s.

*Adjusted for socioeconomic status, age at menarche, parity, age at first birth, body mass index, alcohol intake, smoking, strenuous physical activity, family history of breast cancer, living with a partner, use of oral contraceptives, menopausal hormone therapy.

†Adjusted for benign breast disease history, family history of breast cancer, age at menarche, parity and age at first birth, height, race, body mass index (BMI), BMI at age 18, oral contraceptive use, mammography screening, menopausal status, smoking status, alternative healthy eating index, physical activity, marital status, living alone, personal income, shift work after 1989, region, particulate matter <2.5µm, census-tract median home value, income, and population density.

 \pm Adjusted for age (months), height (inches; continuous), body mass index (weight (kg)/height (m)2; <18.5, 18.5–24.9, 25.0–29.9, or \ge 30), body mass index at age 18 years (<18.5, 18.5–24.9, 25.0–29.9, or \ge 30), adolescent body size (average of diagram scores at ages 10 and 20 years; 1.0, 1.5–2.0, 2.5–3.0, 3.5–4.0, or \ge 4.5), age at menarche (<12, 12–13, or \ge 14 years), age at first birth and parity combined (for NHS: nulliparous, age <25 years and 1–2 children, age <25 years and \ge 3 children, age \ge 30 years and 1–2 children, or age \ge 30 years and \ge 3 children; for NHS II: nulliparous, parous age <25 years, parous age 25–29 years, or parous age \ge 30 years), breastfeeding (for NHS: none, 1–11 months, or \ge 12 months; for NHS II: none, 1–12 months, or >12 months), type of menopause and age at menopause combined (premenopausal, naturally postmenopausal at age <45 years, naturally postmenopausal at age <45 years, or surgically postmenopausal at age \ge 45 years), menopausal hormone therapy use (never, past, or current), duration of use of menopausal hormone therapy with oestrogen alone (months; continuous), duration of use of oestrogen and progesterone menopausal hormone therapy (months; continuous), first–degree family history of breast cancer (yes or no), history of benign breast disease (yes or no), alcohol consumption (0.0, 0.1–14.0, 14.1–28.0, or >28 g/day), physical activity level (\le 8.0, 8.1–16.0, 16.1–24.0, or >24 metabolic equivalent–hours/week), and current mammography use (yes or no). All categorical covariates were included in models with missing indicators.

§†In the NHS II, analyses using updated data on duration of shift work excluded participants during the cycles in which they were missing information on shift work exposure, resulting in fewer cases and person-years than in analyses using history of shift work reported at baseline in 1989.

Medical factors

Table D.59 Aspirin and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Lu et al., 2017 ⁴⁵⁴	13 cohort studies	857,831 women	Aspirin intake	Breast cancer		Random effects model†
			Overall		RR=0.94 (0.87–1.01); I ² =51.2%,	
Studies published		Duration of follow-			p(heter)=0.005	No publication bias (p>0.05)
2002-2015		up: 4.4–14 y	Frequency of use			
Denmark			5 times/week		RR=0.97 (0.95-0.99)	Limited studies for subgroup
Netherlands, UK &			10 times/week		RR=0.95 (0.90-0.99)	analysis
USA			20 times/week		RR=0.90 (0.81–0.99); l ² =75.3%,	
				_	p(heter)=0.000	 Adjustments differed between
			Duration of use			included studies
			5 y		RR=0.86 (0.77–0.95)	
			10 y		RR=0.73 (0.59–0.91)	
			20 y		RR=0.54 (0.35–0.82); I²=34.9%, p(heter)=0.138	
de Pedro et al.,	22 studies	Number of	Aspirin use	Breast cancer		Fixed effects model
2015450		participants: NR				(Q>0.1)/random effects model
Studies published to	13 cohort studies		Users vs non-users		RR=1.00 (0.96–1.04); l²=11.7%, p(beter)=NR	Adjustments: NR
2013	9 case-control				$OR=0.87 (0.82-0.92), l^2=4.5\%$	
	studies				p(heter)=NR	Publication bias (p<0.1)
Denmark, Spain, UK						
& USA						Limitations:
						NSAID doses or duration of use not studied
						Several articles failed to define "any NSAID"
						NSAID not uniformly recorded

		• • • • • • •	Oucomes	Kisk communes	Author comments
					across studies
32 cohort & case– control studies	1,350,913 participants	Aspirin use	Breast cancer		Random effects model
8 cohort studies		Dose-response (per 3 pills/week)		RR=0.96 (0.92–0.99); p=0.02	Adjustments: NR
6 case-control		Dose-response (per		RR=0.98 (0.97-1.00); p=0.02	Publication bias (p<0.05)
3100163		i y inciententy			Limitations: Publication bias & heterogeneity
					Unadjusted measured related to aspirin use
					Limited power for subgroup analyses
					Most studies conducted in western countries
22 cohort studies	52,926 cases	Aspirin use Users vs non–users	Breast cancer		Random effects model
10 case-control studies		Overall		RR=0.90 (0.85–0.95); p<0.001; I²=63%, p(heter)=0.05	Adjustments: NR
		Duration of use	-		Publication bias (p<0.05)
		< 5 y		RR=0.96 (0.91-1.02)	
		≥5 y		RR=0.93 (0.84–1.03); p(heter)=0.594	Limitations: Measurement errors in the exposure to aspirin
					High variability of aspirin use definitions across studies
	32 cohort & case- control studies 3 cohort studies 6 case-control studies 22 cohort studies 10 case-control studies	32 cohort & case- control studies 1,350,913 participants 3 cohort studies 5 4 case-control studies 5 22 cohort studies 52,926 cases 10 case-control studies 52,926 cases	32 cohort & case- control studies 1,350,913 participants Aspirin use 3 cohort studies Dose-response (per 3 pills/week) 6 case-control studies Dose-response (per 1 y increment) 22 cohort studies 52,926 cases 22 cohort studies 52,926 cases 10 case-control studies Users vs non-users Overall Duration of use < 5 y ≥5 y	32 cohort & case- control studies 1,350,913 participants Aspirin use Breast cancer 3 cohort studies Dose-response (per 3 pills/week) Dose-response (per 1 y increment) Second to the cancer 22 cohort studies 52,926 cases Aspirin use Breast cancer 22 cohort studies 52,926 cases Aspirin use Breast cancer 10 case-control studies 52,926 cases Aspirin use Breast cancer 10 case-control studies Duration of use < 5 y $\geq 5 y$ Second to the cancer	32 cohort & case- control studies 1,350,913 participants Aspirin use Breast cancer 3 cohort studies Dose-response (per 3 pills/week) RR=0.96 (0.92–0.99); p=0.02 3 cohort studies Dose-response (per 1 y increment) RR=0.98 (0.97–1.00); p=0.02 22 cohort studies 52.926 cases Aspirin use 1 y increment) Breast cancer 22 cohort studies 52.926 cases Aspirin use Users vs non-users Breast cancer 10 cose-control studies Overall Breast cancer RR=0.90 (0.85–0.95); p<0.001; I²=63%, p(heter)=0.05 Duration of use < 5 y

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Algra et al., 2012449	11 cohort studies	6,720 aspirin users in 31,075 cases	Aspirin use Users vs non–users	Breast cancer	RR=0.88 (0.82–0.95); p=0.0007; p(heter)<0.0001	Random effects model
Studies published 1950–2011	15 case-control studies	87,996 aspirin users in 246,037 controls				Adjustments: Age & other baseline clinical characteristics for maximum
Canada, Denmark, UK & USA	11 cohort studies	Aspirin users: 5,262 events/1,357,845	-		RR=1.04 (0.91–1.19); p=0.52; p(heter)<0.0001	aspirin use Publication bias: NR
		Non–users: 8,233 events/2,766,903 total person–y				Limitations: NR
	9 cohort studies	Aspirin users: 1,363 events/295,849 total person–y	Maximum aspirin use		RR=0.98 (0.85–1.14); p=0.83; p(heter)<0.0001	
		Non–users: 6,350 events/1,663,347 total person–y				
Zhao et al., 2009 ⁴⁵²	20 case–control &	23,217 cases	Aspirin use (low dose	Breast cancer		Random effects model
Studies published to	COHOIT STOCIES	NSAID users	Users vs non-users		RR=0.91 (0.85–0.98); p=0.02;	Adjustments: NR
2008		24 539 cases			l²=85%, p(heter)=NR	No publication bias
Canada, Denmark,		among 287,655				Limitations:
UK & USA		non–NSAID users				All studies are observational studies
						Self-reported exposure of NSAIDs
						English language only studies
Takkouche et al., 2008 ⁴⁵³	27 cohort and case–control	Number of participants: NR	Aspirin use Users vs non-users	Breast cancer	RR=0.87 (0.82–0.92); Ri=0.74, p(heter)<0.001	Random effects model
	studies	_				Adjustments: NR
Studies publications 1966–2008	18 cohort studies				RR=0.92 (0.86–0.97); Ri=0.70, p(heter)<0.001	
Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
------------------------------------	----------------------------------	----------------------------	--	---------------------------------	--	--
Canada, Denmark,	9 case-control studies				RR=0.79 (0.72–0.86); Ri=0.39, p(heter)=0.12	No publication bias (p>0.05)
Spain, UK & USA						Limitations: Recall bias
						Behaviours that are associated with NSAID use may not be adjusted for
Cohort studies						
Clarke et al., 2017 ⁴⁵⁵	California Teachers Study	133,479 women;	Aspirin use	Breast cancer		Multivariable Cox proportional hazards regression model‡
USA		1,457 cases				
	Conort study dates: 2005–2012	Median age at 10 y				Limitations: Limited numbers available by subtype of breast cancer
	Prospective study	1011044-0p. 01 y				
	Age at enrolment:	6,387 women	Current use of 81 mg Iow–dose aspirin (≥3	-	HRR=0.84 (0.72–0.98)	Residual unmeasured confounding
	NR	338 cases	tablets/week) vs no			
	Median follow-up:	6,387 women	NSAID past 3 years	HR+/HER2-	HRR=0.80 (0.66–0.96)	populations
	/γ	230 cases				_
		6,387 women	Current use of 325 mg regular–dose	Breast cancer	HRR=0.97(0.80-1.18)	
		170 cases	aspirin (≥3 tablets/week) vs no NSAID past 3 years			
Bardia et al., 2016 ⁴⁵⁶	lowa Women's Health Study	26,580 women	Aspirin use	Postmenopausal breast cancer		Cox proportional hazard model§
USA		1,581 cases				Limitations:
	Cohort dates: 1992–2005	46 cases/7,683 person-y	Family history of breast cancer 6+ times/week vs	-	HR=0.62 (0.41–0.93); p-trend=0.029	Type, dose, or duration of aspirin not assessed

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Prospective study		never use			Majority participants were Caucasian
	Age at enrolment: 55–69 y Duration of	215 cases/47,012 person-y	No family history of breast cancer 2–5 times/week vs never use	-	HR=0.78 (0.65–0.94); p-trend<0.001	Potential self-selection and confounding
	follow up: 307,178 person-y	412 cases/84,158 person-y	BMI of <30 kg/m² ≤1week vs never use	-	HR=0.83 (0.71–0.97); p-trend<0.001	Limited power to identify subgroup effects
		513 cases/100,705 person-y	Age at menarche 11+ years ≤1 times/week vs never use	-	HR=0.87 (0.76–0.99); p-trend<0.001	_
		226 cases/47,270 person-y	Age at menopause <55 y 2–5 times/week vs never use	-	HR=0.79 (0.66-0.94); p-trend<0.001	_
		444 cases/89,485 person-y	Parity/Age at first live birth 1+/≤30 years ≤1 times/week vs never use	-	HR=0.85 (0.74-0.99); p-trend<0.001	
		78 cases/13,451 person-y	Personal history of benign breast disease 6+ times/week) vs never use	-	HR=0.69 (0.50–0.95); p-trend=0.004	_
Randomised controll	ed trials					
Cook et al., 2005 ⁷⁰⁷	Women's Health Study	39,876 females	100 mg aspirin vs placebo, every 2	Breast cancer (as secondary endpoint)	RR=0.98 (0.87-1.09); p=0.68	Cox proportional hazards regression model
USA	Study duration: 1993–2004	19,934 received aspirin: 9,966 also received vitamin E	days			Adjustments: Stratification by confounders, including smoking

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Mean age at	19,942 received				
	enrolment: 54.6 y	placebo; 9,971 also				Limitations: NR
		received vitamin E				
	Mean follow-up:					
	10.1 y	1,230 invasive				
		cases:				
		608 in intervention				
		group				
		622 in placebo				
		group				
		Age: ≥45 y				

Abbreviations: BMI, body mass index; HER2, human epidermal growth factor receptor 2; HR+, hormone receptor positive; HR, hazard ratio; HRR, hazard rate ratio; mg, milligrams; NR, not reported; NSAID, non-steroidal anti-inflammatory drug; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; p-trend, p-value for trend; Q, Q test to evaluate the heterogeneity among studies; Ri, proportion of total variance due to between-study variance; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; y, year/s.

†Most risk measures were adjusted for age (12 studies), health history (9 studies), body mass index (BMI) (9 studies), education (6 studies), use of hormone therapy (6 studies) or alcohol consumption (6 studies); less were adjusted for mammography (5 studies), smoking (3 studies), non-steroidal anti-inflammatory drug (NSAIDs) use (4 studies), physical activity (3 studies), contraceptive use (3 studies) or weight (3 studies).

‡Adjusted for age at menarche, parity and age at first full-term pregnancy, total months breastfeeding their offspring, history of a benign breast biopsy, family history of breast cancer (mother or sister), strenuous plus moderate physical activity, alcohol consumption, body mass index, menopausal status and hormone therapy use, and (except for "Any NSAID") all of the other NSAIDS in the table (for each type: never past 3 years, former/irregular, current 3+ tablets/week, unknown).

§Adjusted for age, use of oral contraceptives, use of hormone therapy, smoking, alcohol use, physical activity level, history of rheumatoid arthritis, history of osteoarthritis all other factors in the table.

Table D.60 Cardiac glycosides and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Karasneh et al.,	9 studies	55,157 cases	Cardiac glycosides	Breast cancer		Random effects model for HRs
Studies published to 2015	6 cohort studies 3 case–control studies	2,338,591 Controls	Non-users Users Digitalis only		HR=1 (referent) HR=1.34 (1.25–1.44); p<0.00001; I ² =16%, p(heter)=0.30 HR=1.42 (1.23–1.63); p<0.00001	Adjustments: All studies adjusted for at least age (1 study did not report on confounders adjusted for) Funnel plots revealed no
Finland, Norway,			Digoxin only		HR=1.29 (1.11-1.51); p=0.0009	evidence of asymmetry which
Sweden, ok & USA				ER+	RR=1.35 (1.26–1.45) HR=1.46 (1.10–1.95)	would be indicative of publication bias
				ER	RR=1.20 (1.03–1.40) HR=1.12 (0.52–2.37)	Limitations: Studies reported different measures of association (including ORs, HRs and RRs)
						Small study sample (n=2) for ER+ analysis
Osman et al., 2017 ⁴⁵⁹	9 studies	Total study sample 2,558,108	Cardiac glycosides including digoxin	Breast cancer	RR=1.33 (1.25–1.42); p<0.001; I²=23.78%, p(heter)=0.23	Random effects model Adjustments:
	6 cohort studies		Digitalis only		RR=1.42 (1.22–1.64); p<0.01	Individual studies adjusted for
Studies published		60,543 cases	Digoxin only		RR=1.30 (1.17–1.45); p<0.01	various factors
1776-2016	3 case-control studies		Duration (≥3 y)		RR=1.28 (1.10–1.49); p=0.002	Seven studies adjusted for at least age
Denmark, Finland,			Digoxin use	ER+	RR=1.33 (1.25–1.42); p<0.001	No adjustments for one study
Norway, ok & USA				ER-	RR=0.98 (0.61-1.58); p=0.95	only No publication bias (p=0.27)
						Limitations: Small number of studies for subgroup analyses and not all studies that were included adjusted for potential confounders

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Zhang et al., 2017460	8 studies	9,219 cases	Digitalis	Breast cancer	RR=1.35 (1.24–1.46); l²=0.0%, p(heter)=0.59	Random effects model.
Studies published to 2016	5 cohort studies					Adjustments: Individual studies adjusted for
Dopmark Finland	3 case-control					various factors, with all studies adjusting for at least age
Norway, UK & USA	singles					No publication bias
						Limitations: Limited adjustments for confounders
						Cardiovascular risk factors (smoking and BMI) not adjusted for in many studies
						Bias due to dominance of large study
Cohort studies						
Chung et al., 2017 ⁴⁶¹	No cohort name	4,161 patients with heart failure	Digoxin Non–users	Breast cancer	HR=1 (referent)	Cox proportional hazard regression model†
Taiwan	Database mined: Jan 2000-Dec 2000	1,219 had taken digoxin	Users		HR=1.30 (1.05–1.62); p<0.001	Limitations: Nationwide population-based
	Retrospective cohort study	2,942 did not take digoxin				generalisable
	Age at enrolment: >18 y	1.43 incidence per 100 person-years				No information about smoking, pregnancies, dietary habits and other stressful psychosocial
	Follow–up: 10 y					events

Abbreviations: BMI, body mass index; ER, oestrogen receptor; HR, hazard ratio; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; y, year/s.

†Age, gender, income, region, urbanisation and Charlson Comorbidity Index.

Table D.61 HPV and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Bae & Kim, 2016468	22 case-control studies	1,897 cases	HPV DNA in tissue	Breast cancer	OR=4.02 (2.42–6.68); l²=44.7%, p(heter)=0.013	Random effects model
Studies published 1999–2015	11 case-control studies	948 controls	HPV-16	_	OR=5.67 (2.21–14.52); I ² =32.5%	Adjustments: NR
Australia, Brazil.	10 case-control studies		HPV-18		OR=2.97 (1.64–5.38); l ² =0.0%	No publication bias (p=0.165)
China, Iran, Iraq, Italy, Japan, Korea, Mexico, Turkey & USA	5 case-control studies	_	HPV-33	_	OR=3.64 (1.26–10.48); I ² =0.0%	Limitations: NR
Zhou et al., 2015 ⁴⁶⁹	16 case-control studies	Participant characteristics: NR	HPV infection	Breast cancer	OR=3.24 (1.59–6.57); p=0.000; l²=63.9%, p(heter)<0.001	Random effects model
Studies published						Adjustments: NR
1989–2013 Asia, Europe,	12 case–control studies		Fixed tissue		OR=2.23 (0.99–5.00); p(heter)=0.004	No publication bias (p>0.05)
Oceania & South America	4 case–control studies		Fresh tissue		OR=7.88 (3.99–15.60); p(heter)=0.458	Limitations: The effect of clinical features
	10 case-control studies 4 case-control studies	PCR primers ol Broad-spectrum primers OR=5.66 (3.40-9.45); p(heter)=0.566 ol Type-specific OR=3.12 (0.29-33.52); p(heter)=0.002	OR=5.66 (3.40-9.45); p(heter)=0.566 OR=3.12 (0.29-33.52); p(heter)=0.002	such as age and oestrogen receptors on HPV detection rates in breast cancer cannot be ruled out		
	2 case–control studies		Combined primers		OR=0.68 (0.32–1.45); p(heter)=0.614	
Simões et al., 2011 ⁴⁷⁰	9 case–control studies	448 cases	HPV infection Cases vs controls	Breast cancer	OR=5.90 (3.26–10.67); l²=19%, p(heter)=0.27	Random effects model
Studies published		279 controls				Adjustments: NR
1990–2011						No publication bias

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Australia, Brazil, China, Germany, Japan Mexico & Turkey						Limitations: Discrepancies in reported prevalence of HPV DNA in breast carcinomas may be explained by low viral loads and use of different primers for detecting HPV DNA
Li et al., 2011 ⁴⁷¹	9 case-control studies†	447 cases	HPV positivity Cases vs controls	Breast cancer	pOR=3.63 (1.42–9.27); p= sig.; l²=60.0%, p(heter)=0.010	Random effects model
Studies published 1989–2010		275 controls				Adjustments: NR
Australia, Brazil,						No publication bias (p=0.309)
China, Japan,						Limitations:
Mexico & Turkey						Differences in PCR primers influence the detection rate of HPV DNA
Cohort studies						
Salman et al., 2017 ⁴⁷³	Data collection over 3 y	110 specimens	HR-HPV	Abnormal & normal breast cases	Prevalence=42%	Model: NR
UK	Prospective study	74 samples malignant, 35 were				Adjustments: NR
		HPV positive				Limitations:
	Age samples were					The low viral load of HPV in
	collected: 25–82 y	36 samples normal or benign				breast cancer means that there are challenges in the
	Follow–up: NR					utilisation of immunoblotting techniques
Lawson et al., 2015 ⁴⁶⁷	TCGA Breast Cancers Cohort	PCR: 41 patients with benign breast	HPV infection in PCR cohort	Breast cancer	Prevalence=66%; p=0.001 for normal vs breast cancer	Model: NR
		biopsies 1–11 y		Benign breast biopsy	Prevalence=55%	Adjustment: NR

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Australia (PCR cohort) & USA	Study dates: NR	before developing breast cancer		Normal breast samples	Prevalence=29%; p=0.001 for normal vs benign	Limitations: NR
(TCGA cohort)	Retrospective study	21 normal breast specimens				
	Mean age of patients: 50.5 y	(cosmetic surgery)				
	Mean age of	Mean age at diagnosis: 56.1 y				
	controls: 35.7 y	TGCA: 855 breast cancer cases	HR-HPV from TCGA database	Breast cancer	Prevalence=2.3%	_
	Follow–up: NR					

Abbreviations: HPV, human papillomavirus; HR–HPV, high risk human papilloma3pvirus; NR, not reported; OR, odds ratio; p, p–value; p(heter), p–value for the measure of heterogeneity; PCR, polymerase chain reaction; pOR, pooled odds ratio; RR, relative risk or risk estimate; sig., significant; TCGA, The Cancer Genome Atlas; UK, United Kingdom; USA, United States of America; y, year/s.

†The abstract reports 10 studies.

Table D.62 Hysterectomy and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Cohort studies						
Altman et al., 2016 ⁴⁷⁴	Swedish Cancer Registry	111,595 women with hysterectomy; 2,201 cases	Hysterectomy without oophorectomy vs women with no	Breast cancer	HR=0.97 (0.93-1.01)	Cox proportional hazard model†
Sweden	Cohort dates: 1973-2009	5,379,843 women without	surgery			Confounding by indication (indications for hysterectomy included dysfunctional
	Retrospective study	hysterectomy; 162,445 cases				bleedings, leiomyoma and uterine prolapse)
	Age at enrolment: ≥18 y					Unable to control for HT use
	Duration of follow– up: 122,222,958 person–y					
Gaudet et al., 2014 ⁴⁷⁵	Cancer Prevention Study–II Nutrition	66,802 postmenopausal	Hysterectomy without oophorectomy vs	Breast cancer	RR=0.86 (0.76–0.96)	Extended Cox regression model‡
USA	Conorr	women	surgery (aged<55 y)			Limitations: Surgery type was self-reported
	Cohort dates: 1992-2009	9,655 women with simple hysterectomy				Exposure misclassification
	Prospective study	41,397 women with				Selective survival bias
	Age at enrolment: 50–74 y	no surgery				
	Median follow-up: 13.9 y					
Woolcott et al., 2009 ⁴⁷⁶	The MEC study	68,065 women	Simple hysterectomy Overall	Breast cancer		Cox proportional hazards model§

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Cohort dates:	Hysterectomy:	No hysterectomy	_	RR=1.0 (referent)	
USA	1773 2002	344 Cases	Hysterectomy	_	RR=0.98 (0.86-1.11)	Limitations: Measurement error in
	Prospective study	No hysterectomy:	By age of			hysterectomy status from
		1,518 cases	hysterectomy			misreporting
	Age at enrolment:		No hysterectomy		RR=1.0 (referent)	Specific data was not
	43-73 y Median follow-up:		Yes, at <45 y		RR=0.94 (0.81-1.09)	available to allow for
			Yes, at 45–49 y		RR=1.10 (0.86-1.41)	assessment of the effects of
7.7 у		Yes, at 50+ y		RR=1.03 (0.69-1.54)	or indications for hysterectomy	

Abbreviations: HR, hazard ratio; HT, hormone therapy; MEC, multi-ethnic cohort; RR, relative risk or risk estimate; USA, United States of America; y, year/s.

†Partial adjustment for age and calendar year, or with full adjustment, which also included parity and education level.

‡Ethnicity, education, parity, age at first birth, age at menopause, active smoking, alcohol consumption, family history of breast cancer, recreational physical activity, body mass index, use of postmenopausal hormones, mammography screening.

§Adjusted for age, body mass index, family history in a mother or sister, education, alcohol consumption, age at menarche, age at first birth, number of children, duration of current estrogen with progestin use, duration of current oestrogen only use, and duration of past oestrogen with progestin use. For analyses including all women, additionally adjusted for ethnicity.

#Adjusted for age (continuous), race (white or black), study site (Atlanta, Detroit, Los Angeles, Philadelphia or Seattle), age at menarche (continuous), first-degree family history of breast cancer (yes, no, or unknown/adopted), number of term pregnancies (0, 1, 2, or 3), educational status (some high school or less, high school graduate, some college or technical school, or college graduate or higher), and duration of hormone therapy use (never, 0–6 months, >6 months to <5 years or 5 years).

Table D.63 Pregnancy termination and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Guo et al., 2015 ⁴⁷⁸	15 prospective	31,816 cases	Induced abortion	Breast cancer		Random effects model
	cohort studies		Overall		RR=1.00 (0.94–1.05); l ² =56.8%,	
	14 studies on				p(neter)=0.003	No dajusimenis
2014	induced abortion		Number of abortions			No publication bias (p>0.05)
America, China &			1		PP-1 00 (0 91_1 10)·12-46 5%	
Europe	12 studies on		I		p(heter)=0.07	Limitations
	spontaneous abortion		≥2		RR=0.99 (0.75–1.24); I²=0%, p(heter)=0.75	Reporting bias due to stigma of abortions
			Age at first abortion	_		
			<20y		RR=1.23 (0.80–1.66); I²= 0%, p(heter)=0.872	
			20–29 y		RR=0.93 (0.62–1.24); I ² =0%, p(heter)=0.599	
			≥30 y		RR=1.31 (0.83–1.80); l²=0%, p(heter)=0.858	
			Spontaneous miscarriage	_		
			Overall		RR=1.02 (0.95–1.09); l²=61.6%, p(heter)=0.001	
			Number of			
			abortions			
			1		RR=0.98 (0.90–1.07); l²=0%. p(heter)=0.479	
			≥2		RR=0.82 (0.59–1.05); I²=70.7%, p(heter)=0.033	
			Age at first abortion	_		
			<20 y		RR=0.50 (0.27-0.92)	
			20–29 y		RR=NR	
			≥30 y		RR=1.03 (0.70-1.36)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
CGHFBC, 2004479	13 prospective studies	83,000 breast cancer cases	Spontaneous abortion	Breast cancer	RR=0.98 (0.92–1.04); χ²=15.7%, p=0.2—prospective	Mantel-Haenszel
Australia, China, Europe, New	40 retrospective	44,000 cases recorded	Induced abortion		RR=0.98 (0.018); χ ² =55.4%, p=0.05—retrospective	Adjustments: Results stratified by study, age, and where possible, parity and age at first birth
Zealand & North America	studies	prospectively			RR=0.93 (0.89–0.96); χ^2 =27.0%, p=0.008—prospective RR=1.11 (0.025); χ^2 =37.6%, p=0.5—retrospective	
		recorded retrospectively				Publication bias: NR
		Average age at				Limitations: Differential retrospective
		aiagnosis: 50.4 y Average 2.4 births				abortions

Abbreviations: CGHFBC, Collaborative Group on Hormonal Factors in Breast Cancer; NR, not reported; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; y, year/s.

Table D.04 Flevious calleer offer filan breast calleer and fisk of breast callee	Table D.64	Previous cance	r other than breas	t cancer and risk of	f breast cancer
--	------------	----------------	--------------------	----------------------	-----------------

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Ibrahim et al., 2012 ⁴⁹¹	34 cohort studies	25,305 women	Hodgkin lymphoma vs general population	Breast cancer		Random effects model
Studies published		957 cases	Overall		RR=8.23 (5.43–12.47); l²=96%, p(heter)<0.0001	Adjustments: NR
1985–2011		Median age at diagnosis of HL:			Median AER=22.9 per 10,000 person-y	No publication bias (p>0.05)
Canada, Europe,		23.7 у	Age at diagnosis	-		Limitations:
Germany, Italy,			1–14 y		RR=68.70 (28.08–168.11); I ² =79%	Hodgkin lymphoma itself
countries. Norway.		Median age at diagnosis of broast	15–19 y		RR=22.32 (13.40–37.16); I ² =74%	carries an increased risk of
UK & USA cancer: 35 v	cancer: 35 v	20–24 y		RR=14.43 (11.65–17.88); I ² =0%	second malignancy	
		· · · · · · ,	25–29 y		RR=6.60 (4.24–10.29); I ² =0%,	Confounding factors such as
			>40 y	_	RR=0.55 (0.09-3.52); I ² =0%	lifestyle factors, personal risk
			Treatment modality	-		and family history
			Radiation only Radiotherapy &		RR=4.70 (3.28–6.75); l²=74% RR=5.65 (2.94–10.88); l²=91%	Insufficient data to analyse protective effect of
			chemotherapy Chemotherapy only		RR=1.19 (0.50-2.82); l ² =65%	endogenous hormone ablation against exposure to exogenous hormones
Pirani et al., 2011 ⁴⁹⁷	12 cohort studies	235,232 women	Non–Hodgkin lymphoma vs general population	Breast cancer		Random effects model

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Studies published 1985–2008		Median range of age at diagnosis:	Overall		RR=1.10 (0.88–1.37); p=NS; l²=81.7%, p(heter)<0.001	Adjustments: NR
		10–61 y				No publication bias
Canada, Europe, France, Italy, Sweden, UK & USA						Limitations: Unpublished and non–English studies not included in search
						High heterogeneity
						Recruitments over extended period of time (1935–2004)
						Differential tumour misclassifications
Cohort studies						
Baras et al., 2017494	Primary diagnosis:	8,038 women with	Hodgkin lymphoma	Breast cancer	SIR=1.39 (1.11-1.70); p=sig.	Poisson regression model
Germany	Retrospective study	HL 89 cases	Non–Hodgkin Iymphoma	_	SIR=1.13 (1.05–1.21); p=sig.	Adjustments: Stratified by sex, age, follow-up
	Age at enrolment: NR	52,731 women with NHL 705 cases				duration and calendar year of diagnosis
	Median follow-up: 5.21 y for HL & 3.13	Age at primary diagnosis: 15–75 y				Limitations: Lack of treatment data
	y for NHL					Misclassification of secondary malignancies
						Inadequate follow-up
Morais et al., 2017 ⁴⁹⁰	Primary diagnosis:	3,025 women	Gastric cancer	Breast cancer		Poisson regression model
Portugal	2000-2006	4 synchronous	2 months atter diagnosis		SIK=1.02 (0.57-1.68)	Adjustments: NR

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	End date: 31 Dec 2010 Retrospective study	cases 15 metachronous cases	6 months after diagnosis		SIR=1.01 (0.55-1.70)	Limitations: Registry information did not include family history, lifestyle factors, comorbidities and treatment:
	Age at enrolment: NR	Mealan age at diagnosis of primary: 68 y				Data did not include histology
	Median follow–up: 7.0 y					or stage of gastric cancer
Lin et al., 2016 ⁵⁰³	Primary diagnosis: 2000–2008	129 breast cancer cases among thyroid cancer	Thyroid cancer Overall	Breast cancer	HR=1.31 (1.07–1.61)	Cox proportional hazard model
	End of follow–up: 31 Dec 2011	cases	Treated with ¹³¹		HR=1.26 (0.90-1.76) HR=1.34 (1.06-1.69)	Age, all comorbidities, hormone therapy,
	Retrospective study	368 breast cancer cases among controls				mammography, and ultrasonography
	Age at enrolment: >20 y					Limitations: No conclusions about lifestyle risk and genetic factors
	Median follow–up: 6.51 y					Use of non-scientifically verified registry
Chen et al., 2016 ⁴⁸⁹	Cohort dates: 1997–2011	17,314 women	Gastric cancer vs general population	Breast cancer	SIR=1.19 (0.90-1.54); p=NS	Cox proportional hazard model
Taiwan	Retrospective study	57 cases Median age at				Adjustments: Stratified by sex, calendar year, and age in 5–y intervals

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Age at enrolment: >20 y Follow-up:	diagnosis: 67 y				Limitations: Family history of cancer and lifestyle factors not included
	137,776 person-y					Disease stage not recorded
Cho et al., 2015 ⁵⁰⁴	Cohort dates: 1993– 2010	151,755 women	Thyroid cancer	Breast cancer	SIR=1.20 (1.10-1.30); p=sig.	Model: NR
Korea	Retrospective study	599 cases				Adjustments: NR
	Age at enrolment: NR	Median age at thyroid cancer diagnosis: 47 y				Limitations: Tumour size, stage of cancer, treatment modalities, and genetic and family history
	Elevated risk in first 10 y of follow–up					were not reported
Guan et al., 2015 ⁴⁸⁷	Primary diagnosis: 1992–2012	Colon cancer: 8,496 women	Colon cancer vs general population	Breast cancer		Poisson exact methods
		1,839 cases	Overall		SIR=0.99 (0.94-1.03)	Adjustments: NR
USA	Retrospective study Age at enrolment: NR	Rectal cancer: 2,969 women 647 cases	Rectal cancer vs general population Overall		SIR=0.93 (0.86-1.00)	Limitations: No detail provided about treatment strategies, lifestyle
	Follow–up:≥10 y	Age at primary diagnosis: >20 y				tactors, and comorbidities
Lee et al., 2015 ⁴⁸⁶	Study dates: 1996–2011	43,147 women		Breast cancer		Poisson probability distribution
Taiwan	Retrospective study	Median age at primary diagnosis:				Adjustments: NR
		67 y (men & women)				Limitations:

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Age at enrolment:	272 cases	Colorectal cancer		SIR=1.21 (1.07–1.36); p=sig.	Lifestyle factors, treatment
	NR	157 cases	Colon cancer	-	SIR=1.19 (1.01–1.39); p=sig.	 modalities and family history data not included
	Median follow–up: 4.03 y	118 cases	Rectal cancer	-	SIR=1.22 (1.01–1.46); p=sig.	_
Dörffel et al., 2015 ⁴⁹⁵	Study dates: 1978–2013	1,124 women	Paediatric Hodgkin lymphoma vs	Breast cancer		Model: NR
Austria, Germany &		31 cases	German population			Adjustments: NR
Switzerland	Retrospective study		Overall		AER=14.9 per 10,000 person-y	
	Age at enrolment:	Median age at primary diagnosis:	Median		SIR=17.2	Limitations: No adjustment for radiation
Ν Ν Ν	NR 13.3	13.3 y	Minimum		SIR=14.3	treatment and family history
	Median follow–up: 14.3 y	Age at breast cancer diagnosis: 25–44 y	Maximum		SIR=25.7	
Schaapveld et al.,	Cohort dates:	1,698 women	Hodgkin lymphoma	Breast cancer		Poisson regression model
2015 ⁴⁹² Netherlands	1965–2000 183 cases 1ands End of follow–up:	183 cases	Overall		SIR=4.7 (4.0–5.4) AER=54.3 (44.7–65.0) per 10,000 person-y	Adjustments: Sex, age, follow–up interval,
201 Re Firs tree	2010 Retrospective study	Median age at treatment for HL: 28.6 y	Radiation Tx above diaphragm No	-	SIR=1.0 (0.3-2.2)	 attained age, and treatment Limitations: NR
	First received treatment 15–50 y	Women who had survived ≥5 y after HL treatment	Yes		SIR=5.4 (4.6-6.2); p(heter)<0.001	
	Median follow–up: 19.1 y					
Chen et al., 2015 ⁴⁹⁸	Primary diagnosis: 1997–2011	1,351 women	Oesophageal cancer	Breast cancer	SIR=0.96 (0.12-3.48)	Poisson probability distribution
Taiwan	Retrospective study	2 cases				Adjustments: NR

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Age at enrolment: >20 y	Median age at primary diagnosis: 71 y				Limitations: Histological types of oesophageal cancer not known
	Median follow–up: 0.86 y					Obesity, tobacco, alcohol use, genetic alteration and family malignancy history could not be analysed
Kim et al., 2013505	Primary diagnosis:	39,228 women	Thyroid cancer	Breast cancer		Poisson exact method
	1973-2008		Overall	_	SIR=1.13 (1.06-1.20)	
USA	End of follow, up:	1,037 cases	Histological subtype			Adjustments: NR
	31 Dec 2008	Thuroid cancor	Papillary		SIR=1.14 (1.06-1.22)	Limitations: Data by size were not captured prior to 1988, limiting generalisability
	51 Dec 2000	diagnosis: <40 to	Follicular		SIR=1.07 (0.91-1.25)	
	Retrospective study	≥70 y	Medullary		SIR=1.16 (0.77-1.68)	
	, , ,		Radiation Tx	_		
	Age at enrolment:		None		SIR=1.13 (1.05-1.21)	
	NR		Isotypes		SIR=1.14 (0.98-1.31)	Some results difficult to
			Beam radiation		SIR=1.02 (0.64-1.41)	interpret due to certain
	Follow–up: 36 y		Radiation, NOS		SIR=1.17 (0.92-1.42)	siralifications e.g. anaplastic
			Year of diagnosis	_		
			1973–1983		SIR=1.13 (1.02-1.25)	
			1984–1993		SIR=1.06 (0.95-1.18)	
			1994–2003		SIR=1.21 (1.08-1.37)	
			2004–2008		SIR=1.09 (0.81-1.45)	
Lu et al., 2013 ⁵⁰⁶	Primary diagnosis: 1979–2006	14,863 women	Thyroid cancer vs general population	Breast cancer		Poisson probability distribution
Taiwan		102 cases	Overall		SIR=1.42 (1.16–1.72); p=sig.	Adjustments: NR
	Retrospective study		Follow–up interval	_		
		Mean age of	≤5 y		SIR=4.44 (3.24–5.95); p=sig.	Limitations:
	Age at enrolment:	thyroid cancer	5–10 y		SIR=1.41 (0.96–1.98)	Lack of information regarding
	I NIX	uluyi 10313. 44.20 y	>10 y		SIR=0.64 (0.41–0.95); p=sig.	KAI exposure history and

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			Age at diagnosis			subtypes of thyroid cancer
	Mean follow–up:	Mean age at SPM	<50 y		SIR=1.37 (1.06–1.74); p=sig.	
	7.29 y	diagnosis: 58.62 y	≥50 y		SIR=1.53 (1.06-2.13); p=sig.	
	<u> </u>	055.044				
100UCNI et al., 2012488	Primary alagnosis:	355,966 patients	Primary type	Breast cancer		Poisson probability distribution
2012	1703 2004	1 007 breast cancer	BIOOD		SIR=0.65 (0.25-1.04)	Adjustments: NR
Japan	Retrospective study	cases	Colorectal		SIR=1.22 (0.97–1.47)	Adjosiments, NK
	. ,		Kidney/urinary tract/bladder		SIR=0.97 (0.42-1.52)	Limitations:
	Age at enrolment:	Age at diagnosis of	Liver		SIR=1.26 (0.75-1.76)	SPMs are followed up in
	INK	plindry: 0–79 y	Lung		SIR=1.66 (1.10-2.21)	hospitals where cancer registration is higher
	Median follow-up:		Ovary		SIR=1.43 (0.82-2.04)	
	2.5 y		Stomach		SIR=1.63 (1.34–1.91)	Risk factors confounded by
			Thyroid		SIR=1.97 (1.34-2.61)	primary diagnosis
			Uterus		SIR=1.40 (1.10-1.71)	
Youlden & Baade,	Primary diagnosis:	94,001 women	Primary cancer	Breast cancer		Poisson probability distribution
2011210	1982–2001		All cancers		SIR=1.32 (1.27–1.37)	
		2,962 cases	Melanoma		SIR=1.19 (1.07–1.33)	Adjustments: NR
Australia	Retrospective study		Colorectal		SIR=1.21 (1.07–1.36)	
		Age at first				Limitations:
	Age at enrolment:	diagnosis: >15 y				Lifestyle and genetic factors,
	INK					and frediment modalities not
	Median follow-up:					
	5.5 y					
Royle et al., 2011496	Primary diagnosis: 1983–2005	56,619 women	Primary cancer	Breast cancer		Poisson probability distribution
Australia		Median age at				Adjustments:
	Retrospective study	primary diagnosis: 65 y				Decade of diagnosis

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		196 cases	Non-HL		SIR=2.27 (1.97-2.61); p=sig.	
	Age at enrolment:	49 cases	All HL		SIR=5.45 (4.03-7.20); p=sig.	Limitations:
	Median follow-up:	91 cases	Lymphoid Leukaemia		SIR=1.89 (1.52-2.33); p=sig.	affect incidence numbers
	2.9 y	32 cases	Myeloid leukaemia		SIR=2.24 (1.53–3.16); p=sig.	Lack of treatment information
	·	63 cases	Plasma cell tumours		SIR=2.18 (1.68–2.79); p=sig.	
Spanogle et al., 2010 ⁵⁰¹	Primary diagnosis: 1973–2003	69,853 women	Cutaneous melanoma vs	Breast cancer	SIR=1.07 (1.02-1.12)	Poisson probability distribution
		1,565 cases	general population			Adjustments: NR
USA	Retrospective study					
	Age at enrolment: NR	Mean age at primary diagnosis: 54 y				Limitations: Cutaneous melanoma is underreported
	Follow–up: until death or end of 2003					Data missing for genetic or lifestyle factors or treatment modalities
Levi et al., 2009 ⁵⁰⁰	Primary diagnosis: 1974–2006	1,834 women	Invasive ovarian cancer	Breast cancer	SIR=1.72 (1.15-2.05)	Poisson probability distribution
Switzerland	Retrospective study	28 cases	Borderline ovarian	_	SIR=0.82 (0.30-1.79)	Adjustments: NR
	Age at enrolment:					Limitations:

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	NR					Increased diagnostic attention in women diagnosed with
	Follow–up: 8,401 person–y					ovarian cancer
Levi et al., 2008 ⁵⁰²	Primary diagnosis: 1974–2005	31,377 patients	All skin cancers	Breast cancer	SIR=1.18 (1.08-1.30)	Poisson probability distribution
Switzerland		440 female cases				Adjustments: NR
	End of follow–up: end of 2005	21,046 patients 320 cases	Basal cell carcinoma	-	SIR=1.11 (0.99-1.24)	Limitations:
	Prospective study	6,985 patients 81 cases	Squamous cell carcinoma		SIR=1.06 (0.85-1.32)	Data did not include stage at diagnosis and lifestyle factors
	Age at enrolment: NR	3,346 patients 39 cases	Melanoma	-	SIR=1.04 (0.74-1.42)	
	Follow–up: NR					
Chuang et al.,	Primary diagnosis:	19,110 women	Oesophageal cancer	Breast cancer		Model: NR
2008 ⁴⁹⁹	1943–2000	37 cases:	Adenocarcinoma		SIR=1.03 (0.38-2.25)	Adjustments:
Australia, Canada, Europe & Singapore	Prospective study	6 cases adenocarcinoma;	Squamous cell carcinoma		SIR=0.84 (0.57–1.20)	Age, sex, year, and registry
	A a at a ralmont	31 cases sauamous				Limitations:
	Age di eniorneni.					
	NR	cell carcinoma				Small numbers may have affected the risk estimate
	NR Median follow-up:	cell carcinoma				Small numbers may have affected the risk estimate calculations

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Veit–Rubin et al., 2012 ⁴⁹³	SEER program of the National	Cases: 9,620 women with HL with	HL diagnosis	Breast cancer		Poisson distribution
A 211	Cancer Institute	316 breast cancer cases (diagnosed				Adjustments: NR
	First primary HL diagnosis 1973–2007	≥6 months after HL diagnosis)				Limitations: No information on
	Mean age at HL diagnosis: 47.9 y	Controls: 450,413 breast cancer cases				and type of radiation administered
		5,176 HL patients 234 breast cancer cases	Radiotherapy for HL	_	SIR=3.2 (2.8–3.6); p<0.001	– No information on how radiotherapy was delivered
		4,193 patients with HL 74 breast cancer cases	No radiotherapy for HL		SIR=1.4 (1.1–1.8); p<0.01	Unable to evaluate effects of different radiotherapy protocols on the risk for a second breast cancer.
			Age at diagnosis of HL			_
		1,526 patients with HL 69 breast cancer	≤19 y		SIR=13.4 (10.5–17.0); p<0.001	
		cases				
		3,062 patients with HL 108 breast cancer cases	20–29 у		SIR=4.4 (3.6–5.3); p<0.001	
		1,988 patients with HL 61 breast cancer cases	30–39 у		SIR=2.0 (1.5-2.5); p<0.001	
		950 patients with HL 29 breast cancer cases	40–49 y		SIR=1.4 (0.9-2.0)	
		2,094 patients with	≥50 y		SIR=1.03 (0.8-1.4)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		HL				
		49 breast cancer				
		cases				

Abbreviations: AER, absolute excess risk; LHN, lymphohaematopoietic neoplasm; NHL, Non–Hodgkin lymphoma; HL, Hodgkin lymphoma; HR, hazard ratio; ¹³¹I, iodine–131; NOS, not otherwise specified; NR, not reported; NS, not significant; p, p–value; p(heter), p–value for the measure of heterogeneity; RAI, post–operative radioactive iodine; RR, relative risk or risk estimate; SEER, Surveillance, Epidemiology and End Results; sig., significant; SIR, standardised incidence ratio; SPM, second primary malignancy; Tx, treatment; UK, United Kingdom; USA, United States of America; y, year/s.

Table D.65 Silicone breast implants and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Noels et al., 2015508	17 cohort studies	7 study populations	Breast implants vs no implant	Breast cancer	RR=0.63 (0.56–0.71); l²=0%, p(heter)=0.423	Random effects (SIR), fixed effects (RR) model
Studies published to		Population info: NR			SIR=0.69 (0.56–0.85); I ² =84%,	Publication bias (funnel plot)
2013					p(heter)<0.001	Adjustments: NR
Canada, Denmark, Sweden & USA						Limitations: Publication bias Confounders Applied language restriction
Balk et al., 2016 ⁵⁰⁷	11 longitudinal studies	Study sample: NR	Breast implants vs no implant	Breast cancer	ES=0.63 (0.54–0.73); l²=0%, p(heter)=0.53,	Random effects model
Studies published to 2015	Follow–up: 4–20 y	Icluded women with any history of			SIR=0.76 (0.64–0.91); l²=52%, p(heter)=0.051	Adjustments¶
		silicone gel-filled				Limitations:
Australia, Europe &		breast implants,				Differences across studies
North America		silicone, silicone tissue expanders, & recalled implants				Inadequate adjustments among studies
		produced by Poly Implant Prothese, & at least one half				Findings are not specific to silicone gel implants
		the participants had to have silicone gel (vs saline) implants				Possible confounders

Note: Risk estimates are presented with 95% confidence intervals.

Abbreviations: ES, effect size; NR, not reported; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; SIR, standard incidence ratio; y, year/s.

¶One study adjusted only for age and year of implantation. One study adjusted for age, race, time since surgery, and "predictors of cancer". One study adjusted for "extraneous variables".

Table D.66 Stress and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Lin et al., 2013517	7 studies	99,807 women	Striking life events	Breast cancer	OR=1.51 (1.15–1.97); I2= 93%	Random effects model*
Studies published 1995–2012	3 cohort studies	Number of cases & controls: NR	Severe striking life events		OR=2.07 (1.06-4.03); 2= 96%	Possible publication bias p<0.05
	4 case-control					Limitations:
Australia, England, Finland, Poland,	studies	Women aged 20–79 y				The seven studies differed somewhat in their definition of
Sweden & USA	Cohort studies		Striking life events		RR range: 1.07–2.1	striking life events & therefore
	Case-control studies				RR range: 0.9–7.08	number of events was used
Heikkilä et al.,	12 prospective	116,056 participants	Job strain	Breast cancer	HR=0.97 (0.82–1.14); I ² = 0%, p=0.6	Random effects model
2013523	cohort studies		Passive job	HR=1.00 (0.99–1.12); I2=0%, p=0.5	Adjusted for gae, sex	
Studies published		59,695 temales	Active job		HR=1.00 (0.84–1.19); l ² =30.8%,	socioeconomic position, BMI,
1985–2008		1,010 cases	High strain	HR=1.01 (0.81–1.26); I ² =49%, n=0.033	smoking & alcohol intake	
Denmark, Finland,		Women aged			p 0.000	
France, the Netherlands,		17–70 y				Limitations: Length of job strain not
Sweden & UK		Median follow-up:				assessed
		12 y				Data included fewer unemployed people compared with the general population
						Other potential risk factors were not adjusted for in the analysis
						Residual confounding

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Santos et al., 2009 ⁵¹⁸	8 studies	66,612 women	Stressful life events	Breast cancer		Random effects model
Studies published 1982–2007	2 cohort studies	Number of cases & controls NR	Widowhood Divorce		RR=1.04 (0.75–1.44); Q=7.634, p=0.020 RR=1.03 (0.72–1.48); Q=9.591,	Adjustments†
Australia Denmark	6 case-control			_	p=0.008	Publication bias: NR
England, Finland, Norway, Sweden, & USA			High intensity stress		kk=1.73 (0.98−3.05); Q=24.888, p<0.001	Limitations: Some studies could not be included because of lack of data
						The majority of studies included were on Nordic women
Duijts et al., 2003 ⁵¹⁹	27 studies	Number of women	Stressful life events	Breast cancer	OR=1.77 (1.31–2.40); I ² =0%	Model: NR
Studies published	10 retrospective	NR	Death of spouse		OR=1.37 (1.10-1.71)	Adjustments: NR
1966–2002	case-control studies	7,666 cases	Death of relative/friend		OR=1.35 (1.09-1.68)	Significant publication bias
Australia, Europe & USA	9 limited prospective studies	Mean age at diagnosis: 53.8 y	Change in marital status		OR=0.88 (0.73–1.08)	Limitations: Significant publication bias & heterogeneity
	4 prospective case-control studies					
Cohort studies						
Schoemaker et al., 2016 ⁵²⁰	Breakthrough Generations Study	106,612 women	Experience of stress Never/	Breast cancer	RR=1.0 (referent)	Cox proportional hazards model
		1,783 cases	Occasionally			Adjustments‡
UK	Conort date: 2003–2012		Frequently Continuously		RR=0.92 (0.83–1.03) RR=0.92 (0.73–1.15); p-trend=0.15	Limitations: Lack of information on intensity
	Prospective study		Adverse life events Death of	_		of stress on workplace stress & the extent of social support or

	Mean age at					
	-		husband/partner		RR=1.13 (0.88–1.46)	stress adaptive capacity
	baseline: 46.6 y		Death of			
	Follow up: 6.1 v		child/parent or			5-year time limit on stress
			Dogth of close		RR=0.87 (0.78-0.97)	
			friend		RR=0.94 (0.83–1.08)	Study did not collect
			Personal illness		RR=1.03 (0.87–1.22)	information on stress during
			Loss of job		RR=1.09 (0.91-1.30)	childhood of adolescence
			Divorce/ separation		RR=1.15 (0.96-1.38)	
			Other stressful		RR=0.95 (0.86–1.05)	
			event			
			Number of events			
			0		RR=1.00 (referent)	
			1		RR=0.97 (0.86–1.09)	
			2		RR=0.93 (0.81–1.07)	
			≥3		RR=0.93 (0.77-1.12); p=0.25	
Sawada et al.,	Japan	29,098 women	Perceived stress	Breast cancer		Cox proportional
2016521			Disagree		HR=1.00 (referent)	hazards regression model
lanan	content story	209 Cases	Neither		HR=1.21(0.80-1.82)	Adjustments
Japan	Cohort dates:		Agree		HR=1.71 (1.02-2.85)	Adjosimentisg
	1988–1990		Agree strongly		HR=1.00 (0.56–1.78)	Limitations:
	Prospective study					One item measure was used to
						determine perceived stress
	Age at baseline:					Stress was measured only at
	40–79 y					baseline & the measurement
	Mean follow-up:					validated
	12.8 y,					
	372,156 person-y					Identification of BC in four of the studies was not based on

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Surtees et al.,	EPIC-Norfolk study	11,467 women	Social adversity	Breast cancer		Cox proportional hazards
2010322	Cohort dates:	313 cases	Difficulties reported in childhood		HR=1.02 (0.91-1.16)	regression model
UK	1993-1997		Life events in past		HR=0.99 (0.89-1.11)	Adjustments¶
	Prospective study		5 y Loss events in past		HR=1.21 (0.98–1.51)	Limitations:
	Age at baseline: 41–80 y		5 y Non-loss events in HR=0.97 (0.81–1.17) past 5 y	HR=0.97 (0.81-1.17)	assess these experiences may act as a barrier to detecting the associations that may be	
	Follow-up: 102,514 person-y, median 9.1 y		Long term difficulties in past 5 y		HR=1.16 (0.85–1.60)	present in the general population
			Perceived stress over past 10 y		HR=1.17 (0.84–1.64)	It may also be necessary to assess a larger cohort

Abbreviations: EPIC, European prospective investigation into Cancer; HR, hazard ratio; NR, not reported; OR, odds ratio; p, p-value; p-trend, p-value for the measure of trend; Q, Q test to evaluate the heterogeneity among studies; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; y, year/s.

*Studies included adjusted for confounding factors, including age, use of oral contraceptives, any type of hormone replacement, menopause, alcohol intake, smoking, socioeconomic status, and family history of breast cancer.

†Models adjusted for age, sex, socioeconomic position, body mass index (BMI), smoking and alcohol intake.

‡Adjusted for attained age, age at menarche, age at first birth and parity, cumulative duration of breast feeding, oral contraceptive use, postmenopausal hormone use, benign breast disease, BMI at age 20, postmenopausal BMI and time-updated menopausal status, height, physical activity, alcohol consumption, cigarette smoking, family history of breast cancer and socio-economic status.

§Adjusted for age, study area, educational level, family history of breast cancer, age at menarche, age at menopause, age at first birth, parity, use of exogenous female hormone, alcohol drinking, consumption of green leafy vegetables, daily walking, exercise, sedentary work, height, and body mass index.

¶Stratified by age and menopausal status, parity, use of menopausal hormones (HRT), age at menarche, age at first birth, family history of breast cancer, physical activity, social class, BMI, height, and alcohol intake.

Table D.67 Trauma to the breast and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Systematic review						
Song et al., 2015 ⁵²⁶	26 studies	43 patients	Breast injury resulting from seat-belt use	Breast cancer	Prevalence=17.2%	Model: N/A
Studies published 1972 to 2014		5 cases				Adjustments: NR
		Mean age 49 y				Publication bias: NR
Australia, France,						
Israel, Japan, Slovenia, Turkey, LIK						Limitations: NR
& USA						
Cohort studies						
Gatta et al., 2012 ⁵²⁸	Hospital-based cohort	500 hospital patients	Breast trauma	Breast carcinoma	OR=0.84 (0.41-1.75)§; p=0.64	Logistic regression model
Italy	Cohort dates:	102 cases				Adjusted for age & oestrogen Progestin therapy
	2001–2008†	O manifa a ina alturata at ina				
	Retrospective study	analysis				Limitations. NK
	Age at enrolment: >23 y	General population (referent)				
	Duration of follow– up: NR					
Case-control studies	·					
Rigby et al., 2002 ⁵²⁷	Population	67 cases	Physical trauma to	Breast cancer	OR=3.3 (1.3–10.8); p<0.0001	Model: NR
	screening case-	(confirmed by	the breast			
UK	control	biopsy)				Adjustments: NR
	Duration: 1996–1998	134 controls (women without				Limitations: Possible recall bias & question
	Age at enrolment:	breast cancer as				of biological plausibility
	50–65 y	reference)				
		participating in				
		North Lancashire				

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		Breast Screening Service				

Abbreviations: NR, not reported; OR, odds ratio; p, p-value; UK, United Kingdom; y, year/s.

†Cohort commenced in 2008 is noted in abstract.

§95% confidence interval 0.41–1.73 is noted in abstract.

Table D.68 Type 2 diabetes and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
De Bruijn et al., 2013 ⁵³⁴	6 studies	Number of patients	Type 1 & 2 diabetes	Breast cancer	HR=1.23 (1.12–1.34); p<0.001;	Random effects model
2010						Adjustments: NR
Studies published 2007–2012		Number of cases NR				No publication bias: Egger's regression intercept – 0.77, p=0.197
Scotland, Sweden, UK & USA						Limitations: Not all studies distinguished between type 1 and type 2 diabetes
						Anti–diabetic medications and detection time were not accounted for
Boyle et al., 2012 ⁵³⁰	40 studies	Number of	Type 1 & 2 diabetes	Breast cancer	RR=1.24 (1.12–1.36); I ² =73%	Random effects model
Studies published to	22 cohort studies	panepansitik	Type 2 diabetes	Breast cancer (incidence &	RR=1.16 (1.04–1.29); I ² =72%	Adjustments: NR
2011	18 case–control	56,111 cases				
Austria, Canada,	studies	Study size 11–7.830		mortality)		No publication bias: Fager's test all studies –0.32
Chile, Denmark, Germany, Italy,	36 studies investigated BC	cases, median 322		Postmenopausal breast cancer	RR=1.12 (1.03–1.21); I ² =51%	p=0.75
Japan, Korea,	incidence					Limitations:
Netherlands, Sweden, Taiwan, Thailand, Turkey, UK	14 studies investigated type 2 diabetes					Meta regression analysis had limited power due to high heterogeneity in studies that
	6 studies investigated postmenopausal women type 2 diabetes					did not make adjustments

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Hardefeldt et al., 2012 ⁵³⁵	40 studies 3 cross sectional	Number of cases NR	Diabetes mellitus (non–specific)	Breast cancer	OR=1.20 (1.13–1.29); p<0.01; l²=73.41%, p(heter)<0.001	Random effects model
	studies	Number of controls	Age, BMI and		OR=1.11 (1.01–1.22); l ² =25.02%,	Adjustments:
Studies published	21 case-control	NR	family history		p(heter)=0.23	21 studies adjusted for age
1990-2012	studies		adjusted studies			and BMI
	16 cohort studies					
Armenia, Canada,	Type 2:		Type 2 diabetes		OR=1.22 (1.07–1.40); p<0.01	Evidence of publication bias:
Chile, China,	10 studies					Egger's p=0.01
Denmark, Israel,	6 case–control					
Italy, Japan, Korea,	studies					Limitations:
weden	4 cohort studies					Most studies did not account
Switzerland Taiwan						for therapeutic regimes
Thailand, Turkey,						
UK, Uruguay & USA						Most studies did not distinguish
						between types of diabetes
Liao et al., 2011 ⁵³⁶	12 studies	730,069 patients	Diabetes mellitus (unspecified)	Breast cancer	RR=1.23 (1.18–1.27); l²=68.7%, p(heter)<0.001	Random effects model
Studies published 2000–2010	7 cohort studies	Number of cases: NR				Adjustments: NR
	5 case–control					Publication bias:
America, Asia &	studies					NR for breast cancer
Europe						incidence studies
	Estudios			Promonongung		
	5 studies			breast cancor	$RR = 1.15 (0.91 = 1.64), 1^2 = 55.0\%$	Limitations:
				bleast curicel		Some diabetic patients may
	0 studies			De star e a su su su s		have been misclassified
	3 studies			Postmenopausai braast aanaar	$RR = 1.25 (1.20 - 1.30); 1^2 = 51.9\%,$	
				breast cancer	p(neiei)=0.08	No distinction between type 1
						& type 2 diabetes
						Diabetic drugs unknown
						Some studies did not adjust for
						sample sizes

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Cohort studies						
Gini et al., 2016 ⁵³⁸	FVG administrative	14,420 women	Type 2 diabetes	Breast cancer		Model: NR
	health-related	93 cases	≥3 y between		SIR=1.24 (1.00-1.52)	
Italy	database		diabetes & BC			Adjustments:
	2002–2009		diagnosis			age, sex, and year of cancer diagnosis (2002–2005, 2006– 2009).
	Retrospective study					
						Limitations:
	Age at diabetes					Lack of information on
	diagnosis: 40–84 y					confounders such as BMI,
	(median 65 y)					smoking & obesity sidios
	Median follow–up: 3.65 y					Potential classification bias of diabetes type
Xu et al., 2015 ⁵³⁹	No cohort name	20,213 women 132 cases	Type 2 diabetes	Breast cancer	SIR=1.66 (1.38-1.95)	Model: NR
China	Enrolment period:					Adjustments:
	2004–2010					Age and gender
	Retrospective study					Limitations:
						Short average follow-up time
	Mean age in					Potential heterogeneity in
	women: 59.37 y					patient population
	Median follow–up:					Smoking, alcohol consumption.
	3.78 y					BMI, physical activity & use of
						diabetic medications not
						adjusted for

Abbreviations: BC, breast cancer; BMI, body mass index; FVG, Friuli Venezia Giulia; HR, hazard ratio; NR, not reported; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; SIR, standardised incidence ratio; UK, United Kingdom; USA, United States of America; y, year/s.

Chemical exposures

Table D.69 Bisphenol A and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Case-control studies						
Trabert et al., 2014 ⁵⁴³	Hospital-based	1,150 women	Creatinine adjusted urinary BPA–G	Postmenopausal breast cancer		Linear regression model
	In situ/invasive	575 incident cases	(ng/mg)			Adjustments†
Poland	breast cancer		<2.06		OR=1 (referent)	
	alagnosis: 2000–2003	575 controls	2.06-4.16		OR=1.70 (1.15–2.52)	Limitations:
	2000 2000		4.17–7.80		OR=1.02 (0.67–1.55)	underlying disease processes
	Mean age at		>7.80		OR=1.09 (0.73-1.63);	
	recruitment: 59 y				p-irena-0.59	Differences in absolute BPA-G
						levels
						Short half–life of BPA–G does
						not reflect long term exposure
Brophy et al., 2012 ⁵⁴⁵	Population-based	1,005 prevalent cases:	Carcinogens & endocrine disrupters	Breast cancer		Conditional logistic regression
	Recruitment dates:	26 cases in plastics	Minor sector of			Adjustments‡
Canada	2002-2008	30 cases in food	longest duration			
		111/ controles	(lagged 5 y)			Limitations:
	recruitment:	1,146 Controls:	Minor sectors‡			Misclassification due to survey
	56.2 y for cases	plastics	Food		OR=2.25 (0.97–5.26)	histories coded in NAICS and
	60.0 y for controls	10 controls in food	Plastics (non– auto)		OR=0.04 (0.00–58.0)	NOC categories
			Plastics (auto)		OR=3.12 (1.29–7.55)	Changing trends in technology
			Cumulative exposure§	_		and manufacturing
			Plastics		OR=2.43 (1.39–4.22); p=0.0018	
Yang et al., 2009 ⁵⁴⁴	Hospital-based	152 participants	BPA levels			Model: NR

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Korea	Study dates: 1994-1997 Mean age at recruitment: 46.23 y for cases 48.56 y for controls	70 incident cases 82 controls	Comparison of median levels Cases (0.61 µg/L) vs controls (0.03 µg/L)		Wilcoxon test; p=0.42	Adjustments: NR Limitations: NR

Abbreviations: BPA, bisphenol A; BPA–G, BPA–glucuronid; LOD, limit of detection; NAICS, North American Industry Classification System; ng/mg, nanograms per milligram; NOC, National Occupational Classification; NR, not reported; OR, odds ratio; p, p–value; µg/L, micrograms per litre; y, year/s.

 \uparrow Adjusted for education (less than high school, high school education, some post high school education, college graduate), body mass index (<25, 25–29.9, >30 kg/m²), age at menarche (<12, 13–14, ≥15 y), parity (nulliparous, parous), years since menopause (<1, 1–5, 6–10, 11–15, ≥16 y), duration of menopausal hormone therapy use (never, <5, ≥5 y), family history of breast cancer, history of benign breast disease, and ever had a screening mammogram.

‡Model inclusions: reproductive risk factors, demographic risk factors such as smoking (pack-years and pack-years squared) calculated up to the age of diagnosis/participation, education in three levels (less than high school, high school and some college, college degree), and family income (<\$40,000, >\$40,000 blue collar, >\$40,000 white collar). Employment duration terms (linear and squared) were statistically significant and included in all matched analyses (except the initial descriptive analysis by minor sector of longest duration).

Table D.70 DDT exposure and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Park et al., 2014 ⁵⁴⁹	35 studies	8,160 cases 9,280 controls	DDT/DDE	Breast cancer	OR=1.03 (0.95–1.12); l²=40.9%, p(heter)=0.006	Random effects model Adjustments: NR
Studies published to 2012	16 hospital–based case–control	Populations details:				No publication bias (p=0.145)
USA, Canada, Europe, Asia & South America	studies 11 population– based case–control studies 10 nested case– control studies	NR				Limitations: Delay time between exposure and diagnosis
						Age of exposure
						Effect of susceptible population
						Combined exposure with other potential carcinogens
Ingber et al., 2013551	35 case–control	14–643 cases	DDE	Breast cancer		Random effects models
Studies published to 2012	11 nested case- control studies 38 DDE & 18 DDT	11–477 controls	Lowest level in blood	evel in	OR=1.00 (referent)	Adjustments: Studies stratified by study design, control group, lipid adjustment and by sample
			Highest level in blood		OR=1.04 (0.94–1.15); p=NS; l²=31.72%, p(heter)=0.020	
Belgium, Canada, Denmark, Eavot	ORs		DDT			— type
India, Italy, Japan, Mexico, Poland, Slovakia, Spain, Sweden, USA & Vietnam			Lowest level in blood Highest level in blood	OR= 1.00 (referent)	No publication bias (p>0.05)	
					OR=1.02 (0.92-1.13); I ² =64.49%, p(heter)=0.384	Chemical blood burden range defining lowest and highest level group different across the studies
						Not many studies controlled for age at menarche
Note: Risk estimates are presented with 95% confidence intervals. Abbreviations: BMI, body mass index; DDE, dichlorodiphenyldichloroethylene; DDT, dichlorodiphenyltrichloroethane; HT, hormone therapy; NR, not reported; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; USA, United States of America.

Table D.71 Deodorant/antiperspirant and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Pooled analyses						
Allam, 2016565	2 case-control studies	737 cases	Use of antiperspirants	Breast cancer	OR=0.40 (0.35-0.46)	Fixed effects model
Studies published		729 controls				Adjustments: NR
1700 2010						Publication bias: NR
Iraq & USA						Limitations: Lack of quality in the primary data
						Insufficient number of cases
						Possible biases in the retrospective case–control studies
						In Iraq study, controls derived from an oncological department
Meta-analyses						
Hardefeldt et al., 2012 ⁵⁶⁵	2 case-control studies	Study sample: NR	Regular antiperspirant/	Breast cancer	OR=0.81 (0.51-1.28)	Random effects model
Studies published			deodorant use			Adjustments: NR
1950–2012						Publication bias: NR
Iraq & USA						Limitations: NR
Case-controls						
Linhart et al.,	Age-matched	209 cases	Self-reported history	Breast cancer		Conditional logistic regression
2017566	case-control study	209 controls without	of use of underarm			model
Austria	Recruitment dates:	malignant breast	when they were < 30			Adjustments†
	2010 2010		, Never		OR=1.00 (referent)	Limitations:

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Age at baseline:		1–4 times/month		OR=0.50 (0.20-1.26)	Possible recall bias
	20–85 y		2–6 times/week		OR=0.53 (0.23-1.25)	
			Daily		OR=1.03 (0.51-2.07)	Self-reporting information may be incomplete, inaccurate &
			Several times/day		OR=3.88 (1.03–14.66)	differ between cases &
			UCP use during past 5 yearst	-		 — controls The mix of incident and prevalent cases in the study may be source of bias
			Never		OR=1.00 (referent)	
			1–4 times/month		OR=1.41 (0.49-4.04)	
			2–6 times/week		OR=0.59 (0.25-1.40)	
			Daily		OR=1.22 (0.56-2.66)	
			Several times/day		OR=3.16 (0.90–11.15)	

Abbreviations: NR, not reported; OR, odds ratio; UCP, underarm cosmetic product; USA, United States of America; y, year/s.

†Adjusted for age at interview, age at menarche, parity, age at first live birth, menopausal status, age at menopause, menopausal hormone therapy drug therapy, history of breast cancer, history of benign breast disease, family history of other cancer, body mass index, alcohol consumption in multivariable conditional logistic regression analysis.

‡UCP use during last 5 years before breast cancer diagnosis in cases/during last 5 years before interview in controls.

Table D.72 Dioxin and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
						Random effects model
Xu et al., 2016 ⁵⁷⁶						Individual studies adjusted for a range of factors
Studies published to 2015	to 3 cohort studies 3,768 cases External exposure to TCDD Breast cancer p(P Number of controls: NR	3,768 cases	External exposure to TCDD	Breast cancer	RR=0.99 (0.93–1.06); ¹² =9.30%,	No evidence of publication bias: Egger's p=0.245
France, international cohort & Italy		p(neter)=0.356	Limitations: Background uncontaminated levels were lacking and could not be included in analysis			
						Different lag times in one study
Cohort studies						
	E3N cohort Study period:		Dietary dioxin exposure (pg/kg body weight/day)			Cox proportional hazard model†
	1993–2008		<0.98		HR=1 (referent)	Limitations:
	Prospective		0.98–1.23		HR=0.94 (0.86-1.04)	Dietary questionnaire could be
Danjou et al.,	Tospective		1.23–1.52		HR=0.93 (0.83-1.03)	influenced by biased recordings
2015581	Mean age at enrolment:	63,830 women		Breast cancer		No contamination data for
France	53.5 (<0.98 pg/kg dietary dioxin), 53.0 (0.98–1.23), 52.5	3,465 cases			HR=0.96 (0.85–1.09); p-trend=0.9405	some food items on the questionnaire
	(1.23–1.52), 51.9 (≥1.52)		≥1.52			Occupational/ environmental exposure may affect result
	Median follow–up: 14.9 y					

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	(888,505 person-y)					
	SWHS cohort					Cox proportional hazard model
Warner et al., 2011 ⁷⁰⁸	1976–2009	888 women				Adjustments: Parity and family history of breast cancer in a first-degree
Italy	Retrospective study	33 cases	Environmental TCDD (10–fold increase in	Breast cancer	HR=1.44 (0.89–2.33); p=0.13	relative
	Women aged 0–40 y at explosion		serum)			Limitations: Small number of cancer cases
	Follow–up: 32 y					
Warner et al.,	SWHS cohort					Cox proportional hazard model
2002577	1996–1998	981 women				Adjustments: Single covariates, including
Italy	Retrospective	15 cases	Environmental TCDD (10–fold increase in	Breast cancer	HR=2.1 (1.0-4.6); p=0.05	parity
	Women aged 0–40 y at explosion		serum)			Limitations: Small number of cancer cases
	Follow–up: 20 y					
Case-control studies						
Viel et al., 2008 ⁵⁷⁹	Population-based case-control	434 cases	Predicted level air concentrations			Conditional logistic regression
France	1996–2002	2,170 controls	Women aged 20–59 y	Breast cancer		Adjustments: NR
			Very low		OR=1 (referent)	Limitations:

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Women aged ≥20 y		Low		OR=1.06 (0.72-1.56)	Time lag in sampling for some
			Intermediate		OR=1.25 (0.82-1.89)	matched sets
			High		OR=0.88 (0.43-1.79)	Chance of misclassification
			Women aged ≥60 y	-		
			Very low		OR=1 (referent)	
			Low		OR=0.90 (0.63-1.29)	
			Intermediate		OR=0.96 (0.66–1.41)	
			High		OR=0.31 (0.08-0.89)	
	Hospital-based case-control		Adipose levels of PCDD	Breast cancer		
			TEQ (pg/g)			
	Recruitment		≤14.0		OR=1 (referent)	Unconditional logistic regression
	mid–1990s		14.1–20.9		OR=0.72 (0.28–1.88)	Adiustments:
Reynolds et al.,		131 women				Age and ethnicity
2005578	Women aged:	79 cases				
ASI	<40 y: 5 cases, 10 controls	52 controls				Limitations:
0071	40–49 y: 29 cases,		>21.0		OR=0.73 (0.27-1.95);	Over-matching
	27 controls 50–59 y: 27 cases,		-21.0		p-trend=0.99	Measurement of dioxin concentrations
	11 controls ≥60 y: 18 cases,					
	4 controls					
	Michigan		Soil dioxin	Proactognoor		Unconditional logistic regression
Dai et al., 2008 ⁵⁸⁰	Department of	4,604 female breast	codes (ppt TEQ)	pleasi cancel		A divistra o stav
	register	cancer cases	48883		OR=1 (referent)	Adjustments:
USA	~		48415		OR=1.28 (-0.11-0.60)	
	Retrospective		48457		OR=1.13 (-0.25-0.50)	Limitations:
			48601		OR=1.25 (-0.08-0.52)	Uncertainties into health

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	1985–2002		4860	02	OR=1.39 (0.03-0.64)	outcomes
			4860	03	OR=1.34 (-0.01-0.58)	
			4860)4	OR=1.34 (-0.04-0.63)	Zip code residence at
			486	1	OR=1.22 (-0.19-0.59)	diagnosis is indeequate to
			486	6	OR=1.01(-0.37-0.39)	cancer location
			486	8	OR=1.35 (-0.10-0.69)	
			4862	23	OR=1.15 (-0.22-0.49)	Data sets lacked residential
			4862	26	OR=1.13 (-0.28-0.52)	history information
			4864	0	OR=1.86 (0.32-0.92)	
			4864	2	OR=0.63 (-0.80-0.14)	Unable to dajust for all
			4865	50	OR=1.20 (-0.19-0.55)	comounding valuables
			4865	5	OR=1.26 (-0.15-0.61)	
			4865	57	OR=1.35 (-0.06-0.66)	
			4870	06	OR=1.2 (-0.12-0.47)	
			4870	8	OR=1.25 (-0.08-0.53)	
			4873	32	OR=1.22 (-0.13-0.53)	
			4873	34	OR=1.3 (-0.09-0.60)	
			4888	30	OR=1.88 (0.27-0.98)	

Abbreviations: E3N, Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l'Education Nationale; ER, oestrogen receptor; HR, hazard ratio; NR, not reported; OR, odds ratio; p, p-value; pg/g, picograms per gram; pg/kg, picograms per kilogram; p(heter), p-value for the measure of heterogeneity; PCDD, polychlorinated dibenzo-p-dioxin; ppt, parts per trillion; PR, progesterone receptor; p-trend, p-value for trend; RR, relative risk or risk estimate; SWHS, Seveso Women's Health Study; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; p-dioxin; TEQ, toxic equivalents; USA, United States of America; y, year/s.

†Age, height, body mass index, energy intake, education, physical activity, smoking status, menopausal status combined with use of menopausal hormone treatment, alcohol intake, age at menarche, use of oral contraceptives, use of progestin, age at menopause, age at first full term pregnancy and number of live births, breastfeeding, family history of breast cancer, history of personal benign breast disease and mammography.

Table D.73 Ethylene oxide and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Cohort studies						
Mikoczy et al., 2011 ⁵⁸⁸ Sweden	Swedish sterilant workers cohort Cohort dates: 1972–2006	Workers employed for at least 1 year	EtO exposure compared with general public			External (SIR) calculated as a normal variable Internal (IRR) calculated with Poisson regression
	Retrospective study		Adjustments:			
	Duration of follow– up: 58,220 person–y	2,171 participants	No induction	Breast cancer	SIR=0.81 (0.58-1.09)	age and calendar period
		1,309 females) 41 cases				Limitations: Information about possible confounding variables unavailable
	Duration of follow– up: 27,415 person–y	2,046 participants (males and	≥15 y induction latency period	-	SIR=0.86 (0.59-1.20)	
		females) 33 cases		Shift work occurred in the cohort		
	Duration of follow-	615 participants	0–0.13 ppm–y	Breast cancer	IRR=1.00	
	up: 15,763 person-y Average age at	(temales only)		Incidence		
	end of follow–up: 52.4 y	10 cases				
	Duration of follow– up: 8,245 person–y	287 participants (females only)	0.14–0.21 ppm–y	-	IRR=2.76 (1.20-6.33)	
	end of follow-up: 58.8 y	14 cases				
	Duration of follow– up: 8,874 person–y Average age at	295 participants (females only)	≥0.22 ppm–y	-	IRR=3.55 (1.58–7.93)	
	end of follow–up: 60.6 y	17 cases				

Note: Risk estimates are presented with 95% confidence intervals. Abbreviations: EtO; ethylene oxide; IRR, incidence rate ratio; ppm–y, parts per million years; SIR, standardised incidence rate; y, year/s.

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Cohort studies						
		14 NPCSs	Land contamination (PCBs, dioxins, heavy metals and solvents)			
			Geographical area			
		227 cases	Basso Bacino Fiume Chienti		SIR=117 (104-130)	Model: NR†
	SENTIERI project	1,187 cases	Brescia Caffaro		SIR=125 (120-132)	Adjustments:
	CONOFF	403 cases	Fidenza		SIR=102 (94–111)	Age, gender, and
Co Benedetti et al., 199	Cohort dates: 1996–2005	1,097 cases	Litorale Domozio Flegreo & Agro Aversano		SIR=103 (98–108)	socioeconomic deprivation index
Italy	Exploratory ecological study	249 cases	Laguna Grado Marano	Breast cancer	SIR=95 (85-106)	Limitations: Could not adjust for
nony		472 cases	Laghi Mantova		SIR=113 (105-122)	confounding factors
	Age and follow-up:	80 cases	Milazzo		SIR=108 (89-130)	
	NR	966 cases	Porto Torres		SIR=125 (119-132)	Difficult to hypothesis on
		712 cases	Priolo		SIR=111 (104–118)	that have determined the
		702 cases	Sassuolo Scandiano		SIR=90 (85–96)	excesses of cases in some
		497 cases	Taranto		SIR=145 (134–156)	NPCs
		902 cases	Terni Papigno		SIR=114 (107-120)	
		876 cases	Trento Nord		SIR=98 (92–103)	
		3,045 cases	Venezia Porto Marghera		SIR=110 (107-114)	
Pirastu et al., 2013589	SENTIERI project	Taranto NPCSs		Breast cancer		Model: NR†
Italy	cohort Cohort dates:	317 cases	Environmental contaminants in TA– NPCS vs remainder of		SIR=1.24 (1.13-1.36)	Adjustments: NR
	2006–2007		Taranto province		Limitations: Assumption that all residents in	
	Retrospective study					the area experience the same

Table D.74 Land contamination and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Ago and follow, up:					exposures
	NR					Ecological design
						Use of mortality data at municipal level for a short period of time
		Total population: approximately 156,000 (males and females)	Environmental contamination			
	MDCH	3,768 cases				
	Cohort dates: 1989–2002 Ethnicities: Caucasian (83.5%), African–American	By Michigan state zip codes	Breast cancer		Model: NR Adjustments:	
Guajarao & Oyana, 2009 ⁵⁹¹	Retrospective study	(10.4%), Hispanic (4.8%), Asian (0.8%) & Native American		Diedsi Cancel		Age using 2000 USA census data
USA	Majority of cases	(0.5%)				Limitations: NR
	over 45 y	2,861 females 52 cases	48883		OR=1 (referent)	
	No follow–up	3,827 females 92 cases	48415		OR=1.33 (0.0944–1.876)	
		3,266 females 69 cases	48457		OR=1.17 (0.811–1.677)	
		19,205 females 436 cases	48601		OR=1.25 (0.939-1.677)	
		13,344 females 324 cases	48602		OR=1.34 (1.000-1.807)	
		17,399 females 516 cases	48603		OR=1.65 (1.238-2.202)‡	
		4,996 females	48604		OR=1.42 (1.026-1.967)‡	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		128 cases				
		2,375 females	48611		OR=1.21 (0.820-1.783)	
		52 cases		_		-
		3,072 females	48616	5	OR=1.11 (0.767–1.614)	
		62 cases			, , , , , , , , , , , , , , , , , , ,	
		2,074 females	48618		OR=1.55 (1.064-2.270)‡	
		58 cases				
		4,409 females	48623	OR=1.09 (OR=1.09 (0.769–1.538)	
		87 cases				
		2,324 females	48626		OR=1.07 (0.713-1.596)	
		45 Cases				
		13,339 females	48640		OR=1.76 (1.316–2.355)‡	
		421 Cases				
		12,610 females	48642		OR=0.77 (0.566–1.056)	
		2 042 formalis				
			48650		OR=1.28 (0.893-1.841)	
		2 651 females				
		62 cases	48655		OR=1.29 (0.891–1.877)	
		3 222 females				
		84 cases	48657		OR=1.45 (1.019–2.051)‡	
		17.269 females				
		407 cases	48706		OR=1.3 (0.974–1.745)	
		11,973 females				
		285 cases	48708		OR=1.32 (0.977–1.775)	
		5,201 females				
		143 cases	48732		OR=1.53 (1.108–2.105)‡	
		3,265 females	1070 /			
		110 cases	48/34		UK=1.88 (1.349−2.63U)‡	
		0.504 formalian			OR=1.85 (1.307-2.625)‡	
			48880			
		00 CUSES				

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			TCDD soil levels Zone A (high			
		271 formation	exposure) vs non-			
			contaminated zone			
		3/1 females	Overall	_	RR=1.43 (0.71-2.87)	
		o Cuses	Time since accident			Poisson regression model
			0–4 y	_	N/A	Adjustments:
	Seveso cohort		5–9 y		RR=0.81 (0.11-5.74)	Gender, age category and
	Cohort dates: 1977–1996	2,350 females 30 cases	10–14 y		RR=1.42 (0.35-5.68)	period (five-year classes)
			15+ y		RR=2.57 (1.07-6.20)	
Pesatori et al.,	Prospective study		Zone B (medium exposure) vs non–			Low number of cases
2009 ⁵⁹²	Date of		contaminated zone	Breast cancer		Exposure categorisation based
	contamination: 10 July 1976 Age at enrolment:				RR=0.85 (0.59-1.22)	on environmental
Italy						contamination data (TCDD soil
			0–4 y		PP = 0.70 (0.25 - 1.37)	measurements)
	<75 y		J-7 y		RR = 0.77 (0.33 = 1.76) RP = 1.09 (0.58, 2.04)	Official residence of the
			10-14 y		RR=0.78 (0.42-1.46)	subjects at the time of the
	Follow–up:		Zone R (low	-	KK-0.70 (0.42 1.40)	accident does not coincide
	continual		exposure) vs non-			with presence at time of
			contaminated zone			misclassification of exposure
			Overall		RR=1.00 (0.88-1.15)	
		15,928 females	Time since accident			
		249 cases	0–4 y		RR=1.10 (0.81-1.49)	
			5–9 y		RR=1.07 (0.81-1.41)	
			10–14 y		RR=0.87 (0.66-1.15)	
			15+ y		RR=1.01 (0.81-1.27)	
Dai et al., 2008 ⁵⁸⁰	MDCH	378,831 women	Soil dioxin contamination	Breast cancer		Model: NR
	Cohort dates:		ZIP code			

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
USA	1985-2002	4,602 cases	4888	3	OR=1 (referent)	Adjustments:
	Retrospective study		4841	5	OR=1.28 (-0.11-0.60); p=0.1699	Age at a significance level of
			4845	7	OR=1.13 (-0.25-0.50); p=0.5163	p≤0.05
	Age at enrolment:		48601 OR=1.25 (–0.08–0.52); p=0.1526	Limitations:		
	1J-7J+ y		4860	2	OR=1.39 (0.03-0.64); p=0.0309	from background sites/7IP
	Follow-up: NR		4860	3	OR=1.34 (-0.01-0.58); p=0.0579	codes farther away from
			4860-	4	OR=1.34 (-0.04-0.63); p=0.0877	Midland ZIP code of residence at diagnosis not reflective of location where cancer developed
			4861	1	OR=1.22 (-0.19-0.59); p=0.3160	
			4861	6	OR=1.01 (-0.37-0.39); p=0.9657	
			48618	3	OR=1.35 (-0.10-0.69); p=0.1407	
			4862	3	OR=1.15 (-0.22-0.49); p=0.4546	
			4862	6	OR=1.13 (-0.28-0.52); p=0.5451	
			4864)	OR=1.86 (0.32-0.92); p<0.0001	Lack of residential history
			4864	2	OR=0.63 (-0.800.14); p=0.0047	information
			4865)	OR=1.2 (-0.19-0.55); p=0.3430	
			4865	5	OR=1.26 (-0.15-0.61); p=0.2408	Not all contounding factors
			4865	7	OR=1.35 (-0.06-0.66); p=0.0982	
			4870	6	OR=1.2 (-0.12-0.47); p=0.2509	
			48708	3	OR=1.25 (-0.08-0.53); p=0.1539	
			4873	2	OR=1.22 (-0.13-0.53); p=0.2356	
			4873	4	OR=1.3 (-0.09-0.60); p=0.1438	
			48880)	OR=1.88 (0.27-0.98); p=0.0006	_

Abbreviations: MDCH, Michigan Department of Community Health; NPCS, National Priority Contaminated site; N/A, not available; NR, not reported; OR, odds ratio; p, p-value; PCB, polychlorinated biphenyl; RR, relative risk or risk estimate; SENTIERI, Italian Epidemiological Study of Residents in National Contaminated Sites; SIR, standardised incidence ratio; TA-NPCS, Taranto province excluding NPCS municipalities; TCDD, 2,3,7,8-Tetrachlorodibenzo-p-dioxin; TEQ, total toxic equivalent; USA, United States of America; y, year/s; ZIP; zone improvement plan.

†90% confidence intervals. ‡Significant positive association.

Table D.75 Outdoor air pollution and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Keramatinia et al., 2016 ⁵⁹⁶	5 studies	Study sample: NR	NO ₂ exposure	Breast cancer	R=1.38 (1.11–1.59)	Fixed effects model
	3 ecological studies					Adjustments:
Studies published to 2014	1 cohort study					 study adjusted for only race, 2 studies adjusted for a range of factors and 2 studies did not
Canada, Denmark,	1 case–control study					adjust
Saudi Arabia, USA					Publication bias: NR	
						Limitations:
						Limited number of studies with adjusted measure of association
						Correlation coefficient presented as measure of
						association; the association may not state any risk at individual level
						literature that could have
Cohort studies						
Hart et al., 2018 ⁵⁹⁵	Nurses' Health	109,239 women	HAPs exposure	Breast cancer		Multivariable proportional
	Study II		1,2-dibromo-3-			hazards models
USA	Cohort dates: 1989–2011	3,321 invasive cases	chloropropane Q4 vs Q1 (referent)		HR=1.12 (0.98–1.29)	Adjustments*
	Prospective study		Diesel engine	_		Limitations:
	· · · · · · · · · · · · · · · · · · ·		Q4 vs Q1 (referent)		HR=1.10 (0.99-1.22)	Substantial exposure errors
	Nurses aged 25-42		Arsenic compounds (Inorganic)	_	<u>.</u>	Inability to examine exposures

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	y at baseline		Q4 vs Q1 (referent)		HR=0.96 (0.86–1.06)	early in the life of participants
			Biphenyl	-		
	Follow–up:		Q4 vs Q1 (referent)		HR=0.99 (0.89-1.09)	Findings may not be
	2,203,192 person-y		Bis(2–Ethylhexyl)	-		generalisable
			Phthalate			
			Q4 vs Q1 (referent)		HR=1.01 (0.92-1.12)	
			Dibutulphthalate	_		
			Q4 vs Q1 (referent)		HR=1.06 (0.96-1.17)	
			Dimethyl formamide			
			Q4 vs Q1 (referent)	_	HR=1.08 (0.97-1.20)	
			4-Nitrophenol			
			Q4 vs Q1 (referent)	_	HR=1.07 (0.96–1.19)	
			Selenium compounds			
			Q4 vs Q1 (referent)	_	HR=0.96 (0.86–1.07)	
			Styrene			
			Q4 vs Q1 (referent)		HR=0.97 (0.89–1.06)	
Shmuel et al.,	Sister study	50,884 women	Combined measure	Breast cancer		Cox regression model
2017598			of traffic pollutants			
	Cohort dates:	2,028 cases	(multiple lanes,			Adjustments:
Puerto Rico & USA	2003-2009		median/barrier and			Age, race/ethnicity, and
		36,383 Non-	trattic during rush			highest level of education
	Prospective study	Hispanic, white	nour on intersecting		HR=1.00 (referent)	attained in the nousehold at
	Moan ago at	2 554 Non Hispania	1000			age 13 y
	hearing: 55 4 y	S,556 NON-Rispanic,	Noither 2+ Japas per			limitations
	Duselli le. 33.0 y	DIUCK	median barrier			Exposure misclassification
	Mean follow-up:	1 933 Hispanic	And light traffic		HR = 1.2 (0.7 = 2.0)	
	63v	1,755 Hispanic	And Mederate		HR = 0.8 (0.5 - 1.2)	Recall bias
	0.0 y	1 062 Other	traffic		HK-0.8 (0.3-1.3)	
			And Hogy traffic		HP = 1.4(1.0, 1.0)	
				Promonongung	HR-1.4 (1.0-1.7)	
			of traffic pollutants	broast cancor		
			(multiple lanes			
			median/barrier and			
			traffic during rush			
			hour on intersecting		HR=1.00 (referent)	
L						

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			road) 100ft + and/or Neither 3+ lanes nor median barrier			
			And light/moderate traffic		HR=1.2 (0.6-2.5)	
			And heavy traffic		HR=1.1 (0.6-2.2)	
			Combined measure of traffic pollutants (multiple lanes, median/barrier and traffic during rush	Postmenopausal breast cancer		
			hour on intersecting road) 100ft + and/or Neither 3+ lanes nor median barrier		HR=1.00 (referent)	
			And light/moderate traffic		HR=0.9 (0.6–1.3)	
			And heavy traffic		HR=1.5 (1.1–2.0)	
			Combined measure of traffic pollutants (multiple lanes, median/barrier and traffic during rush hour on intersecting road) 100ft + and/or Neither 3+ lanes nor median barrier And light/moderate	Invasive ER+	HR=1.00 (referent) HR=1.0 (0.6–1.5)	
			traffic And heavy		HR=1.1 (0.7–1.7)	
			traffic			
			Combined measure of traffic pollutants	Invasive ER–		

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			(multiple lanes, median/barrier and traffic during rush hour on intersecting road) 100ft + and/or Neither 3+ lanes nor		HR=1.00 (referent)	
			median barrier And light/moderate traffic		N/A	
			And heavy traffic		HR=1.3 (0.5-3.3)	
Andersen et al., 2016 ⁵⁹⁷	Danish Nurse cohort	22,877 women	Air pollution PM _{2.5} (3.3 mg/m ³)	Breast cancer	RR=1.00 (0.91–1.09)	Cox proportional hazards regression model
Denmark	1993 or 1999 to 2013	21,732 no cases	NO ₂ (7.4 mg/m ³)		RR=1.00 (0.94–1.07)	Adjustments†
	Prospective study	11,579 premenopausal				Limitations: NR
	Mean age at baseline: 52.9 y	women				
	Duration of follow– up: 16 y	postmenopausal women				
Hart et al., 2016600	Nurses' Health Study II	115,921 women	48 months exposure to PM (per 10µg/m³)	Breast cancer		Multivariable adjusted model
USA	Cohort dates:		PM ₁₀ PM _{2.5-10}		HR=1.00 (0.93–1.07) HR=1.06 (0.96–1.17)	Adjustments‡
	1989 enrolled Data collected: 1993–2011		PM _{2.5} Proximity to A1 roads 0–49m	-	HR=0.90 (0.79-1.03)	Limitations: Information available for adult exposures, which may not be
	Mean age at		50–199m ≥200m		HR=1.11 (0.89–1.40) HR=1.00 (referent)	an important etiological period
	baseline: 25–42 y		48 months exposure to PM (per 10µg/m ³)	Premenopausal breast cancer		Endings in this cohort may not be generalisable to population

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Follow–up: 1993–2011		PM10		HR=1.03 (0.93-1.13)	with more racial/ethnic diversity or a broader range of
	1770 2011		PM _{2.5-10}		HR=1.07 (0.93-1.22)	socioeconomic status
			PM _{2.5}		HR=0.99 (0.83–1.18)	
			Proximity to A1 roads	_		
			0–49m		HR=1.74 (0.72–4.21)	
			50–199m		HR=1.26 (0.94–1.67)	
			≥200m		HR=1.00 (referent)	
			48 months exposure	Postmenopausal		
			to PM (per 10µg/m³)	breast cancer		
			PM10		HR=0.97 (0.86–1.09)	
			PM _{2.5-10}		HR=1.07 (0.92–1.25)	
		PM _{2.5}		HR=0.76 (0.61–0.95)		
		Proximity to A1 roads				
			0–49m		HR=1.48 (0.47–4.62)	
			50–199m		HR=0.97 (0.65–1.45)	
			≥200m		HR=1.00 (referent)	
			48 months exposure	ER+PR+ invasive		
			to PM (per 10µg/m³)	breast cancer		
			PM10		HR=1.05 (0.95–1.15)	
			PM _{2.5-10}		HR=1.13 (0.99–1.29)	
			PM2.5	_	HR=0.95 (0.79–1.14)	
			Proximity to A1 roads			
			0–49m		HR=1.48 (0.55–3.97)	
			50–199m		HR=1.08 (0.79–1.48)	
			≥200m		HR=1.00 (referent)	
			48 months exposure	ER–PR– invasive		
			to PM (per 10µg/m³)	breast cancer		
			PM10		HR=0.97 (0.80–1.18)	
			PM _{2.5-10}		HR=0.96 (0.73–1.26)	
		PM _{2.5}	_	HR=0.97 (0.68–1.40)		
			Proximity to A1 roads			
			0–49m		HR=1.52 (0.89-2.60)	
			50–199m	199m	HR=N/A	
			≥200m		HR=1.00 (referent)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Garcia et al.,	California Teacher	112,378 women		Breast cancer		Cox proportional hazard model
2015601	Study		Acrylamide			
		5,676 cases	Q1		HR=1.00 (referent)	Adjustments:
USA	Conort established:	01.021	Q2		HR=N/A	Models stratified by age and
	1993-1996	ethnicity	Q3		HR=1.02 (0.94–1.10)	adjusted for face
	Prospective cohort	2 894 black	Q4		HR=1.09 (1.02–1.17)	Limitations:
	study	ethnicity	Q5		HR=1.08 (1.01–1.16);	Potential exposure
	,	4,805 Hispanic	A on do nitrilo		p-frend=0.008	- misclassification
	Mean age at	ethnicity	Acryioniinie		HR-1 00 (referent)	
	baseline: 53–57 y	3,907 Asian/Pacific	02		HR = 1.03 (0.95 - 1.12)	Analyses are predicated on
		Islander ethnicity	03		HR = 1.02 (0.94 - 1.11)	the assumption that these
	Follow-up period:	3,265 other or	Q0 Q4		HR = 1.02 (0.94 - 1.11) HR = 1.05 (0.97 - 1.14)	modelled ambient
	1995-2011	mixed emnicity	05		HR = 1.06 (0.97 - 1.14) HR = 1.06 (0.97 - 1.15): p-trend=0.17	
			Benzene			exposure to these compounds
			Ql		HR=1.00 (referent)	
			Q2		HR=1.09 (1.00–1.18)	Indoor inhalation exposures or
			Q3		HR=1.03 (0.95-1.12)	ambient exposures outside of
			Q4		HR=1.03 (0.95-1.12)	the census tract of baseline
			Q5		HR=1.06 (0.98–1.16); p-trend=0.38	residence were not considered
			Benzidine			-
			Q1		HR=1.00 (referent)	
			Q2		HR=N/A	
			Q3		HR=0.98 (0.86–1.12)	
			Q4		HR=0.97 (0.91–1.04)	
			Q5		HR=1.06 (0.99–1.14); p-trend=0.24	
			1,3-Butadiene			-
			Q1		HR=1.00 (referent)	
			Q2		HR=0.98 (0.91–1.07)	
			Q3		HR=1.06 (0.98–1.15)	
			Q4		HR=0.99 (0.91–1.08)	
			Q5		HR=1.02 (0.94–1.11); p-trend=0.56	_
			Carbon tetrachloride	e		
			Ql		HR=1.00 (referent)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			Q2		HR=0.98 (0.90-1.07)	
			Q3		HR=1.04 (0.96–1.13)	
			Q4		HR=1.03 (0.95–1.12)	
			Q5		HR=1.08 (1.00–1.18); p-trend=0.03	
			Chloroprene	-		-
			Q1		HR=1.00 (referent)	
			Q2		HR=N/A	
			Q3		HR=N/A	
			Q4		HR=1.05 (0.96–1.15)	
			Q5		HR=1.07 (1.00–1.14); p-trend=0.04	
			1,4–Dioxane	_		-
			Q1		HR=1.00 (referent)	
			Q2		HR=1.04 (0.96–1.13)	
			Q3		HR=1.05 (0.96–1.14)	
			Q4		HR=1.07 (0.99–1.16)	
			Q5		HR=1.02 (0.94–1.11); p-trend=0.23	_
			Ethyl carbamate			
			Q1		HR=1.00 (referent)	
			Q2		HR=N/A	
			Q3		HR=N/A	
			Q4		HR=0.97 (0.90–1.05)	
			Q5		HR=1.07 (1.00–1.14); p-trend=0.22	_
			Ethylene dibromide			
			Q1		HR=1.00 (referent)	
			Q2		HR=1.05 (0.97–1.14)	
			Q3		HR=1.07 (0.99–1.16)	
			Q4		HR=1.03 (0.95–1.12)	
			Q5		HR=1.01 (0.93–1.10); p-trend=0.88	_
			Ethylene dichloride			
			Q1		HR=1.00 (referent)	
			Q2		HR=1.04 (0.95–1.12)	
			Q3		HR=0.94 (0.86–1.02)	
			Q4		HR=1.04 (0.96–1.13)	
			Q5		HR=1.05 (0.97–1.14); p-trend=0.25	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			Ethylene oxide			
			Q1		HR=1.00 (referent)	
			Q2		HR=0.93 (0.85–1.00)	
			Q3		HR=0.92 (0.85–1.00)	
			Q4		HR=0.97 (0.89–1.05)	
			Q5		HR=1.00 (0.92–1.08); p-trend=0.70	
			Ethylidene dichloride			
			Q1		HR=1.00 (referent)	
			Q2		HR=1.01 (0.93–1.10)	
			Q3		HR=1.09 (1.00–1.18)	
			Q4		HR=1.08 (0.99–1.17)	
			Q5	_	HR=1.02 (0.94–1.11); p-trend=0.19	
			Hydrazine			
			Q1		HR=1.00 (referent)	
			Q2		HR=N/A	
			Q3		HR=0.92 (0.86–0.99)	
			Q4		HR=0.98 (0.91–1.06)	
			Q5		HR=1.04 (0.97–1.12); p-trend=0.36	
			Methylene chloride			
			Q1		HR=1.00 (referent)	
			Q2		HR=0.97 (0.89–1.05)	
			Q3		HR=1.06 (0.98–1.15)	
			Q4		HR=1.01 (0.93–1.10)	
			Q5		HR=1.04 (0.96–1.13); p-trend=0.21	
			4,4'-Methylene bis(2-			
			chloroaniline)			
			QI		HR=1.00 (referent)	
			Q2		HR=N/A	
			Q3		HK=N/A	
			Q4		HR=1.02 (0.92–1.13)	
			Q5		HK=1.0/ (1.01–1.15); p-trend=0.03	
			Nitrobenzene			
			Q1		HR=1.00 (referent)	
			Q2		HR=N/A	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			Q3		HR=N/A	
			Q4		HR=1.04 (0.97-1.12)	
			Q5		HR=1.03 (0.96–1.10); p-trend=0.29	
			Propylene dichloride	-		-
			Q1		HR=1.00 (referent)	
			Q2		HR=1.00 (0.92-1.08)	
			Q3		HR=0.92 (0.85–1.01)	
			Q4		HR=1.01 (0.93-1.09)	
			Q5		HR=1.04 (0.96–1.13); p-trend=0.20	
			Propylene oxide	-		-
			Q1		HR=1.00 (referent)	
			Q2		HR=1.05 (0.97–1.15)	
			Q3		HR=1.11 (1.02–1.20)§	
			Q4		HR=1.05 (0.97–1.14)	
			Q5		HR=1.01 (0.93–1.10); p-trend=0.18	
			Styrene	-		-
			Q1		HR=1.00 (referent)	
			Q2		HR=1.04 (0.96–1.13)	
			Q3		HR=1.02 (0.94–1.11)	
			Q4		HR=1.05 (0.96–1.14)	
			Q5	_	HR=1.04 (0.96–1.13) p-trend=0.41	
			2,4–Toluene	-		_
			diisocyanate		HR=1.00 (referent)	
			Q1			
			Q2		HR=1.05 (0.96–1.14)	
			Q3		HR=1.04 (0.96–1.13)	
			Q4		HR=1.03 (0.95–1.12)	
			Q5		HR=1.07 (0.98–1.16); p-trend=0.17	
			o-Toluidine	-		-
			Q1		HR=1.00 (referent)	
			Q2		HR=N/A	
			Q3		HR=N/A	
			Q4		HR=1.10 (1.01-1.21)	
			Q5		HR=1.03 (0.97–1.10) p-trend=0.10	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			Vinyl chloride Q1		HR=1.00 (referent)	
			Q2		HR=1.03 (0.94–1.12)	
			Q3		HR=1.12 (1.03–1.21)§	
			Q4		HR=1.07 (0.99–1.17)	
			Q5		HR=1.06 (0.98–1.16); p-trend=0.06	
			Vinylidene chloride	_		-
			Q1		HR=1.00 (referent)	
			Q2		HR=0.97 (0.90-1.06)	
			Q3		HR=0.98 (0.90–1.07)	
			Q4		HR=1.04 (0.96-1.13)	
			Q5		HR=1.03 (0.94–1.11); p-trend=0.27	
			Summary variable	_		-
			Q1		HR=1.00 (referent)	
			Q2		HR=0.98 (0.90-1.07)	
			Q3		HR=0.97 (0.89-1.05)	
			Q4		HR=1.02 (0.94–1.10)	
			Q5		HR=1.05 (0.96–1.14); p-trend=0.11	
Reding et al.,	Sister study	1,749 cases	Ambient air pollution	Breast cancer	HR=1.03 (0.96-1.11)	Cox proportional hazards model
2015599			PM _{2.5}	ER+PR+	RR=1.00 (0.91-1.09)	
	Cohort dates:	47,591 controls		ER-PR-	RR=0.99 (0.81–1.20); p=0.99	Adjustments:
USA	2003–2009		PM10	Breast cancer	HR=0.99 (0.98-1.00)	Models adjusted for age at
		947 ER+PR+ breast		ER+PR+	RR=1.02 (0.96-1.09)	diagnosis, race, educational
	Prospective cohort	cancer		ER-PR-	RR=0.96 (0.83–1.10); p=0.69	attainment, smoking status,
	siudy	223 EP PP broast	NO ₂	Breast cancer	HR=1.02 (0.97–1.07)	menopausal normone inerapy
	Age at enrolment:	cancer		ER+PR+	RR=1.10 (1.02–1.19)	Limitations:
	56.9 v cases and	Curren		ER–PR–	RR=0.92 (0.77–1.09); p=0.04	Air pollution exposure earlier in
	55.1 v controls	40,750 non-				life could impact breast
		Hispanic white				cancer risk
	Mean follow-up:	ethnicity				
	4.95 y	4,318 non-Hispanic				
		black ethnicity				
		2,433 Hispanic				
		ethnicity				
		1,236 other				

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		ethnicity 7 unknown ethncity				

Abbreviations: ER, oestrogen receptor; HR, hazard ratio; HAPs, hazardous air pollutants; N/A, not available; NO, nitrogen oxide; NR, not reported; p, p-value; p(trend), p-value for trend; PM, particulate matter; PR, progesterone receptor; Q, quintile; RR, relative risk or risk estimate; USA, United States of America; y, year/s.

*All models adjusted for age, calendar period, race, family history of breast cancer, history of aspiration or biopsy confirmed benign breast disease, age at menarche, parity and age at first birth, menopausal status and postmenopausal hormone use, oral contraception use, recent mammogram, height, body mass index (BMI) at age 18, difference between current BMI and BMI at age 18, smoking status, physical activity, overall diet quality (including alcohol consumption), alcohol consumption at age 15 and age 18, shift work, individual-level socioeconomic status (marital status, living arrangements, household income), area-level socioeconomic status (census tract median home value and median income) and census region of residence.

†Also adjusted for parity, age at first birth, age at menarche, hormone therapy use, oral contraceptive use, and menopausal status.

‡HR adjusted for age, race calendar period, history of benign breast disease, family history, age at menarche, parity, age at first birth, height, BMI at age 18, current BMI, alcohol consumption at ages 15–17 and 18–22, overall diet quality (AHEI–2010), oral contraceptive use, menopausal status and hormone use, smoking status, physical activity, individual level socioeconomic status (marital status, living arrangements, household income) and area level socioeconomic status (census tract level median income and median home value) and census region of residence.

§Remains statistically significant (p < 0.05) after adjustment for multiple comparisons.

Table D.76 Polychlorinated biphenyls risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Leng et al., 2016 ⁵⁹⁹	16 studies	3,438 cases	PCB PCB 187	Breast cancer	OR=1.18 (1.01–1.39); I ² =26.8%,	Random effects model (p<0.10)/ fixed effects model (p>0.10)
Studies published to 2014	5 nested case– control studies		PCB 118		p=0.224 OR=1.32 (0.98–1.78); I²=74.5%	Adjustments: Age
Delaise Carrenda	11		PCB 138		OR=1.08 (0.99-1.17); I ² =27.8%	No publication bias
Belgium, Canada, Denmark, Japan	I I Case-Control		PCB 156		OR=1.19 (0.85–1.67); I2=65.3%	Limitations:
Mexico, Spain, Sweden & USA	3100163	dies	PCB 170 PCB 99		OR=1.28 (0.89–1.86); l ² =61.6% OR=1.36 (1.02–1.80); l ² =0.0%, p=0.609 OR=1.56 (1.25–1.95); l ² =0.0%, p=0.647 OR=1.04 (0.81–1.34); l ² =70.3%	Inappropriate definition of cases or controls
			PCB 183			Bias with selection of study population
			PCB 153			Potential confounders
			PCB 180		OR=1.02 (0.81–1.29); I ² =56.6%	Dose-response effect not properly evaluated
						Interaction of individual chemicals to mixtures or to similar chemicals
Zhang et al., 2015612	25 case–control	12,866 participants	PCB exposure			Random effects model (I2<25%)/
	studies		Total		pOR=1.09 (0.97–1.22); I ² =55.4%,	fixed effects model (I ² of 25-50%)
Studies published		6,088 cases			p(heter)<0.0001	Adjustments: NR
		6,778 controls	Potentially oestrogenic PCBs	-	pOR=1.10 (0.97–1.24); I²=0.0%, p(heter)=0.506	No publication bias (p>0.05)
Belgium, Canada, China, Denmark, Japan, Mexico, Norway & USA			Potentially ant- oestrogenic and immunotoxic, dioxin- like PCBs		pOR=1.23 (1.08–1.40); I ² =48.0%, p(heter)=0.002	Limitations: One of the included studies is an unpublished thesis
			Phenobarbital, CYP1A & CYP2B	_	pOR=1.25 (1.09–1.43); I²=40.2%, p(heter)=0.023	Six studies did not adjust lipid as a main confounder
			inducers			The definite dose for PCB exposure differed slightly across

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
						the studies
						Exposure to mixtures of PCBs and other chemicals with oestrogenic properties and other organochlorine pesticides may also affect breast cancer risk
Cohort studies						
Donat–Vargas et al., 2016615	Swedish Mammography Cohort	36,777 participants 1,593 cases	Dietary PCB exposure <139 ng/d	Breast cancer	HR=1.00 (referent)	Cox proportional hazard regression models†
Sweden Cohort dates: >19 1997-2012 Prospective study	139-195 ng/d >195 ng/d		HR=0.98 (0.83–1.17) HR=0.96 (0.75–1.24); p-trend=0.77	Limitations: Measurement error and mindemification of RCR		
	Prospective study					exposure
	Mean age at enrolment per median PCB exposure (ng/d): 62 y for <139 60 y for 139–193 63 y for >193					Limited number of cases in some stratified analyses
	Duration of follow–up: 14 y					

Abbreviations: HR, hazard ratio; OR, odds ratio; ng/d, nanograms per day; NR, not reported; pOR, pooled odds ratios; p, p-value; p(heter), p-value for the measure of heterogeneity; p-trend, p-value for the measure of trend; PCB, polychlorinated biphenyl; USA, United States of America; y, year/s.

 \uparrow Adjusted for attained age, postsecondary education, family history of breast cancer, oophorectomy (only for breast and endometrial cancer), history of diabetes, body mass index, weight loss >5 kg within one year, age at menarche \leq 12 years, use of oral contraceptives, parity, age at first birth \geq 30 years, age at menopause \geq 51 years, ever use of postmenopausal hormones, smoking habits, leisure time inactivity, time spent walking or bicycling, alcohol consumption, total energy intake and dietary eicosapentaenoic aciddocosahexaenoic acid intake.

Table D.77 Occupation as a hairdresser and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Takkouche et al., 2009 ⁶¹⁸	12 incidence–only studies	Cohort studies: 6652 cases	Being a hairdresser or related worker	Breast cancer	RR=1.03 (0.98-1.08); p=0.95	Random effects model
						Adjustments:
Studies published	7 cohort studies	Case-control				Individual studies adjusted for
1966-2009		studies:				various factors, with all
	5 hospital &	2,165 cases				adjusting for age & sex
14 countries:	population based	3,582 controls				
Individual countries	case-control					No publication bias
NR	studies					Linsitetienen
						Limitations:
						information systems that may
						present incomplete
Cohort studies						
Ekongg of gl	Sistor study	17.440 participants	Lifetime experience to	Proact cancor		Multivariable Cox proportional
2015620	SISTER STODY	47,640 punicipunis	dvos or inks	DIEUSI CUIICEI		hazards regression model
2010	Population based	1946 cases	Ever use vs pover		HP = 1.2 (1.0, 1.4)	hazaras regression model
Puerto Rico & USA		1,700 Cu3C3			$n_{-1,2}$ (1.0–1.0),	Adjustmentst
	Cohort dates: 2	45 674 non-cases	030	Premenonausal	HP = 1 4 (0.9 - 2.1)	Agosinionis
	003-2009			breast cancer	n = 1.4 (0.7 - 2.1),	Limitations:
	000 2007			Postmenongusal	HR = 1.0 (0.8 - 1.3)	Results might not be
	Prospective cohort			breast cancer	p_trend=0.18	generalisable to women
	study		>1.560 days	Breast cancer	HR=1.2(0.8-1.8)	without family history of breast
			520-<1.560 days		HR = 1.2 (0.8 - 1.8)	cancer
	Age at interview:		130 - 520 days		HR = 1.0 (0.7 - 1.5)	
	60+ y = 14,840 non-		<130 days		HR = 1.1 (0.7 - 1.5)	Self-reported exposure

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	cases & 771 cases		Never used		HR=1.00 (referent);	
	55–59 y = 9,114				p-trend=0.47	Linear exposure-response
	non–cases & 379					model may not have been the
	cases					most appropriate approach
	50–54 y =8,862 non–					for studying chemical
	cases & 351 cases					exposures
	<50 y= 12,858 non-					
	cases & 465 cases					Low prevalence of exposure to
						some agents & the small
	Mean follow-up:					number of breast cancer
	5.2 y					diagnoses in some exposure
						limited the statistical power of
						study
						Findings may have been due
						to chance alone
Pukkala et al.,	NOCCA	1,983 cases	Female hairdresser vs	Breast cancer	SIR=1.06 (1.01-1.10)	Model: NR
2009619			all occupational			
	Population based		categories			Adjustments: NR
Denmark, Finland,						
Iceland, Norway &	Cohort dates:					Limitations:
Sweden	1961-2005					The occupation at one point in
						time may not always
	Retrospective study					correspond to the lifelong
						occupational history of a
	Age at baseline:					person
	30–64					
	Follow–up:					
	1,059,586 person-y					

Abbreviations: HR, hazard ratio; NOCCA, Nordic Occupational Cancer project; NR, not reported; p, p-value; p-trend, p-value for trend; RR, relative risk or risk estimate; SIR, standard incidence ratio; USA, United States of America; y, year/s.

†HRs adjusted for race/ethnicity, education, income, parity and age at first birth.

Table D.78 Personal use hair dyes/relaxers and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Gera et al., 2018 ⁶²³	8 case-control studies	38,037 participants	Hair dyes Never use	Breast cancer	RR=1.00 (referent)	Random effects model (Duval and Tweedie's Trim and Fill procedure)
1980–2017			Ever use		RR=1.19 (1.03–1.37)	
						No severe publication bias
Finland, Iran & USA						Adjustments: NR
						Limitations: Lack of accurate information regarding exposure characteristics
						Heterogeneity among studies
						No uniform adjustment for confounding factors
						Variation between different populations
						Limited combined sample size and
						statistical power
Takkouche et al., 2005 ⁶²²	2 cohort studies	Cohort studies: 665,993 women	Any personal use of hair dye	Breast cancer		Random effects model
Studies published	12 case–control studies	1,135 cases	All studies		RR=1.06 (0.95–1.18); p(heter)<0.001	Adjustments†
1966–2005		Case-control	Permanent dye use		RR=0.98 (0.91–1.07);	Limitations:

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		studies:			p(heter)=0.13	Several case-control studies
Jordan, UK & USA		5,019 cases 8,486 controls	Intensive exposure (>200 lifetime	-	RR=0.99 (0.89–1.11); p(heter)=0.45	use the same comparison group for different outcomes
						Failure to control for potential or unknown confounders
Cohort studies						
Mendelsohn et al.,	Shanghai Women's	70,366 women	Hair dye use	Breast cancer		Cox proportional hazards model
2009624	Health Study cohort	592 cases	Ever vs never		RR=0.93 (0.78-1.09)	
China	End of follow-up:	050	Duration of use	-		Adjustments:
Ching	Dec 2005	42.739 non-user cases	1–2 y	RR=0.90 (0.72-1.12)	Age, eaucation, and smoking duration in pack/years	
		controls	3–4 у		RR=0.87 (0.66-1.13)	
	Prospective study		5–9 y		RR=0.91 (0.65-1.29)	Limitations:
	Age at enrolment: 40–70 y	234 user cases 28,166 user controls	≥10 y		RR=1.00 (0.67-1.50)	Questions about colour or type of hair dye not asked in the baseline questionnaire
	Mean follow–up: 7 y					Possible misclassification of non-users
						Small number of cases
Rosenberg et al.,	Black Women's	48,167 women	Hair straightener use	Breast cancer		Age-stratified Cox regression
2007 ⁶²¹	Health Study		Ever use vs no use		IRR=1.04 (0.78-1.39)	model
USA	Cohort dates:	574 cases	Duration of hair straightener use	-		Adjustments: NR
	1773-2003		No use		IRR=Reference	Limitations: Random misclassification of use tended to dilute associations
	Prospective study		1–4		IRR=1.17 (0.79–1.71)	
			5–9		IRR=1.02 (0.69-1.50)	
	Age at enrolment:		10–14		IRR=0.85 (0.59-1.23)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	21-69 у		15–19		IRR=1.19 (0.85–1.67)	No information on individual
	F - U	- rson-y	≥20	-	IRR=1.03 (0.76-1.39)	bianas
	266,298 person-y		Frequency of hair straightener use (times per y)			
			No use		IRR=Reference	
			1		IRR=1.44 (0.89-2.32)	
			2		IRR=0.98 (0.65-1.46)	
			3–4		IRR=1.03 (0.75-1.40)	
			5–6		IRR=1.06 (0.77-1.46)	
			≥7		IRR=1.04 (0.75-1.44)	

Abbreviations: IRR, incidence rate ratios; NR, not reported; Q, test for heterogeneity among studies; RR, relative risk or risk estimate; UK, United Kingdom; USA, United States of America; y, year/s.

†Studies adjusted for various factors, including: age, marital status, social class, duration of hair dye use, county of residence, smoking, family history of cancer, age at first birth, religion, education, birthplace, race, history of receiving Medicaid, age at menarche, menopause, first birth, family history of breast cancer, parity, weight, income, education, alcohol consumption, history of lactation, fat intake and history of benign breast disease.

Radiation exposure

Table D.79 Electromagnetic field radiation—low frequency and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Zhang et al., 2016631	23 case-control	42 studies in total:	Extremely low EMFs	Breast cancer		Fixed effects model/random
Studies published to	studies	13,259 cases 100,882 controls	All studies		OR=1.07 (1.00–1.15); p=0.06; p(heter)<0.00001	effects model for p(heter)<0.1
2015		Population details:		Premenopausal breast cancer	OR=1.57 (0.95–2.59); p=0.08; p(heter)=0.0002	No publication bias (p>0.05)
Asia, Europe, North America		NR		Postmenopausal broast cancer	OR=1.00 (0.88–1.14); p=0.97;	Adjustments: NR
& Oceania			Device measured studies	Breast cancer	OR=1.05 (0.95–1.16), p=0.39; p(heter)=0.88	Limitations: Cohort studies not included due to differences in methods
				Premenopausal breast cancer	OR=1.23 (1.01–1.49); p=0.04; p(heter)=0.18	Genetic & environmental
				Postmenopausal breast cancer	OR=0.96 (0.81–1.14); p=0.63; p(heter)=0.79	factors were not combined
						Some heterogeneity evident
Zhao et al., 2014 ⁶³²	16 case-control studies	Cases: 7,838 exposed	Extremely low EMFs (0–300 Hz)	Breast cancer	OR=1.10 (1.01–1.20); p=0.04; l²=56%, p(heter)=0.003	Random effects model
Studies published 2000–2007	4 studies	36,902 unexposed		Premenopausal breast cancer	OR=1.25 (1.05–1.49); p=0.01; l ² =0.0%, p(heter)=0.55	Small publication bias
Canada, Norway, Sweden & USA	5 studies	Controls: 9,027 exposed 122,875 unexposed		Menopausal breast cancer	OR=1.04 (0.93–1.18); p=0.48; l²=0.0%, p(heter)=0.62	Adjustments: Race, family history, age of menarche, menopause, & use of oestrogen after menopause
						Limitations: NR
Chen et al., 2013 ⁶³³	23 case–control studies	24,338 cases 60,628 controls	Extremely low EMFs	Breast cancer	OR=1.07 (1.02–1.13); p<0.05; l²=39%, p(heter)=0.03	Quality effects model
Studies published 1990–2010	9 studies	14 studies selected		Premenopausal breast cancer	OR=1.11 (1.00–1.23); p<0.05; l²=22%, p(heter)=0.24	Adjustments: NR

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Canada, Norway,	9 studies	cases from cancer registry		Postmenopausal breast cancer	OR=1.02 (0.95–1.09); p=NS; l²=0.0%, p(heter)=0.60	Small publication bias (funnel
Sweden, Taiwan & USA	7 studies	- Other studies		ER+	OR=1.11 (1.03–1.20); p<0.05; l²=0.0%, p(heter)=0.85	plot)
	7 studies	 selected from hospitals or other cohort studies 		ER-	OR=0.96 (0.84–1.10); p=NS; l²=0.0%, p(heter)=0.54	Limitations: Exposure assessment was limited
		Controls from 19 studies were randomly selected residents				
Chen et al., 2010 ⁶³⁴	15 case–control studies	24,338 cases	Extremely low EMFs (0–300 Hz)	Breast cancer		Random effects model
Studies published 2000–2009		60,628 controls	Overall		OR=0.99 (0.90–1.09); l²=75.8%, p(heter)=0.000	Adjustments: Most studies adjusted for age &
Canada, Norway,	10 studies	Age at enrolment: ≥15 y	Residential exposure		OR=1.02 (0.92-1.12); l ² =39.9%, p(heter)=0.092	menopausal status
Sweden & USA	5 studies	7 studies selected cases from cancer registry & others based on clinical examination Controls were healthy population-based	Occupational exposure		OR=0.93 (0.79–1.10); I ² =86.3, p(heter)=0.000	No publication bias (p=0.026) Limitations: Relying on results and figures presented in publications Information lacking on ER and menopausal status Controls not uniformly defined
		individuals matched for age, ethnicity and years of resident				
Cohort studies						
Koeman et al.,	Netherlands Cohort Study on diet and	62,573 women	Extremely low EMFs (occupational	Postmenopausal		Cox proportional hazards model

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
2014635	cancer		exposure)	breast cancer		
		2,077 cases	Ever exposed			Adjustments†
Netherlands	Prospective cohort		Background		HR=1 (referent)	
		1,379 ductal cases	Low		HR=1.07 (0.94–1.23)	Limitations:
	1986-2003	3/8 IODUIDE COSES	High		HR=1.24 (0.59-2.58)	employed in high-exposed
		of o Ekr Cuses	Cumulative exposure	_		jobs
	Age at enrolment: 55–69	Analyses performed for women with	1 st tertile		HR=1.28 (1.06-1.56)	
	Follow–up: 17.3 y	information on age at menopause only	(>0–6.5 unit–y) 2 nd tertile (>6.5–11 unit–y)		HR=0.92 (0.75-1.12)	
			3 rd tertile (>11–136 unit/y)		HR=1.03 (0.85–1.25); p-trend=0.88	
Li et al., 2013 ⁶³⁶	Nested case– cohort study	267,400 workers	Cumulative magnetic field	Breast cancer		Cox proportional hazards model
China		1,687 incident	exposure (µT–years)			Adjustments:
	Shanghai Textile Industry Bureau	cases diagnosed 1989–2000	Entire employment period			Age at baseline, number of live birth, age at first live birth,
			>0–2.70 µT-years		HR=1.00 (referent)	lifetime duration of
	Retrospective study	4,702 non-cases	>2.70–4.13 µT– vegrs		HR=1.13 (0.97-1.33)	breastfeeding & alcohol consumption
	Recruitment dates: 1989–1991	Active & retired female employees that are permanent	>4.13–6.24 µT– years		HR=1.01 (0.86-1.18)	Limitations: Exposure misclassification
	Age at entry into follow–up: 30–66 y	residents of Shanghai	>6.24 µT-years		HR=1.03 (0.87–1.21); p-trend=0.858	
	Follow–up: 5.2–10.9 y					

Abbreviations: EMF, electromagnetic field; ER, oestrogen receptor; HR, hazard ratio; Hz, hertz; NR, not reported; OR, odds ratio; p, p–value; p(heter), p–value for the measure of heterogeneity; p–trend, p–value for trend; USA, United States of America; µT, micro–Tesla; y, year/s.

†The following covariates were considered for all cancer outcomes: smoking (current vs former and ex-smokers, average number of cigarettes smoked daily, number of years smoking cigarettes), passive smoking by the partner (current, former, or non-smoker), level of education as an indicator of social economic status (primary, lower, secondary and medium, and higher vocational), body mass index (in kg/m²), alcohol consumption (g/day), vegetable, legume, fruit, fish and seafood, and meat consumption (each in g/day), and total energy intake (kcal/day). Breast cancer HRs corrected for alcohol intake, body mass index, fruit intake, age at menarche, age at menopause, parity, age at first child, number of children, benign breast growth, and family history of breast cancer.

|--|

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Cohort studies						
Hallberg, 2016642	Cohort dates: NR	Number of	Number of main	Breast cancer		Model: NR
23 European countries	Prospective / retrospective study:		modulation FM transmitters			Adjustments: NR
	NR Age at enrolment:		FM transmitter density		R ² =0.21; p=0.03	Limitations: NR
	NR		Locally covering FM transmitters in		R ² =0.64; p<0.001	
	Follow–up: NR		Sweden			
Case-control studies	6					
Davis et al., 2002 ⁶⁴³	Population-based	1,606 women	Night time bedroom	Breast cancer	OR=1.04 (0.97-1.12)	Multivariable adjusted model
USA	Study duration:	813 cases	broadband magnetic field (continuous)	Premenopausal breast cancer	OR=1.00 (0.90-1.10)	Adjustments†
		793 controls	(00111110000)	Postmenopausal breast cancer	OR=1.00 (0.90-1.10)	Limitations:
	Age at recruitment: 20–74 y					Possible selection bias
						Possible exposure misclassification

Abbreviations: FM, frequency modulation; MHz, megahertz; NR, not reported; OR, odds ratio; p, p-value; R², correlation coefficient; USA, United States of America; y, year/s.

†Odds ratios were adjusted for parity, age at first pregnancy, mother/sister breast cancer, early double oophorectomy, oral contraceptive use, ever upper gastrointestinal series, and ever smoker (all subjects); mother/sister breast cancer at younger than age 45 years and alcohol intake (if premenopausal); and hormone therapy (if postmenopausal).
Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Liu et al., 2016 ⁶⁴⁶	9 cohort studies	31,697 participants	Female flight attendant	Breast cancer	SIR=1.40 (1.30–1.50); l²=0.0%, p(heter)=0.744	Model: NR
Studies published to 2016	1 pooled analysis	821 cases				Adjustments ⁺
Denmark, Finland,		Follow–up: 511,926 person–y				No publication bias (p>0.05)
lceland, Norway, Sweden & USA						Limitations: Confounding factors
						Underestimation of the risk of cancer
						Potential clinical heterogeneity
						Limited number of qualified studies
Tokumaru et al.,	5 cohort studies	8 studies in total:	Female flight	Breast cancer	RR=1.41 (1.22-1.62); p<0.0001	Fixed effects model
Studios publishod		148,658 person-y at	allendarii			No adjustments
1966–2005		113K				Publication bias: NR due to small number of studies included
Finland, Iceland, Norway, Sweden &						Limitations:
USA						Failure to identify all relevant studies
						Varied population among the studies
						Test for heterogeneity statistically negative, potential variability should be noted

Table D.81 Occupation as a flight attendant (cosmic radiation) and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
						Possible publication bias
Buja et al., 2006 ⁶⁴⁸	7 cohort studies	16,635 female flight attendants	Female flight attendant	Breast cancer	SIR=1.40 (1.19–1.65); τ=0.07‡	Bayesian hierarchical model
Studies published to 2004		Follow–up: average 19.3 years				No adjustments
Denmark Finland		,				No publication bias (p>0.05)
Iceland, Norway,						Limitations:
Sweden & USA						The 'healthy worker effect',
						missing data & reproductive
						history were potential sources
						of bias
Cohort studies						
Pinkerton et al., 2016 ⁶⁵⁰	Mortality cohort of former flight	6,093 participants	Cumulative cosmic radiation	Breast cancer		Cox regression model
	attendants	344 cancer cases	Per 10mGy		ERR=-0.021 (-0.14-0.17)¶	Adjustments§
USA	employed by Pan				$FRR=1.6 (0.14-6.6)^{++}$	
	American World	5,749 controls			p=0.0211	Limitations:
	Airways					Low cumulative exposure,
	Employment from					potential exposure
						misclassification
	1 Jun 1755					Potential recall bias
	Retrospective study					
	,					Relatively low participation
	Follow–up: NR					
Schubauer-Berigan	Mortality cohort of	6,093 women	Female flight	Breast cancer		Model: NR
et al., 2015651	former flight	enrolled	attendant			
	attendants		Cosmic radiation			Adjustments:
USA	employed by Pan	344 breast cancer	Overall cohort	_	SIR=1.37 (1.23-1.52)	Age, race and calendar year
	American World	cases	10 y lagged results			Limitations
	Allways	Ethnicity: >90%	(absorbed dose)			Results observed might not be
	Employment from	white	U to <1.55mGy		SIK=1.35 (1.05, 1./1)	representative of current levels
	1 January 1953		1.55 to <3.57mGy		SIR=1.32 (1.03, 1.67)	of breast cancer risk in this
		Median year of	3.57 to <6.61mGy		SIR=1.54 (1.20, 1.96)	cohort
		•	6.61 to <13.9mGy		SIR=1.21 (0.94, 1.54)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Retrospective study	birth: 1947	13.9+ mGy		SIR=1.48 (1.15, 1.87); p(trend)=0.13	Correlation exposure metrics
	Follow–up: NR		Effect modification of	_		make interpretation of positive
			trend slope for 10–			findings difficult
			year lagged			
			exposure variable			Misclassification in exposure
			parity:			estimates
			Absorbed dose			
			(mGy)TT			for broast cancer
			trand slope for 10			IOI DIEGSI CUICEI
			vear lagged			
			exposure variable :			
			Absorbed dose			
			(mGy)			
			0 births		Slope (SE)=-2.95E-05 (1.75E-05)	
			1 birth		Slope (SE)=-3.90E-05 (1.37E-05):	
					p<0.01	
			2 births		Slope (SE)=2.17E-05	
					(6.39E-05)	
			3 births		Slope (SE)=2.62E-04	
					(1.23E–04); p<0.05	
			Effect modification of	_		_
			trend slope for 10–			
			year lagged			
			exposure variable by			
			age at first birth:			
			Absorbed dose			
			(mGy)			
			1 4 <15 y		Slope (SE)=1.02E-05	
					(8.00E-05)	
			25–<30 y		Slope (SE)=4.42E-05	
					(1.00E-04)	
			30—<35 у		Slope (SE)=-7.83E-05**	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
					(3.41E–05); p<0.05	
			35+ y		Slope (SE)=-2.39E-05 (5.06E-05)	
Pukkala et al., 2012 ⁶⁵²	Retrospective study	8,507 women	Female airline crew member	Breast cancer	SIR=1.50 (1.32-1.69)	Conditional logistic regression model
	Mean follow-up:	263 cases				
Finland, Iceland, Norway & Sweden	23.6 у	Finnish crew working 1947–1993 Icelandic crew working 1947–1997 Norwegian crew working 1950–1994 Swedish crew working 1957–1994				Adjustments: Age at first birth, parity & number of children Limitations: Lack of data on work at night

Abbreviations: ERR, excess relative risk; FFA, female flight attendant; NR, not reported; NS, not significant; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; SIR, standard incidence ratio; USA, United States of America; y, year/s.

†Age, sex, calendar year. A number of studies also adjusted for age at first birth, parity, number of children, length of employment, flight assignment, years of service and/or age at entry.

‡Posterior mean of heterogeneity.

§Results are adjusted for age (since risk sets were created based on attained age), age at menarche, height, alcohol status, age at first birth, menopausal status, use of hormone therapy and family history of breast cancer.

¶Parity (0, 1, 2).

††Parity (≥3).

‡‡P-value for model with two way interaction for exposure and parity compared to model without an interaction term.

Table D.82 Sun exposure and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Estébanez et al., 2018 ⁶⁶²	68 studies overall	NCC studies: 32,181 women	25(OH)D (highest vs lowest category)	Breast cancer		Fixed and random effects models
	17 cohort studies					
Studies published	21 NCC studies	Case-control				Individual studies adjusted for a
1998–2018	30 case–control studies	studies: 35,167 women				range of factors
Australia, Brazil,						Publication bias or heterogeneity
Canada, China, Denmark, Europe,	4 studies	Cohort studies: 24,606 women,	Cohort studies	_	RR=0.85 (0.74–0.98); I ² =3.56%,	observed
France, Germany, India, Iran, Italy,	29 studies	3,502 cases	Case-control studies		OR=0.65 (0.56–0.76); l²=40.87%,	Limitations: Different cut off points to serum
Japan, Korea, Mexico, Norway,	14 studies	_	NCC studies	-	OR=0.92 (0.83–1.01); I ² =15.87%,	levels used by studies
Saudi Arabia, Sweden,	9 studies	_	Case-control studies	Premenopausal	OR=0.63 (0.49-0.80)	Variability within the literature
Switzerland, Taiwan,				breast cancer		Care control studios propo to
UK, USA	4 studies	_	NCC studies	-	OR=0.67 (0.49-0.92)	methodological issues
	19 studies	_	Case-control studies	Postmenopausal	OR=0.74 (0.59-0.93)	 Vitamin D might affect only
				breast cancer		certain subtypes of breast
	12 studies	_	NCC studies	-	OR=0.97 (0.82-1.14)	
Gandini et al.,	10 studies	6,175 cases	Serum 25–	Breast cancer		Mixed effects model
2011663			hydroxyvitamin D			
	1 cohort study	23,595 controls	(per 10 ng/ml)			Adjustments:
Studies published to 2009	4 NCC studies		All studies		Summary RR=0.89 (0.81–0.98); I²=88%, p(heter)<0.001	BMI and physical exercise
		3,030 cases	Case-control	-	Summary RR=0.83 (0.79–0.87);	No publication bias (p>0.05)
Denmark,	5 case–control		studies		I ² =NR	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Germany, UK & USA	studies	3,145 cases	NCC & cohort studies		Summary RR=0.97 (0.92–1.03); I²=54%, p(heter)=0.07	Limitations: Case–control studies had major limitations, with the potential for reverse causation
Cohort studies						
Zamoiski et al.,	USRT study cohort	36,725 female	UVR exposure	Breast cancer		Cox proportional hazard model†
2016659	Cohort dates:	radiologic technologists	Time outdoors (hour/day)			Limitations: NR
USA	2003-05 to 2012-13		<1		HR=1 (referent)	
		716 cases	1–1.9		HR=0.88 (0.70-1.10)	
	Prospective study		2–2.9		HR=0.96 (0.76-1.20)	
	Moan ago at		3–3.9		HR=0.95 (0.76-1.20)	
	enrolment: 55.8 v		≥4		HR=0.87 (0.68–1.10); p-trend=0.46	
	(no breast cancer)		Ambient UVR			
	& 57.5 y (breast		0–97.0		HR=1 (referent)	
	cancer cases)		97.0–104.8		HR=1.41 (1.11–1.79)	
	Follow-up: from		104.8–117.9		HR=1.21 (0.94–1.54)	
	baseline 2003–05		117.9–140.4		HR=1.26 (0.99-1.61)	
	until primary cancer		>140.4		HR=1.22 (0.95–1.56); p-trend=0.36	
	diagnosis or		Combined UVR			
	2012–13		0–149.6		HR=1 (referent)	
			149.6-213.9		HR=0.96 (0.77-1.21)	
			213.9-280.1		HR=0.92 (0.73-1.16)	
			280.1-369.1		HR=1.06 (0.85–1.33)	
			>369.1		HR=0.85 (0.67–1.08); p-trend=0.49	
Lin et al., 2012660	NIH-AARP cohort	178,138 women	Ambient UVR exposure	Breast cancer		Multivariate Cox regression model‡
USA	Cohort dates: 1995–1996 to 2006	8,681 cases	July erythemal exposure (J/m²)			Limitations:
	Prospective study	Ethnicity: non– Hispanic Caucasian	≤186.3	_	HR=1 (referent)	No information on sun–related behaviours

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Mean age at	women	>186.3-236.8		HR=0.99 (0.93-1.05)	Residential UVR exposure
	enrolment: 62.07 v		>236.8-253.7		HR=1.05 (0.99–1.12)	does not account for aerosols
	· · · · · · · · · · · · · · · · · · ·		>253.7		HR=1.03 (0.97–1.09);	
	Mean follow–up: 9.07 y				p-trend=0.198	Residence at baseline does not account for mobility
						Results may not be generalisable to younger age groups
Yang et al., 2011661	SWLH cohort	49,261 women	UVR exposure	Breast cancer		Cox proportional hazard model§
		1.050	Annual number of			
Sweden	Cohort dates:	1,053 cases	sunburns			Limitations:
	1771-1772 10 2008	Mean age at	≤]			misclassification of UVR
	Prospective study	breast cancer	10-19,20-29 & 30-39 v		HR=1 (referent)	exposure and dietary vitamin D
		diagnosis: 51.6 y	>2			intake may have biased the
	Age at enrolment:		10–19 v		HR=0.90 (0.70–1.16)	results toward zero
	30–49 y		10-19 & 20-29 v		HR = 1.11 (0.89 - 1.38)	limited information on
	Mean follow-un:		10-19, 20-29 &		HR=1.02 (0.81–1.27)	seasonal variations, variations
	14.9 y		30–39 y			in stratospheric ozone,
			20–29 &/or 30–39 y		HR=0.91 (0.71-1.16); p-trend=NS	atmospheric aerosols and pollution, cloud cover and
			Annual number of	-		 surface reflection
			weeks on			
			sunbathing			
			Never			
			10-19 20-29 &		HR=1 (referent)	
			30–39 y			
			≥]			
			10–19 y		HR=0.81 (0.49–1.33)	
			10–19 & 20–29 y		HR=0.56 (0.36–0.89)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			10–19, 20–29 & 30–39 y		HR=0.65 (0.46-0.93)	
			20–29 &/or 30–39 y		HR=0.87 (0.70–1.07); p-trend=NS	

Abbreviations: 25(OH)D, 25-hydihydroxyvitamin D; BMI, body mass index; HR, hazard ratio; J/m², joule per square metre; NCC, nested case-control studies; ng/ml, nanograms per millilitre; NIH-AARP, National Institutes of Health-American Association of Retired Persons [Diet and Health Study]; NR, not reported; NS, not significant; OR, odds ratio; p, p-value; p, p-value; p(heter), p-value for the measure of heterogeneity; p-trend, p-value for trend; RR, relative risk or risk estimate; SWLH, Swedish Women's Lifestyle & Health; TOMS, Total Ozone Mapping Spectrometer; USRT, United States Radiologic Technologists; UVR, ultraviolet radiation; UK, United Kingdom; USA, United States of America; y, year/s.

 \uparrow Adjusted for birth cohort (before 1930, 1930–1939–1940–1944–1945–1949–1950–1954–1955–1961), ethnicity (white, black, Asian or Pacific Islander, American Indian or Alaska native, other), BMI (<18.5, 18.5–25, 25–30, >30 kg/m2), ever given birth (yes/no), age at first birth (<20,20–24, 25–29, 30–34, ≥35), age at menarche (under 11, 11–12, 13–14, 15 and older), ever taken hormone therapy (yes/no) family history of breast cancer (yes/no), exercise (0, 1–3, 4–7, 7–14, 15 and higher hours/week), menopausal status (pre– or post–menopausal), number of births (0, 1–2, 3–4, 5 and higher), use of oral contraceptives (ever/never), alcohol consumption (0, 1–2, 3–10, 11 and higher drinks/week), and ionizing radiation exposure to the breast (continuous). Trend tests were conducted by modelling categorical values as ordinal.

‡Adjusted for age at baseline, sex, BMI, caloric intake, intake of fruit, vegetables, and red and white meat, alcohol consumption, tobacco smoking, education, physical activity, median household income.

§Adjusted for education, smoking, alcohol drinking, body mass index, physical activity, parity, age at first birth, age at menarche, oral contraceptive use, breast feeding, and family history of breast cancer. Attained age was used as the time scale in the models.

Table D.83 Diagnostic Ionising radiation and risk of breast canc
--

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Cohort studies						
Matthews et al., 2013 ⁶⁷³	Cohort dates: 1985– 2007	10,939,680 participants	CT scan exposure Exposed vs. unexposed	Breast cancer	IRR=0.99 (0.83-1.17) EIR per 100,000 person-y= -0.03 (-0.39-0.34)	Poisson regression model
Australia	Retrospective study	680,211 exposed to CT scan			0.00 (0.07 0.04)	age, sex and year of birth.
	Age at enrolment:					Limitations:
	0–19 y	60,674 cases of cancer				Misclassification of some participants in unexposed
	Mean follow-up: 9.5 v (exposed) & 17.3	145 breast cancer				group;
	y (unexposed)	cases				Unable to estimate individual doses;
						Records of repeat scans were not available.
Ronckers et al. 2008 ⁶⁶⁵	Cohort dates: 1992–1993	3,010 female scoliosis patients	Diagnostic radiograph exposure	Breast cancer		Linear radiation dose-response model†
USA	Retrospective study	78 cases	Linear dose response (ERR per unit dose)			Limitations: NR
	Ago at opport	Median age at end	Overall		ERR per GY=2.86 (-0.07–8.62); p=0.058	
	Age at enrolment: NR	01 10110w-0p. 47.6 y	Any family history of	-		
		Scoliosis diagnosis:	breast cancer			
	Mealan tollow-up: 35.5 v	1912-1965	No		ERR per Gy= -0.16 (<0-4.41)	
			Yes		ERR per Gy=8.37 (1.50-28.16); p=0.03	

*Abbreviations: EIR, excess incidence rate; ERR, excessive relative risk; IRR, incident rate ratio; p, p-value; USA, United States of America; y, year/s.

 \pm tratified by attained age (<35, 35-39, 40-44, 45-49, 50-54, 55-59, 60-69, and 70+ years) and calendar year (1925-1929, 1930-1934, ..., 1990-1995) and adjusted for total number of X-rays (minimally exposed, <10, 10-19, 20-39, 40-59, and \geq 60), where appropriate. Also adjusted for age at first birth, menopausal status at questionnaire completion, household income, and family history of breast cancer.

Table D.84	Therapeutic ex	posure to ionising	radiation and	risk of breast cancer
------------	----------------	--------------------	---------------	-----------------------

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta–analyses						
Doi et al., 2014 ⁶⁸³	4 cohort & case- control studies	22,276 patients	RT for childhood cancer including HL	Breast cancer	ERR per Gy=0.31 (0.16–0.59); Q=351.48,	Random effects model
Studies published 1950–2009		Age at primary cancer diagnosis:	(radiation dose range 0.1–<20)		p(heter)<0.001	Adjustments: NR
Canada France		0–20 у				Publication bias (p<0.001)
Netherlands,						Limitations:
Sweden, UK & USA						Follow–up duration not reported
Ibrahim et al.,	34 cohort studies	25,305 women	RT for HL	Breast cancer	DD-170 13 28 4 751.12-719	Random effects model
2012		957 cases	KI VSTIO KI		p(heter)<0.00001	Adjustments: NR
Studies published						
1700 2011		primary cancer	RIS 30 years of age		KK-14.00 (7.73-17.70)	no publication bias (p>0.05)
Canada, France,		diagnosis:				Limitations:
Italy, Netherlands, Norway, Sweden,		23.7 у				Lifestyle and family history not adjusted for
UK & USA		Median age at				
		breast cancer diagnosis: 35 y				HL may increase risk of secondary malignancies independent of RT
Cohort studies						
Teepen et al., 2017 ⁶⁹²	Cohort dates: 1963-2001	6,165 women	RT for childhood cancers	Breast cancer		Multivariable Cox proportional hazards model
		Mean age at				
Netherlands	End of study: Ian 2013	alagnosis of primary cancer:				Adjustments:
	00.12010	≤17 y				dose
	Retrospective study	183 women	Chest RT vs no RT	_	HR=2.5 (1.3–4.9)	
		13 cases		_		Limitations:

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
	Median follow–up: 20.7 y	77 women 5 cases	TBI vs no RT		HR=10.6 (3.7–30.2)	Number of breast cancer events
						Confounding factors
Sud et al., 2017 ⁶⁹⁰	Cohort dates: 1965-2012	9,522 participants	RT for HL Age at diagnosis	Breast cancer		Poisson regression model
Sweden	Retrospective study	Mean age at diagnosis of HL:	<35 y		SIR=6.00 (4.91–7.33), p<0.001	Adjustments: NR
	Median follow–up: 12.6 y	49 y	>35 y		SIK-1.14 (0.65-1.51)	Limitations: Reliance on year of treatment as surrogate for type of treatment
						Smoking not included in the analysis
Moskowitz et al., 2017 ⁶⁹⁴	Child Cancer Survivor Study	1,108 women 195 cases	RT for childhood cancers	Breast cancer		Cox proportional hazard regression model
USA	Cohort dates: 1994-2012 Primary cancer	Age at primary cancer diagnosis: ≤20 y	RT within 1 year of menarche vs >1 year from menarche vs no RT		HR=1.80 (1.19–2.72)	Adjustments: Chest radiation field, delivered dose, anthracycline exposure and age at childhood cancer
	diagnosis: 1970-1986	Age at breast cancer diagnosis:				estimated risk
	Retrospective study	23–58 y				Limitations: Self-reported data on bormonal factors and
	Median follow–up: 26 v					medication use
	- /					Differences by age at breast cancer diagnosis not tested
Moskowitz et al., 2015 ⁶⁹⁵	Child Cancer Survivor Study	363 patients	Spinal RT for leukaemia & CNS tumours	Breast cancer		Model: NR

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
		3 cases	Overall		SIR=2.4 (0.8–7.5)	Adjustments: NR
USA	Cohort dates: 1970-1986 Retrospective study	Median age at primary cancer diagnosis: 5 y	Leukaemia only		SIR=3.8 (1.2–11.7)	Limitations: Small sample size and young age of the cohort
	Age at enrolment: ≥20 y					
	Median follow–up: 27 y					
Moskowitz et al., 2014 ⁶⁸⁷	Child Cancer Survivor Study	1,230 women	RT for childhood cancers	Breast cancer		Poisson regression model
USA	Cohort dates:	203 cases	Primary field of chest radiation			Adjustments: Delivered radiation dose
	1970-1986	Median age at last follow–up:	Mantle (5–54 Gy) Mediastinal (3–54		SIR=24.2 (20.7-28.3) SIR=13.0 (8.4-20.2)	Limitations:
	Median follow-up:	Median age at	Gy) Whole lung (2–20 Gy) Total body (4–16 Gy)		SIR=43.6 (27.1-70.1) SIR=19.3 (7.3-51.5)	roung conort may under estimate breast cancer incidence
	23.7 Y	diagnosis: 13 y	Abdominal (4–40 Gy) Posterior chest (6–54 Gy)		SIR=10.8 (2.7-43.2) SIR=0.0	Small incidence of women treated with TBI and women treated with WLI after 45 y of
			Other one-sided anterior (10-61 Gy)	_	SIR=9.9 (3.2-30.6)	age
			Dose of radiation to chest	-		
			10-19 Gy		SIR=30.6 (18.4-50.7)	
			≥20 Gy		SIR=21.2 (18.3-24.5)	

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Elkin et al., 2011686 USA	Hospital–based cohort, from 8 hospitals	253 cases with history of HL	RT HL survivor vs patient with sporadic breast	Metachronous CBC	HR=4.3 (1.7–11.0); p<0.01	Cox proportional hazards regression model
	Breast cancer	741 controls with no history of HL	cancer			Adjustments†
	diagnosis: 1980–2006	, Age at HI				Limitations:
	Retrospective study	diagnosis: 11–67 y		-		tertiary academic medical centres rather than
	Follow–up: 42 y	Age at breast				community-based settings.
		cancer diagnosis: 24–84 y				
Adams et al., 2010 ⁶⁹³	Cohort dates: 1985–1987 &	1,120 treated females	RT for enlarged thymus	Breast cancer	RR=3.05 (2.15–4.36), p<0.001	Multivariate Poisson regression model
4.211	2003-2008	96 treated cases			ERR per Gy=1.10	Adjustmonts
03A	Retrospective study	2,382 untreated female siblings			(0.61–1.86)	Treatment, birth cohort and attained age
	Mean age at enrolment: 37 y	57 untreated cases				Limitations:
	Median follow-up: 56.8 y					Lower-than-desired response rate and non-response bias
De Bruin et al., 2009 ⁷⁰⁹	HL treatment: 1965– 1995	1,122 women	sRT for HL vs general	Breast cancer		Multivariate Cox regression
2007	1770	120 cases	Overall		SIR=5.6 (4.6-6.8)	model
Netherlands	Prospective study					Adjustments‡
	Median follow-up:	Age at HL treatment:			AER=57 (45–72) cases per 10,000 persons/y	Limitations:
	17.8 y	<51 y	sRT	_		Inability to assess radiation
			Mediastinal RT		HR=1 (referent)	dose effects

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
			Mantle field		HR=3.0 (1.2–7.6)	
						Missing data regarding age at
						menopause
Case-control studies	;					
Cooke et al.,	Nested case-	5,002 women	sRT for HL	Breast cancer		Unconditional logistic regression
2013691	control		Duration between			
		260 cases	sRT & menarche			Adjustments§
UK	Source of					
	population: NR	Age at breast	≤5 y before		OR=0.94 (0.10-8.46)	Limitations:
	Charles also at a sec	cancer diagnosis:	2–5 y before		OR=4.08 (1.27–13.14)	HL treatment, family history of
	2003-2010	<30–69 y	0.5–2 y before		OR=4.90 (1.60–14.98)	breast cancer, reproductive
	2003 2010		Within 0.5 y		OR=5.52 (1.97–15.46)	
	Primary treatment:		0.5–2 y after		OR=3.47 (1.40-8.58)	
	1956-2003		2–5 y after		OR=2.38 (1.43–3.97);	
					p-trend<0.001	
	Age at recruitment: ≥53 y		5–10 y after		OR=1.33 (0.89-1.98)	

Abbreviations: AER, absolute excess risk; CBC, contralateral breast cancer; CNS, central nervous system; DCIS, ductal carcinoma in situ; ERR, excess relative risk (per Gy); HL, Hodgkin lymphoma; HR, hazard ratio; HT, hormone therapy; Gy, Gray; IRR, incident rate ratio; NR, not reported; OR, odds ratio; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; RT, radiation therapy; SIR, standardised incidence ratio; sRT, supradiaphragmatic radiation therapy; TBI, total body irradiation; UK, United Kingdom; USA, United States of America; WLI, whole lung irradiation; y, year/s.

†Breast cancer stage at diagnosis, axillary lymph node involvement, laterality at diagnosis, type of surgery, surgical margin status, menopausal status, family history of breast cancer in a first-degree relative, whether breast cancer was screen detected, receipt of radiation therapy for breast cancer, receipt of chemotherapy for breast cancer, and receipt of hormonal therapy for breast cancer

‡HRs adjusted for other types of sRT, age at first RT to the breast, and time since first RT to the breast; calendar time was used as the time scale. Time at risk for RT started five years after first treatment with RT. Analysis was restricted to patients from Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Erasmus MC/Daniel den Hoed Kliniek, Leiden University Medical Center, Emma Children's Hospital/Academic Medical Center (n=715).

§Year of treatment, duration between treatment and questionnaire completion, date of birth, sRT field, ovarian-toxic treatment; age at menarche and treatment.

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Meta-analyses						
Zhang et al., 2016 ⁶⁹⁹	6 cohort studies	17,914 participants	Radioactive iodine for treatment of	Breast cancer	RR=0.61 (0.47-0.79); l²= 46%, p(heter)=0.10	Fixed-effects model
Studies published to 2014		96 cases in experimental group	thyroid cancer			Adjustments: NR
						Publication bias: NR
America, East Asia		144 cases in control				limitations:
		groop				Inaccessibility of detailed data
		Age at diagnosis:				on age in the six cohorts, an
		42–50 y				age-adjusted subgroup
		Mean follow-up:				analysis was not camed out
		7.8–12 y				The follow-up times of the
						current studies were not long
Sawka et al.,	2 cohort studies	37,119 participants	Radioactive thyroid	Breast cancer	RR=0.86 (0.64-1.16); p=0.324	Fixed-effects model
2009698			treatment of thyroid			
Studios published to		Number of cases:	cancer			Adjustments: NR
2008		INK				Publication bias: NR
		Median follow-up:				
Europe & North		8.6 y & 13 y				Limitations:
America						primary studies & relatively
						large losses to follow–up in the
						European cohorts
						A formal meta-rearession
						analysis of cumulative RAI dose
						activity & the risk of second
						primary malignancies could not be conducted
Cohort studies						

Table D.85 Radioactive treatment for thyroid cancer and risk of breast cancer

Authors	Study details	Study sample	Exposures	Outcomes	Risk estimates	Author comments
Lin et al., 2016 ⁵⁰³	Taiwan National	10,361 women with	¹³¹ I Treatment for	Breast cancer		Cox proportional hazard model
	Health Insurance	thyroid cancer	thyroid cancer vs no			
Taiwan	Database		treatment			
		3,292 women with	Overall		HR=1.34 (1.06–1.69)	Adjustments:
	Cohort dates: 2000–2008	thyroid cancer without ¹³¹ I	Cumulative ¹³¹ I dose Without treatment	_	HR=1.00 (referent)	Age, all comorbidities, hormone therapy,
	Retrospective study	freatment	≤4.44 (GBq)		HR=1.18 (0.79-1.77)	mammography & ultrasonography
		7,069 women with	> 4.44 (CPc)			
	Age at enrolment:	thyroid cancer with	24.44 (GDQ)		HK-0.90 (0.36-1.46)	Limitations:
	most patients ≤49 y	¹³¹ I treatment				Database provides no detailed information on patients
	Follow–up: 6.51 y	41,444 controls				
						Evidence from retrospective
		479 cases of breast				cohort study is lower in
		cancer				statistical quality
						Registries in the
						National Health Insurance not
						verified for scientific purposes
						No individual patient's medical
						chart & data could be directly
						спескей

Abbreviations: GBq, gigabecquerel; HR, hazard ratio; NR, not reported; p, p-value; p(heter), p-value for the measure of heterogeneity; RR, relative risk or risk estimate; y, year/s.

Glossaries

Glossary 1—General and epidemiological terms

Absolute risk	Is a measure of the risk of a certain event happening, or a person's chance of developing a specific disease over a specified time period. In cancer research, it is the likelihood that a person who is free of a specific type of cancer at a given age will develop that cancer over a certain period of time
Attributable risk	Also known as absolute risk difference. This absolute measure of effect represents the difference between the absolute risks in two groups, usually between an exposed and unexposed group. The excess number of cases that could be explained by or could be attributed to that factor increases with the proportion of the population exposed to the factor and with the incidence rate of the disease in the population (i.e. absolute risk).
Ashkenazi	Ashkenazi is the term used to refer to Jews who have ancestors from Eastern or Central Europe, such as Germany, Poland, Hungary, Lithuania, Ukraine or Russia. As Ashkenazi Jews descend from a small population group, they have more genes in common than the general population. In Australia, most Jewish families are of Ashkenazi ancestry.
Confidence intervals	A range of values that has a specified probability of containing the true point estimate of effect. The most common specified probability is 95%, akin to p=0.05. The narrower the interval the more precise the estimate of the risk and the less likely that the risk would be subject to chance variation. A relative risk is generally considered statistically significant when the value of 1.0 is not in the 95% confidence interval.
Confounding	Confounding occurs when an exposure and an outcome are associated with each other simply because both are acted on by a third variable (confounder), not because the exposure has a causal effect on the outcome.
Heterogeneity	Differences between studies that impact on the interpretation of the results and the ability to draw any legitimate or meaningful conclusions. Heterogeneity can be quantified using the I ² statistic, which describes the percentage of total variation across studies in a meta-analysis that is due to heterogeneity rather than chance. I ² values of 25%, 50%, and 75% can be considered as low, moderate,

	and high. Other measures of heterogeneity include Tau which is a measure of the dispersion of true effect sizes between studies when fitting a random–effects model in terms of the scale of the effect size, i.e. it is in the same 'units' as the results measure.
Odds ratio (OR)	Uses the odds of developing a disease in both groups to calculate a relative measure between two groups rather than the risk. As a rule, retrospective study designs will only report odds ratios (ORs), whereas prospective study designs, like the cohort study, will generally report a relative risk (RR) estimate.
Point estimation (size of effect)	Refers to the measure of effect or point estimate provided in the results of each study (e.g. mean difference, relative risk, odds ratio, hazard ratio, sensitivity, specificity). In the case of a meta-analysis it is the summary or pooled measure of effect from the studies included in the systematic review (e.g. weighted mean difference, summary or pooled relative risk). These point estimates are calculated in comparison to either doing nothing or versus an active control.
Progesterone	Naturally-occurring progestogen; predominantly produced by the ovaries in cycling premenopausal women and in low doses by the adrenal glands in women of all ages.
Progestins	Synthetic progestogens including compounds such as medtrocyprogesterone acetate (MPA), levonorgestrel, and norethindrone acetate (NETA).
Progestogen	Any substance, natural or artificial (that is, synthetic), that exerts progesterone-like activity via the activation of progesterone receptors.
Relative risk (RR)	Relative risk (RR) is the most common metric of comparative risk reported throughout this report, and it compares the absolute risk of a group of people who are exposed to a risk factor with the absolute risk of a group of people who are not exposed to the risk factor. It is sometimes referred to as the 'risk ratio'. Depending on the study design and statistical method used, the relative risk can be presented using different measures of effect, such as the incidence rate ratio (also called the standardised incidence ratio) and hazard ratio.

Standardised incidence ratio	Standardised incidence ratio is the disease incidence in a cohort
	compared to in the general population, i.e. the ratio of the
	observed number of cases compared to the expected number of
	cases. The expected number of cases is computed using age-
	specific rates from a reference population, weighted according to
	the age structure of the study population.

Glossary 2—Study types

Case–control studies	Case-control studies are one of the most basic study designs for epidemiological research. In case-control studies, people with the outcome or disease (cases) and an appropriate group of controls without the outcome or disease (controls) are selected and the information obtained about their previous exposure/non-exposure to the factor under study, such as reproductive history or diet. It is a retrospective design.
Cohort studies	Cohort designs are widely used in epidemiological research. Participants do not have the disease of interest, such as breast cancer, at the start of the study, but are followed prospectively through time. The occurrence or incidence of the disease is compared between groups of people exposed to the factor under study and groups of people not exposed.
Meta–analysis (following systematic review)	In a meta-analysis similar studies that address the same research question are identified through systematic review and the results are statistically combined and analysed, and the overall result interpreted as if derived from one large study. This method gives greater statistical power to detect important associations. It allows the detection of less obvious associations as well as the examination of dose-response relationships often not possible in individual studies.
Nested case–control studies	Nested case-control studies are carried out within an existing cohort study. All the cases in the cohort are compared with a matched sample of the participants who have not developed cancer by the time of disease occurrence in the cases (controls). It has many of the strengths of the cohort study including minimising selection bias compared with a case-control study and having exposure information collected at inception and/or during the course of follow-up.
Pooled analysis	Pooled analyses are a type of meta-analysis but in pooled analyses individual-level data from various published or unpublished epidemiological studies of a similar type – usually prospective cohort studies – are combined and re-analysed as a 'single study'. This creates a larger data set and increased statistical power.
Prospective cohort studies	A type of cohort study that follows a group of similar people (a cohort) and studies them over time to determine how certain factors affect rates of a certain outcome. They are often referred to as the gold standard of observational epidemiological designs as they are less prone to bias, recall error and have higher validity than other observational study designs.

Randomised controlled trials	Randomised controlled trials (RCTs) are well-controlled, experimental studies in humans. In RCTs the unit of experimentation (e.g. people, or a cluster of people) is allocated to either an intervention (the factor under study) group or a control group, using a random mechanism (such as a coin toss, random number table, computer-generated random numbers) and the outcomes from each group are compared. RCTs are considered the gold standard in clinical trials as they are the most rigorous and reliable.
Retrospective cohort studies	A type of cohort study whereby cohorts (groups of people exposed and no exposed) are defined at a point of time in the past and information collected on subsequent outcomes. All of the events – exposure to the risk factor, latent period, and subsequent development of the disease – have already occurred in the past. Data are simply collected in the present.

Glossary 3—Breast cancer terms

Basal–like or triple negative	A subtype of breast cancer. Prevalence approximately 10–20%
breast cancer	Aggressive, fast growing, more common in younger women, high recurrence rates
	ER-/PR-/HER2-, often has higher grade and tends to metastasise.
	Increased incidence in patients with a germline BRCA1 mutation.
Ductal carcinoma in situ (DCIS)	Non-invasive breast cancer where abnormal cells are in the ducts, but have not spread to surrounding tissues.
Epigenetic changes	Epigenetic changes involve changes in gene expression (what genes, and by how much genes are turned on in a cell to make RNA and proteins) that are due to mechanisms other than changes in the underlying DNA sequence. Epigenetic changes can be transmitted across cell generations or inherited.
Genomic changes	There are different genetic changes, or 'drivers' of cancer, for example changes in oncogenes (cancer-causing genes), tumour suppressor genes (genes that usually protect cells from abnormal proliferation) or DNA repair genes. These changes can be inherited, or can arise during a person's lifetime due to errors as cells divide, or due to damage to DNA caused by certain environmental exposures.
HER2–overexpressing breast	A subtype of breast cancer. Prevalence approximately10–20%
cancer	More aggressive, poor short-term prognosis, more common in younger women, high recurrence rates
	ER-/PR-/HER2+
	Sensitive to anti-HER2 treatments.
In situ breast cancer	Also called non-invasive breast cancer that has not spread from the tissue in the breast where the cancer started.
Inflammatory breast cancer	A rare form of invasive breast cancer that affects the lymph vessels in the skin of the breast, causing the breast to be red and swollen.
Invasive breast cancer	Invasive cancers are cancers that have spread from the tissue where the cancer started, to surrounding tissue.
Invasive ductal carcinoma	Also known as infiltrating ductal carcinoma, is cancer that has spread from the duct to surrounding tissues.
Lobular carcinoma in situ (LCIS)	A non-invasive breast cancer where abnormal cells are in the lobules, but have not spread to surrounding tissues.
Lumina B breast cancer	A subtype of breast cancer. Prevalence approximately10–20%

	More aggressive, poor-prognosis, high recurrence rates
	ER+ and/or PR+/HER2+, or ER+ and/or PR+/HER2–/high grade, high proliferation (high Ki–67)
	Less oestrogen sensitive than luminal A.
Luminal A breast cancer	A subtype of breast cancer. Prevalence approximately 50–60%
	Less aggressive, more slowly growing, low recurrence rates
	ER+ and/or PR+, HER2–, low grade, low proliferation (low Ki–67)
	Endocrine treatment sensitive.
Paget's disease of the nipple	A rare form of breast cancer affecting the nipple and the areola around the nipple. It is commonly associated with invasive cancer elsewhere in the breast.

Abbreviations

Abbreviations

ACR	average cumulative risks
ADA	absolute dense area
ADH	atypical ductal hyperplasia
AER	absolute excess risk
АН	atypical hyperplasia
AhR	aryl hydrocarbon receptor
AICR	American Institute for Cancer Research
AIHW	Australian Institute of Health and Welfare
AJ	Ashkenazi Jew
ALCL	anaplastic large cell lymphoma
ALH	atypical lobular hyperplasia
aMED	alternate Mediterranean Diet score
APBIb	accelerated partial breast irradiation through brachytherapy
AR	absolute risk
ART	assisted reproductive technology
A-T	ataxia-telangiectasia
ATM	ataxia-telangiectasia mutated
BBD	benign breast disease
BC	breast cancer
BCAC	Breast Cancer Association Consortium
BCFR	Breast Cancer Family Registry
BCIS	breast cancer in situ
BCRAT	Breast Cancer Risk Assessment Tool
BCS	breast conserving surgery
BGS	Breakthrough Generations Study

BIA-ALCL	breast implant-associated anaplastic large cell lymphoma
BI–RADs	Breast Imaging Reporting and Data System
BMI	body mass index
BOADICEA	Breast and Ovarian Cancer Disease Incidence and Carrier Estimation Algorithm
BPA	bisphenol A
BPA-G	BPA-glucuronid
BRCA1/2	BReast CAncer 1/2 gene mutation
BRCA1+	BRAC1 gene mutation carrier
BRCAPRO	BRCA probability
BSSA	South Australian breast cancer screening programme
CARE	Contraceptive and Reproductive Experiences
CBC	contralateral breast cancer
CCSS	Childhood Cancer Survivor Study
CDH1	Cadherin 1
CEE	conjugated equine oestrogens
CHANCES	Consortium on Health and Ageing; network of Cohorts in Europe and the United States
CHK2	checkpoint kinase 2
CI	confidence interval
CIMBA	Consortium of Investigators of Modifiers of BRCA1/2
CSI	carcinoma in situ
CIR	cumulative incidence rate
cm	centimetre
COGS	Collaborative Oncology Gene-environment Study
combined MHT	combined oestrogen-progestogen menopausal hormone therapy
сох	cyclooxygenase
CPSII	Cancer Prevention Study II
CR	cumulative risk

СТ	chemotherapy
CUP Breast SLR	Continuous Update Project Systematic Literature Review
DA	dense area
DCIS	ductal carcinoma in situ
DEHP	bis(2–ethylhexyl) phthalate
DEP	diethyl phthalate
DES	diethylstilboestrol
DET	dichloro-diphenyl-trichloroethane
DESAD	Diethylstilbestrol and Adenosis
DHEAS	dehydroepiandrosterone sulphate
DNA	deoxyribonucleic acid
DOB	date of birth
DRMR	dose-response meta-regression
E3N	Étude épidémiologique auprés des femmes de la mutuelle générale de l'éducation nationale
E3N-EPIC	Etude Epidémiologique auprès des femmes de la mutuelle générale de l'éducation nationale – European Prospective Investigation into Cancer and Nutrition
E–cadherin	epithelial cadherin
ECR	estimated cumulative risk
EHBCCG	Endogenous Hormones and Breast Cancer Collaborative Group
ELF-EMF	extremely low frequency electromagnetic field
EMBRACE	Epidemiological Study of BRCA1 and BRCA2 mutation carriers
EORTC	European Organisation for Research and Treatment Centre
EPA-DHA	eicosapentaenoic acid-docosahexaenoic acid
EPIC	European Prospective Investigation into Cancer and Nutrition
EPIC-Italy	European Prospective Investigation into Cancer and Nutrition (cohort in Italy: Florence, Milan, Ragusa province, Turin and Naples)
ER	oestrogen receptor
ER-	oestrogen receptor negative

ERR	excess relative risk
ES	Effect size
EłO	ethylene oxide
ETS	environmental tobacco smoke
EVOO	extra virgin olive oil
FDA	Food and Drug Administration
FM	frequency modulation
FFTP	first full term pregnancy
FFQ	food frequency questionnaire
FVG	Friuli Venezia Giulia
GBq	gigabecuerel
g/d	grams per day
GHz	gigaHertz
GI	glycaemic index
GL	glycaemic load
GnRH	gonadotropin-releasing hormone
GP	general practitioner
GWAS	genome-wide association study
Gy	Gray
НАА	heterocyclic aromatic amine
НАР	hazardous air pollutant
НВОС	Hereditary Breast and Ovarian Cancer Syndrome
HCA	hetrocyclic amine
HDGC	hereditary diffuse gastric cancer
HER	human epidermal growth factor receptor
HER2	human epidermal growth factor receptor 2
HER2–	human epidermal growth factor receptor 2 negative
HF	high frequency
HL	Hodgkin lymphoma

НРНС	Harvard Pilgrim Health Care
HPV	human papillomavirus
HR	hazard ratio (also used for hormone receptor in places)
HRR	hazard rate ratio
HR+	hormone receptor positive
HR-HPV	high risk human papillomavirus
нт	hormone therapy
Hz	Hertz
IARC	International Agency for Research on Cancer
IBC	ipsilateral breast cancer
IBCCS	International BRCA1/2 Carrier Cohort Study
IBIS	International Breast Intervention Study
IDC	invasive ductal carcinoma
IGCLC	International Gastric Cancer Linkage Consortium
IGF1	insulin–like growth factor 1
ILC	invasive lobular carcinoma
IQR	interquartile range
IRR	incident rate ratio
IVF	in vitro fertilisation
JACC	Japan Collaborative Cohort study
J/m²	joules per square metre
JPHC	Japan Public Health Centre
kcal/day	kilocalories per day
kConFab	Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer
kg/m²	kilograms per square metre
kHz	kiloHertz
km	kilometres
KPNC	Kaiser Permanente Northern California

KPSC	Kaiser Permanente Southern California
LAN	light at night
LCIS	lobular carcinoma in situ
LF	low frequency
LFS	Li–Fraumeni Syndrome
LIFE	Learning the Influence of Family and Environment
LOD	limit of detection
LRT	likelihood ratio test
m	metre
MDACC	MD Anderson Cancer Centre
MDCH	Michigan Department of Community Health
MEC	multiethnic cohort
MedD	Mediterranean Diet
MET	metabolic equivalent
MF	medium frequency
mg	milligrams
MGC	mammary gland carcinogen
MHT	menopausal hormone therapy
MHz	megaHertz
mMED	modified Mediterranean Diet score
MPA	medroxyprogesterone acetate
MSKCC	Memorial Sloan-Kettering Cancer Centre
mSv	millisieverts
µg∕d	micrograms per day
µg/L	micrograms per litre
µmol/L	micromoles per litre
MW	microwave
n	number
N/A	not available

NAICS	North American Industry Classification System
NAT2	N-acetyltransferase 2
NBOCC	National Breast and Ovarian Cancer Centre
NCC	nested case-control studies
NCI	National Cancer Institute
NCI LSF	National Cancer Institute Li–Fraumeni Syndrome
NDA	non-dense area
ng/d	nanograms per day
ng/mg	nanograms per milligram
Ng/ml	nanograms per millilitre
NHL	non-Hodgkin lymphoma
NHMRC	National Health and Medical Research Council
NHS	Nurses' Health Study (Refers to first study not NHSII or Nurses' Health Studies (NHS and NHSII)
NHSII	Nurses' Health Study II
NIH-AARP	National Institutes of Health–American Association of Retired Persons (Diet and Health Study)
NIOSH	National Institute for Occupational Safety and Health
NLCS	Netherlands Cohort Study
nmol/L	nanomoles per litre
NO	nitrogen oxide
NO ₂	nitrogen dioxide
NOC	National Occupational Classification
NOCCA	Nordic Occupation Cancer Project
NP	non-proliferative
NPCS	National Priority Contaminated Site
NR	not reported
NS	not significant
NSABP	National Surgical Adjuvant Breast Project

NSAID	non-steroidal anti-inflammatory drugs
NSW	New South Wales
ос	oral contraceptive
25(OH)D	25–hydihydroxyvitamin D
OR	odds ratio
ORDET	Hormones and Diet in the Aetiology of Breast Cancer Risk
РАН	polycyclic aromatic hydrocarbons
PALB2	partner and localier of BRAC2
РСВ	polychlorinated biphenyl
PCOS	polycystic ovarian syndrome
PCR	polymerase chain reaction
PDA	percent dense area
PDWA	proliferative disease without atypia
pg/g	picograms per gram
pg/kg	picograms per kilogram
РНВА	p-hydroxybenzoic acid
PHTS	PTEN Hamartoma Tumour Syndrome
PJS	Peutz-Jeghers Syndrome
PM	phthalate metabolite
PM2.5, 10	particulate matter 2.5, 10
РМН	postmenopausal hormone
pOR	pooled odds ratio
ppm-y	parts per million years
PPRC	Professional and Public Relations Committee
ppt	parts per trillion
PR	progesterone receptor
PREDIMED	Prevención con Dieta Mediterránea (Prevention with Mediterranean Diet)
PRS	polygenic risk score

PTEN	phosphatase and tensin homolog
Q	Q test to evaluate the heterogeneity among studies
RAI	radioactive iodine (also known as ¹³¹ I)
RCT	randomised controlled trial
RF-EMF	radiofrequency electromagnetic field
RNA	ribonucleic acid
RR	relative risk, or risk estimate
RT	radiation therapy
SD	standard deviation
SE	standard error
SEER	Surveillance, Epidemiology and End Results program
SENTIERI	Italian Epidemiological Study of Residents I National Contaminated Sites
SES	socioeconomic status
SHBG	sex hormone binding globulin
SIR	standardised incidence ratio
SLR	systematic literature review
SNP	single nucleotide polymorphism
SO ₂	sulphur dioxide
SRR	summary relative risk
sRT	supradiaphragmatic radiation therapy
STK11	serine threonine kinase 11
SweDCIS	Swedish randomised DCIS trial
SWHS	Seveso Women's Health Study
SWLH	Swedish Women's Lifestyle and Health
TA-NPCS	Taranto province excluding NPCS municipalities
ТВІ	total body irradiation
TCDD	tetracholorodibenzo-p-dioxin
TCGA	The Cancer Genome Atlas

TEQ	total toxic equivalent
TNBC	triple negative breast cancer
TOMS	Total Ozone Mapping Spectrometer
TP53	tumour protein 53
TP53+	TP53 mutation carriers
TWAS	transcriptome-wide association studies
UHF	ultra high frequency
UK	United Kingdom
UKCCCR	United Kingdom Coordinating Committee on Cancer Research
UKCCCR/ANZ	United Kingdom Coordinating Committee on Cancer Research Ductal Carcinoma in situ Working Party
US	United States
USA	United States of America
USRT	United States Radiologic Technologists
UV	ultraviolet
UVR	ultraviolet radiation
UVRd	ultraviolet radiation doses
VBD	volumetric breast density
VEC	vaginal epithelial changes
WBI	whole body irradiation
WCRF	World Cancer Research Fund
wнi	Women's Health Initiative
WHICT	Women's Health Initiative Clinical Trial
WHO	World Health Organization
WHR	waist to hip ratio
WLI	whole lung irradiation
у	year/s
ZIP	zone improvement plan

References

1 Cancer Australia. Breast cancer statistics. https://breastcancer.canceraustralia.gov.au/statistics. Accessed: June 2018 2 Australian Institute of Health and Welfare. Cancer in Australia 2017. Canberra, Australia, 2017 3 Tamimi RM. Epidemiology of breast cancer. Springer International Publishing, Switzerland, 2017 4 PDQ Screening and Prevention Editorial Board. Breast Cancer Prevention (PDQ®): Health Professional Version. https://www.cancer.gov/types/breast/hp/breastprevention-pdg. Accessed: November 2017 Report of the Intergaency Breast Cancer and Environmental Research Coordinating 5 Committee. Breast Cancer and the Environment: Prioritizing Prevention. Bethesda, MD, 2013 World Health Organization. The world health report 2002: reducing risks, promoting 6 healthy life. World Health Organization, Geneva, Switzerland, 2002 7 Gray JM, Rasanayagam S, Engel C, et al. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health. 2017;16 (1):94 8 Institute of Medicine. Breast cancer and the environment: a life course approach. The National Academies Press, Washington, DC, 2012 9 Fineout-Overholt E and Johnston L. Teaching EBP: asking searchable, answerable clinical questions. Worldviews Evid Based Nurs. 2005;2 (3):157-160 World Cancer Research Fund. Continuous Update Project Systematic Literature 10 Review: The associations between food, nutrition and physical activity and the risk of breast cancer. London, UK, 2017 11 World Cancer Research Fund and American Institute for Cancer Research. Continuous Update Project Expert Report 2018. Diet, nutrition, physical activity and breast cancer. London, UK, 2018 12 National Breast and Ovarian Cancer Centre. Breast cancer risk factors: a review of the evidence. Surry Hills, NSW, 2009 13 World Cancer Research Fund and American Institute for Cancer Research. Judging the evidence. https://www.wcrf.org/sites/default/files/judging-the-evidence.pdf. Accessed: August 2018 14 Cancer Australia. What is cancer? https://canceraustralia.gov.au/affectedcancer/what-cancer. Accessed: November 2017 15 Hanahan D and Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011:144 (5):646-674 16 Brisken C, Hess K and Jeitziner R. Progesterone and overlooked endocrine pathways in breast cancer pathogenesis. Endocrinology. 2015;156 (10):3442-3450 17 Obr AE and Edwards DP. The biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol. 2012;357 (1-2):4-17 Carroll JS, Hickey TE, Tarulli GA, et al. Deciphering the divergent roles of 18 progestogens in breast cancer. Nat Rev Cancer. 2017;17 (1):54-64 19 Scalbert A and Romieu I. Metabolic change and metabolomics. International Agency for Research on Cancer, Lyon, France, 2014 20 Trinchieri G. Immunology and immunotherapy. International Agency for Research on Cancer, Lyon, France, 2014 21 Herceg Z and Varga HH. Stem cells and cancer stem cells. International Agency for Research on Cancer, Lyon, France, 2014 Howell A, Anderson AS, Clarke RB, et al. Risk determination and prevention of breast 22 cancer. Breast Cancer Res. 2014;16 (5):446 23 Colditz GA, Bohlke K and Berkey CS. Breast cancer risk accumulation starts early: prevention must also. Breast Cancer Res Treat. 2014;145 (3):567-579

- 24 Dall GV and Britt KL. Estrogen effects on the mammary gland in early and late life and breast Cancer risk. Front Oncol. 2017;7 110
- 25 Shapira N. The potential contribution of dietary factors to breast cancer prevention. Eur J Cancer Prev. 2017;26 (5):385
- 26 Ries L, Eisner M, Kosary C, et al. SEER Cancer Statistics Review, 1973–1997. National Cancer Institute, Bethesda, MD., 2000
- 27 Australian Institute of Health and Welfare (AIHW). Australian Cancer Incidence and Mortality (ACIM) books. https://www.aihw.gov.au/reports/cancer/acimbooks/contents/acim-books. Accessed: June 2018
- 28 Singletary SE. Rating the risk factors for breast cancer. Ann Surg. 2003;237 (4):474-482
- 29 Cancer Australia. National Cancer Control Indicators: Cancer incidence. https://ncci.canceraustralia.gov.au/diagnosis/cancer-incidence/cancer-incidence. Accessed: August 2018
- 30 The Lancet. GLOBOCAN 2018: counting the toll of cancer. Lancet. 2018;392 (10152):985
- 31 Ginsburg O, Bray F, Coleman MP, et al. The global burden of women's cancers: a grand challenge in global health. Lancet. 2017;389 (10071):847-860
- 32 Feletto E and Sitas F. Quantifying disparities in cancer incidence and mortality of Australian residents of New South Wales (NSW) by place of birth: an ecological study. BMC Public Health. 2015;15 823
- 33 Moore SP, Antoni S, Colquhoun A, et al. Cancer incidence in indigenous people in Australia, New Zealand, Canada, and the USA: a comparative population-based study. Lancet Oncology. 2015;16 (15):1483-1492
- 34 Teng AM, Atkinson J, Disney G, et al. Ethnic inequalities in cancer incidence and mortality: census-linked cohort studies with 87 million years of person-time follow-up. BMC Cancer. 2016;16 (1):755
- 35 Akinyemiju T, Wiener H and Pisu M. Cancer-related risk factors and incidence of major cancers by race, gender and region; analysis of the NIH-AARP diet and health study. BMC Cancer. 2017;17 (1):597
- Tapia KA, Garvey G, Mc Entee M, et al. Breast cancer in Australian Indigenous women: incidence, mortality, and risk factors. Asian Pac J Cancer Prev. 2017;18 (4):873
- 37 Australian Institute of Health and Welfare. BreastScreen Australia monitoring report 2014–2015. Canberra, Australia, 2017
- 38 Akinyemiju TF, Genkinger JM, Farhat M, et al. Residential environment and breast cancer incidence and mortality: a systematic review and meta-analysis. BMC Cancer. 2015;15 (1):191
- 39 Lyle G, Hendrie GA and Hendrie D. Understanding the effects of socioeconomic status along the breast cancer continuum in Australian women: a systematic review of evidence. Int J Equity Health. 2017;16 (1):182
- 40 Singh GK and Jemal A. Socioeconomic and racial/ethnic disparities in cancer mortality, incidence, and survival in the United States, 1950–2014: over six decades of changing patterns and widening inequalities. J Environ Public Health. 2017;2017
- 41 Akinyemiju TF, Pisu M, Waterbor JW, et al. Socioeconomic status and incidence of breast cancer by hormone receptor subtype. Springerplus. 2015;4 (1):508
- 42 Troisi R, Potischman N and Hoover RN. Exploring the underlying hormonal mechanisms of prenatal risk factors for breast cancer: a review and commentary. Cancer Epidemiol Biomarkers Prev. 2007;16 (9):1700-1712
- 43 dos Santos Silva I, De Stavola B and McCormack V. Birth size and breast cancer risk: re-analysis of individual participant data from 32 studies. PLoS Med. 2008;5 (9):e193
- 44 Dartois L, Fagherazzi G, Baglietto L, et al. Proportion of premenopausal and postmenopausal breast cancers attributable to known risk factors: estimates from the E3N-EPIC cohort. Int J Cancer. 2016;138 (10):2415-27
- 45 Xue F, Rosner B, Eliassen H, et al. Body fatness throughout the life course and the incidence of premenopausal breast cancer. Int J Epidemiol. 2016;45 (4):1103-1112
- 46 Sandvei MS, Lagiou P, Romundstad PR, et al. Size at birth and risk of breast cancer: update from a prospective population-based study. Eur J Epidemiol. 2015;30 (6):485-492
- 47 Zhang B, Shu X-O, Delahanty RJ, et al. Height and breast cancer risk: evidence from prospective studies and Mendelian randomization. J Natl Cancer Inst. 2015;107 (11):djv219
- 48 Bandera EV, Fay SH, Giovannucci E, et al. The use and interpretation of anthropometric measures in cancer epidemiology: a perspective from the world cancer research fund international continuous update project. Int J Cancer. 2016;139 (11):2391-2397
- 49 Elands RJ, Simons CC, Riemenschneider M, et al. A systematic SNP selection approach to identify mechanisms underlying disease aetiology: linking height to post-menopausal breast and colorectal cancer risk. Sci Rep. 2017;7 41034
- 50 Horn-Ross PL, Canchola AJ, Bernstein L, et al. Lifetime body size and estrogenreceptor-positive breast cancer risk in the California Teachers Study cohort. Breast Cancer Res. 2016;18 (1):132
- 51 Nitta J, Nojima M, Ohnishi H, et al. Weight gain and alcohol drinking associations with breast cancer risk in Japanese postmenopausal women-results from the Japan Collaborative Cohort (JACC) Study. Asian Pac J Cancer Prev. 2016;17 (3):1437-1443
- 52 Wise LA and Titus LJ. Exposure to Breast Milk in Infancy and Risk of Adult Breast Cancer: A Summary of the Evidence. Humana Press, Totowa, NJ, 2013
- 53 Martin RM, Middleton N, Gunnell D, et al. Breast-feeding and cancer: the Boyd Orr cohort and a systematic review with meta-analysis. J Natl Cancer Inst. 2005;97 (19):1446-57
- 54 Michels KB, Trichopoulos D, Rosner BA, et al. Being breastfed in infancy and breast cancer incidence in adult life: results from the two nurses' health studies. Am J Epidemiol. 2001;153 (3):275-283
- 55 Wise LA, Titus-Ernstoff L, Newcomb PA, et al. Exposure to breast milk in infancy and risk of breast cancer. Cancer Causes Control. 2009;20 (7):1083-1090
- 56 Pettersson A, Graff RE, Ursin G, et al. Mammographic density phenotypes and risk of breast cancer: a meta-analysis. J Natl Cancer Inst. 2014;106 (5):dju078
- 57 Wang AT, Vachon CM, Brandt KR, et al. Breast density and breast cancer risk: a practical review. Mayo Clin Proc. 2014;89 (4):548-57
- 58 Melnikow J, Fenton JJ, Whitlock EP, et al. Supplemental screening for breast cancer in women with dense breasts: a systematic review for the US Preventive Services Task Force. Ann Intern Med. 2016;164 (4):268-278
- 59 American College of Radiology. The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS). American College of Radiology, Reston, VA, USA, 2003
- 60 Sickles E, D'Orsi C and Bassett L. ACR BI-RADS Atlas: Breast imaging reporting and data system. Reston, VA. J Am Coll Radiol. 2013;23 123-6
- 61 Moshina N, Sebuødegård S, Lee CI, et al. Automated volumetric analysis of mammographic density in a screening setting: worse outcomes for women with dense breasts. Radiology. 2018;288 (2):343-352
- 62 Sprague BL, Gangnon RE, Burt V, et al. Prevalence of mammographically dense breasts in the United States. J Natl Cancer Inst. 2014;106 (10):
- 63 Wanders JO, Holland K, Veldhuis WB, et al. Volumetric breast density affects performance of digital screening mammography. Breast Cancer Res Treat. 2017;162 (1):95-103
- 64 BreastScreen Australia. Breast Density and Screening: Position Statement http://www.cancerscreening.gov.au/internet/screening/publishing.nsf/Content/brpolicy-breast-density. Accessed: November 2018
- 65 Boyd NF, Greenberg C, Lockwood G, et al. Effects at two years of a low-fat, highcarbohydrate diet on radiologic features of the breast: results from a randomized trial. J Natl Cancer Inst. 1997;89 (7):488-496

- 66 Boyd NF, Dite GS, Stone J, et al. Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med. 2002;347 (12):886-894
- 67 Yaghjyan L, Mahoney M, Succop P, et al. Relationship between breast cancer risk factors and mammographic breast density in the Fernald Community Cohort. Br J Cancer. 2012;106 (5):996
- 68 Zhu W, Huang P, Macura KJ, et al. Association between breast cancer, breast density, and body adiposity evaluated by MRI. Eur Radiol. 2016;26 (7):2308-2316
- 69 Boyd NF, Martin LJ, Sun L, et al. Body size, mammographic density, and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2006;15 (11):2086-2092
- 70 McTiernan A, Martin C, Peck J, et al. Women's Health Initiative Mammogram Density Study Investigators. Estrogen-plus-progestin use and mammographic density in postmenopausal women: Women's Health Initiative randomized trial. J Natl Cancer Inst. 2005;97 (18):1366-1376
- 71 McCormack VA and dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15 (6):1159-1169
- 72 Bae JM and Kim EH. Breast Density and Risk of Breast Cancer in Asian Women: A Meta-analysis of Observational Studies. J Prev Med Public Health. 2016;49 (6):367-375
- 73 Chiu SY-H, Duffy S, Yen AM-F, et al. Effect of baseline breast density on breast cancer incidence, stage, mortality, and screening parameters: 25-year follow-up of a Swedish mammographic screening. Cancer Epidemiol Biomarkers Prev. 2010;19 (5):1219-1228
- 74 Jansen L, Backstein R and Brown M. Breast size and breast cancer: a systematic review. J Plast Reconstr Aesthet Surg. 2014;67 (12):1615-1623
- 75 Chen L, Malone KE and Li Cl. Bra Wearing Not Associated with Breast Cancer Risk: A Population-Based Case–Control Study. Cancer Epidemiol Biomarkers Prev. 2014;23 (10):2181-2185
- 76 Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58 209 women with breast cancer and 101 986 women without the disease. Lancet. 2001;358 (9291):1389-1399
- 77 Pharoah PD, Day NE, Duffy S, et al. Family history and the risk of breast cancer: a systematic review and meta-analysis. Int J Cancer. 1997;71 (5):800-809
- 78 Bevier M, Sundquist K and Hemminki K. Risk of breast cancer in families of multiple affected women and men. Breast Cancer Res Treat. 2012;132 (2):723-728
- 79 National Cancer Institute (NCI). Genetics of Breast and Gynecologic Cancers (PDQ)–Health Professional Version. www.cancer.gov/types/breast/hp/breastovarian-genetics-pdq Accessed: March 2018
- 80 Turati F, Edefonti V, Bosetti C, et al. Family history of cancer and the risk of cancer: a network of case–control studies. Ann Oncol. 2013;24 (10):2651-2656
- 81 Kharazmi E, Chen T, Narod S, et al. Effect of multiplicity, laterality, and age at onset of breast cancer on familial risk of breast cancer: a nationwide prospective cohort study. Breast Cancer Res Treat. 2014;144 (1):185-192
- 82 Beebe-Dimmer JL, Yee C, Cote ML, et al. Familial clustering of breast and prostate cancer and risk of postmenopausal breast cancer in the Women's Health Initiative Study. Cancer. 2015;121 (8):1265-1272
- 83 Colditz GA, Kaphingst KA, Hankinson SE, et al. Family history and risk of breast cancer: nurses' health study. Breast Cancer Res Treat. 2012;133 (3):1097-1104
- 84 Bethea TN, Rosenberg L, Castro-Webb N, et al. Family history of cancer in relation to breast cancer subtypes in African American women. Cancer Epidemiol Biomarkers Prev. 2016;25 (2):366-373
- 85 Evans DG and Howell A. Breast cancer risk-assessment models. Breast Cancer Res. 2007;9 (5):213
- 86 Sutcliffe S, Pharoah PD, Easton DF, et al. Ovarian and breast cancer risks to women in families with two or more cases of ovarian cancer. Int J Cancer. 2000;87 (1):110-7

- 87 Slattery ML and Kerber RA. A comprehensive evaluation of family history and breast cancer risk: the utah population database. JAMA. 1993;270 (13):1563-1568
- 88 Claus EB, Risch N and Thompson WD. The calculation of breast cancer risk for women with a first degree family history of ovarian cancer. Breast Cancer Res Treat. 1993;28 (2):115-120
- 89 Valeri A, Fournier G, Morin V, et al. Early onset and familial predisposition to prostate cancer significantly enhance the probability for breast cancer in first degree relatives. Int J Cancer. 2000;86 (6):883-887
- 90 Holter S, Borgida A, Dodd A, et al. Germline BRCA Mutations in a Large Clinic-Based Cohort of Patients With Pancreatic Adenocarcinoma. J Clin Oncol. 2015;33 (28):3124-9
- Antoniou AC, Cunningham AP, Peto J, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer. 2008;98 (8):1457-66
- 92 Turati F, Negri E and Vecchia CL. Family history and the risk of cancer: genetic factors influencing multiple cancer sites. Expert Rev Anticancer Ther. 2014;14 (1):1-4
- 93 Kurian AW, Hughes E, Handorf EA, et al. Breast and Ovarian Cancer Penetrance Estimates Derived From Germline Multiple-Gene Sequencing Results in Women. JCO Precis Oncol. 2017;1 1-12
- 94 van Os N, Roeleveld N, Weemaes C, et al. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet. 2016;90 (2):105-117
- 95 Goldgar DE, Healey S, Dowty JG, et al. Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res. 2011;13 (4):R73
- 96 National Institutes of Health (NIH) and U.S. National Library of Medicine (NLM). Ataxia-telangiectasia. https://ghr.nlm.nih.gov/condition/ataxia-telangiectasia. Accessed: May 2018
- 97 Renwick A, Thompson D, Seal S, et al. ATM mutations that cause ataxiatelangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006;38 (8):873
- P8 Easton DF, Pharoah PD, Antoniou AC, et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med. 2015;372 (23):2243-2257
- 99 Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17 (5):405-424
- 100 Aloraifi F, McCartan D, McDevitt T, et al. Protein-truncating variants in moderate-risk breast cancer susceptibility genes: a meta-analysis of high-risk case-control screening studies. Cancer Genet. 2015;208 (9):455-463
- 101 Couch FJ, Shimelis H, Hu C, et al. Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol. 2017;3 (9):1190-1196
- 102 Decker B, Allen J, Luccarini C, et al. Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks. J Med Genet. 2017;54 (11):732-741
- 103 National Institutes of Health (NIH) and U.S. National Library of Medicine (NLM). Genetics Home Reference. BRCA1 gene. https://ghr.nlm.nih.gov/gene/BRCA1. Accessed: June 2018
- 104 Janavičius R. Founder BRCA1/2 mutations in the Europe: implications for hereditary breast-ovarian cancer prevention and control. EPMA J. 2010;1 (3):397-412
- 105 Graffeo R, Livraghi L, Pagani O, et al. Time to incorporate germline multigene panel testing into breast and ovarian cancer patient care. Breast Cancer Res Treat. 2016;160 (3):393-410
- 106 Bahar AY, Taylor PJ, Andrews L, et al. The frequency of founder mutations in the BRCA1, BRCA2, and APC genes in Australian Ashkenazi Jews: implications for the generality of US population data. Cancer. 2001;92 (2):440-445

- 107 Risch HA, McLaughlin JR, Cole DE, et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin–cohort study in Ontario, Canada. J Natl Cancer Inst. 2006;98 (23):1694-1706
- 108 Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317 (23):2402-2416
- 109 Antoniou A, Pharoah PD, Narod S, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72 (5):1117-1130
- 110 Chen S and Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol. 2007;25 (11):1329
- 111 Suthers GK. Cancer risks for Australian women with a BRCA1 or a BRCA2 mutation. ANZ J Surg. 2007;77 (5):314-319
- 112 Mavaddat N, Peock S, Frost D, et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst. 2013;105 (11):812-822
- 113 National Institutes of Health (NIH) and U.S. National Library of Medicine (NLM). Genetics Home Reference. BRCA2 gene. https://ghr.nlm.nih.gov/gene/BRCA2. Accessed: June 2018
- 114 Van Asperen C, Brohet R, Meijers-Heijboer E, et al. Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet. 2005;42 (9):711-719
- 115 Hansford S, Kaurah P, Li-Chang H, et al. Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol. 2015;1 (1):23-32
- 116 Lowstuter K, Espenschied CR, Sturgeon D, et al. Unexpected CDH1 mutations identified on multigene panels pose clinical management challenges. JCO Precis Oncol. 2017;1 1-12
- 117 Huynh JM and Laukaitis CM. Panel testing reveals nonsense and missense CDH1 mutations in families without hereditary diffuse gastric cancer. Mol Genet Genomic Med. 2016;4 (2):232-6
- 118 National Institutes of Health (NIH) and U.S. National Library of Medicine (NLM). CDH1 gene. https://ghr.nlm.nih.gov/gene/CDH1. Accessed: July 2018
- 119 Pharoah PD, Guilford P, Caldas C, et al. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology. 2001;121 (6):1348-1353
- 120 Kaurah P, MacMillan A, Boyd N, et al. Founder and recurrent CDH1 mutations in families with hereditary diffuse gastric cancer. JAMA. 2007;297 (21):2360-2372
- 121 Yang Y, Zhang F, Wang Y, et al. CHEK2 1100delC variant and breast cancer risk in Caucasians: a meta-analysis based on 25 studies with 29,154 cases and 37,064 controls. Asian Pac J Cancer Prev. 2012;13 (7):3501-3505
- 122 Zhang B, Beeghly-Fadiel A, Long J, et al. Genetic variants associated with breastcancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol. 2011;12 (5):477-488
- 123 Weischer M, Bojesen SE, Ellervik C, et al. CHEK2* 1100delC genotyping for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls. J Clin Oncol. 2008;26 (4):542-548
- 124 Meijers-Heijboer H, van den Ouweland A, Klijn J, et al. Low-penetrance susceptibility to breast cancer due to CHEK2* 1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet. 2002;31 (1):55
- 125 National Institutes of Health (NIH) and U.S. National Library of Medicine (NLM). Li Fraumeni Syndrome. https://ghr.nlm.nih.gov/condition/li-fraumeni-syndrome#genes. Accessed: July 2018
- 126 National Institutes of Health (NIH) and US National Library of Medicine (NLM). CHEK2 gene. https://ghr.nlm.nih.gov/gene/CHEK2. Accessed: July 2018

- Liu C, Wang Y, Wang Q-S, et al. The CHEK2 I157T variant and breast cancer susceptibility: a systematic review and meta-analysis. Asian Pac J Cancer Prev. 2012;13 (4):1355-60
- 128 Southey MC, Goldgar DE, Winqvist R, et al. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J Med Genet. 2016;53 800-811
- 129 Tischkowitz M and Xia B. PALB2/FANCN: recombining cancer and Fanconi anemia. Cancer Res. 2010;0008-5472. CAN-10-1012
- 130 Antoniou AC, Casadei S, Heikkinen T, et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014;371 (6):497-506
- Cybulski C, Kluźniak W, Huzarski T, et al. Clinical outcomes in women with breast cancer and a PALB2 mutation: a prospective cohort analysis. Lancet Oncol. 2015;16 (6):638-644
- 132 National Institutes of Health (NIH) and US National Library of Medicine (NLM). PALB2 gene. https://ghr.nlm.nih.gov/gene/PALB2. Accessed: July 2018
- 133 Wesoła M and Jeleń M. The risk of breast cancer due to PALB2 gene mutations. Adv Clin Exp Med. 2017;26 (2):339-342
- Nieuwenhuis MH, Kets CM, Murphy-Ryan M, et al. Cancer risk and genotype–
 phenotype correlations in PTEN hamartoma tumor syndrome. Fam Cancer. 2014;13
 (1):57-63
- 135 National Institutes of Health (NIH) and US National Library of Medicine (NLM). PTEN gene. https://ghr.nlm.nih.gov/gene/PTEN. Accessed: June 2018
- 136 Ngeow J, Sesock K and Eng C. Breast cancer risk and clinical implications for germline PTEN mutation carriers. Breast Cancer Res Treat. 2017;165 (1):1-8
- 137 Kirk J, Barlow-Stewart KK, Poplawski NK, et al. Medicare-funded cancer genetic tests: a note of caution. Med J Aust. 2018;209 (5):193-196
- 138 Tan M-H, Mester JL, Ngeow J, et al. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18 (2):400-407
- 139 Bubien V, Bonnet F, Brouste V, et al. High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet. 2013;50 (4):255-263
- 140 Michailidou K, Lindström S, Dennis J, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551 (7678):92
- 141 Mavaddat N, Pharoah PD, Michailidou K, et al. Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst. 2015;107 (5):
- 142 National Institutes of Health (NIH) and US National Library of Medicine (NLM). What are single nucleotide polymorphisms (SNPs)?
- https://ghr.nlm.nih.gov/primer/genomicresearch/gwastudies. Accessed: June 2018
 Milne RL, Kuchenbaecker KB, Michailidou K, et al. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat Genet. 2017;49 (12):1767
- Lilyquist J, Ruddy KJ, Vachon CM, et al. Common genetic variation and breast cancer risk-past, present, and future. Cancer Epidemiol Biomarkers Prev. 2018;27 (4):380-394
- 145 Michailidou K, Beesley J, Lindstrom S, et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Genet. 2015;47 (4):373
- 146 Li H, Feng B, Miron A, et al. Breast cancer risk prediction using a polygenic risk score in the familial setting: a prospective study from the Breast Cancer Family Registry and kConFab. Genet Med. 2017;19 (1):30
- 147 Kuchenbaecker KB, McGuffog L, Barrowdale D, et al. Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst. 2017;109 (7):
- 148 Cuzick J, Brentnall AR, Segal C, et al. Impact of a panel of 88 single nucleotide polymorphisms on the risk of breast cancer in high-risk women: results from two randomized tamoxifen prevention trials. J Clin Oncol. 2017;35 (7):743-750
- 149 Dite GS, MacInnis RJ, Bickerstaffe A, et al. Breast cancer risk prediction using clinical models and 77 independent risk-associated SNPs for women aged under 50 years:

Australian Breast Cancer Family Registry. Cancer Epidemiol Biomarkers Prev. 2016;25 (2):359-365

- 150 Shieh Y, Hu D, Ma L, et al. Breast cancer risk prediction using a clinical risk model and polygenic risk score. Breast Cancer Res Treat. 2016;159 (3):513-525
- 151 Vachon CM, Pankratz VS, Scott CG, et al. The contributions of breast density and common genetic variation to breast cancer risk. J Natl Cancer Inst. 2015;107 (5):dju397
- 152 Giardiello FM, Brensinger JD, Tersmette AC, et al. Very high risk of cancer in familial Peutz–Jeghers syndrome. Gastroenterology. 2000;119 (6):1447-1453
- 153 Hearle N, Schumacher V, Menko FH, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res. 2006;12 (10):3209-3215
- 154 Resta N, Pierannunzio D, Lenato GM, et al. Cancer risk associated with STK11/LKB1 germline mutations in Peutz–Jeghers syndrome patients: results of an Italian multicenter study. Dig Liver Dis. 2013;45 (7):606-611
- 155 Papp J, Kovacs ME, Solyom S, et al. High prevalence of germline STK11 mutations in Hungarian Peutz-Jeghers Syndrome patients. BMC Med Genet. 2010;11 169
- 156 Van Lier M, Wagner A, Mathus-Vliegen E, et al. High cancer risk in Peutz–Jeghers syndrome: a systematic review and surveillance recommendations. The American journal of gastroenterology. 2010;105 (6):1258
- 157 Cancer Institute NSW. Genetic testing for heritable mutations in the STK11 gene. https://www.eviq.org.au/cancer-genetics/genetic-testing-for-heritablemutations/744-genetic-testing-for-heritable-mutations-in-the. Accessed: October 2018
- 158 Beggs AD, Latchford AR, Vasen HF, et al. Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut. 2010;59 (7):975-86
- 159 National Institutes of Health (NIH) and US National Library of Medicine (NLM). STK11 gene. https://ghr.nlm.nih.gov/gene/STK11#. Accessed: July 2018
- 160 Connolly DC, Katabuchi H, Cliby WA, et al. Somatic mutations in the STK11/LKB1 gene are uncommon in rare gynecological tumor types associated with Peutz-Jegher's syndrome. Am J Pathol. 2000;156 (1):339-45
- 161 Schon K and Tischkowitz M. Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Res Treat. 2017;1-7
- 162 National Institutes of Health (NIH) and US National Library of Medicine (NLM). TP53 gene. https://ghr.nlm.nih.gov/gene/TP53. Accessed: June 2018
- 163 Mouchawar J, Korch C, Byers T, et al. Population-based estimate of the contribution of TP53 mutations to subgroups of early-onset breast cancer: Australian Breast Cancer Family Study. Cancer Res. 2010;0008-5472. CAN-09-0851
- 164 McCuaig JM, Armel SR, Novokmet A, et al. Routine TP53 testing for breast cancer under age 30: ready for prime time? Fam Cancer. 2012;11 (4):607-613
- 165 Hwang S-J, Lozano G, Amos CI, et al. Germline p53 mutations in a cohort with childhood sarcoma: sex differences in cancer risk. Am J Hum Genet. 2003;72 (4):975-983
- 166 Mai PL, Best AF, Peters JA, et al. Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer. 2016;122 (23):3673-3681
- 167 Bougeard G, Renaux-Petel M, Flaman J-M, et al. Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol. 2015;33 (21):2345-2352
- 168 Dyrstad SW, Yan Y, Fowler AM, et al. Breast cancer risk associated with benign breast disease: systematic review and meta-analysis. Breast Cancer Res Treat. 2015;149 (3):569-575
- 169 Zhou W-B, Xue D-Q, Liu X-A, et al. The influence of family history and histological stratification on breast cancer risk in women with benign breast disease: a metaanalysis. J Cancer Res Clin Oncol. 2011;137 (7):1053-1060
- 170 Hoogerbrugge N, Bult P, de Widt-Levert L, et al. High prevalence of premalignant lesions in prophylactically removed breasts from women at hereditary risk for breast cancer. J Clin Oncol. 2003;21 (1):41-45

- 171 Rohan TE, Negassa A, Chlebowski RT, et al. Estrogen plus progestin and risk of benign proliferative breast disease. Cancer Epidemiol Biomarkers Prev. 2008;17 (9):2337-2343
- 172 Tan-Chiu E, Wang J, Costantino JP, et al. Effects of tamoxifen on benign breast disease in women at high risk for breast cancer. J Natl Cancer Inst. 2003;95 (4):302-307
- 173 Hartmann LC, Sellers TA, Frost MH, et al. Benign breast disease and the risk of breast cancer. N Engl J Med. 2005;353 (3):229-237
- 174 Visscher DW, Frank RD, Carter JM, et al. Breast cancer risk and progressive histology in serial benign biopsies. J Natl Cancer Inst. 2017;109 (10):djx035
- 175 Radisky DC, Visscher DW, Frank RD, et al. Natural history of age-related lobular involution and impact on breast cancer risk. Breast Cancer Res Treat. 2016;155 (3):423-430
- 176 Said SM, Visscher DW, Nassar A, et al. Flat epithelial atypia and risk of breast cancer: a Mayo cohort study. Cancer. 2015;121 (10):1548-1555
- 177 Hartmann LC, Radisky DC, Frost MH, et al. Understanding the premalignant potential of atypical hyperplasia through its natural history: a longitudinal cohort study. Cancer Prev Res. 2014;
- 178 Degnim AC, Dupont WD, Radisky DC, et al. Extent of atypical hyperplasia stratifies breast cancer risk in 2 independent cohorts of women. Cancer. 2016;122 (19):2971-2978
- 179 Cancer Australia. Clinical guidance for the management of lobular carcinoma in situ. https://canceraustralia.gov.au/publications-and-resources/clinical-practiceguidelines/clinical-guidance-management-lobular-carcinoma-situ. Accessed: August 2018
- 180 King TA, Pilewskie M, Muhsen S, et al. Lobular carcinoma in situ: a 29-year longitudinal experience evaluating clinicopathologic features and breast cancer risk. J Clin Oncol. 2015;33 (33):3945
- 181 Chuba PJ, Hamre MR, Yap J, et al. Bilateral risk for subsequent breast cancer after lobular carcinoma-in-situ: analysis of surveillance, epidemiology, and end results data. J Clin Oncol. 2005;23 (24):5534-5541
- 182 Ginter PS and D'Alfonso TM. Current Concepts in Diagnosis, Molecular Features, and Management of Lobular Carcinoma In Situ of the Breast With a Discussion of Morphologic Variants. Arch Pathol Lab Med. 2017;141 (12):1668-1678
- 183 Jean-Louis CJ, Masdon J, Smith B, et al. The Pathologic Finding of Combined Lobular Carcinoma In Situ and Invasive Lobular Cancer May Indicate more than Just a High-Risk Marker Role of Lobular Carcinoma In Situ. Am Surg. 2017;83 (5):482-485
- 184 Li Cl, Malone KE, Saltzman BS, et al. Risk of invasive breast carcinoma among women diagnosed with ductal carcinoma in situ and lobular carcinoma in situ, 1988-2001. Cancer. 2006;106 (10):2104-2112
- 185 Lo LL, Milne RL, Liao Y, et al. Validation of the IBIS breast cancer risk evaluator for women with lobular carcinoma in-situ. Br J Cancer. 2018;119 (1):36-39
- 186 Mao K, Yang Y, Wu W, et al. Risk of second breast cancers after lobular carcinoma in situ according to hormone receptor status. PLoS One. 2017;12 (5):e0176417
- 187 Levi F, Randimbison L, Te VC, et al. Invasive breast cancer following ductal and lobular carcinoma in situ of the breast. Int J Cancer. 2005;116 (5):820-823
- 188 Rosen PP, Kosloff C, Lieberman PH, et al. Lobular carcinoma in situ of the breast. Detailed analysis of 99 patients with average follow-up of 24 years. Am J Surg Pathol. 1978;2 (3):225-51
- 189 Rawal R, Bermejo JL and Hemminki K. Risk of subsequent invasive breast carcinoma after in situ breast carcinoma in a population covered by national mammographic screening. Br J Cancer. 2005;92 (1):162
- Bodian CA, Perzin KH and Lattes R. Lobular neoplasia. Long term risk of breast cancer and relation to other factors. Cancer. 1996;78 (5):1024-34
- 191 Wärnberg F, Yuen J and Holmberg L. Risk of subsequent invasive breast cancer after breast carcinoma in situ. Lancet. 2000;355 (9205):724-725

- 192 Soerjomataram I, Louwman WJ, van der Sangen MJ, et al. Increased risk of second malignancies after in situ breast carcinoma in a population-based registry. Br J Cancer. 2006;95 (3):393-7
- 193 Robinson D, Holmberg L and Moller H. The occurrence of invasive cancers following a diagnosis of breast carcinoma in situ. Br J Cancer. 2008;99 (4):611-5
- 194 Franceschi S, Levi F, La Vecchia C, et al. Second cancers following in situ carcinoma of the breast. Int J Cancer. 1998;77 (3):392-5
- 195 Page DL, Kidd Jr TE, Dupont WD, et al. Lobular neoplasia of the breast: higher risk for subsequent invasive cancer predicted by more extensive disease. Hum Pathol. 1991;22 (12):1232-1239
- 196 Andersen JA. Lobular carcinoma in situ of the breast. An approach to rational treatment. Cancer. 1977;39 (6):2597-602
- 197 Wong SM, King T, Boileau J-F, et al. Population-Based Analysis of Breast Cancer Incidence and Survival Outcomes in Women Diagnosed with Lobular Carcinoma In Situ. Ann Surg Oncol. 2017;24 (9):2509-2517
- 198 To T, Wall C, Baines CJ, et al. Is carcinoma in situ a precursor lesion of invasive breast cancer? Int J Cancer. 2014;135 (7):1646-52
- 199 Australian Institute of Health and Welfare & National Breast and Ovarian Cancer Centre. Risk of invasive breast cancer in women diagnosed with ductal carcinoma in situ in Australia between 1995 and 2005. Canberra, ACT, 2010
- 200 Gorringe KL and Fox SB. Ductal carcinoma in situ biology, biomarkers, and diagnosis. Front Oncol. 2017;7 248
- 201 Virnig BA, Wang S-Y, Shamilyan T, et al. Ductal carcinoma in situ: risk factors and impact of screening. J Natl Cancer Inst Monogr. 2010;2010 (41):113-116
- 202 Buckley ES, Sullivan T, Farshid G, et al. The utility of linked cancer registry and health administration data for describing system-wide outcomes and research: a BreastScreen example. J Eval Clin Pract. 2016;22 (5):755-760
- Falk RS, Hofvind S, Skaane P, et al. Second events following ductal carcinoma in situ of the breast: a register-based cohort study. Breast Cancer Res Treat. 2011;129 (3):929
- 204 Innos K and Horn-Ross PL. Risk of second primary breast cancers among women with ductal carcinoma in situ of the breast. Breast Cancer Res Treat. 2008;111 (3):531-540
- 205 Elshof LE, Schaapveld M, Schmidt MK, et al. Subsequent risk of ipsilateral and contralateral invasive breast cancer after treatment for ductal carcinoma in situ: incidence and the effect of radiotherapy in a population-based cohort of 10,090 women. Breast Cancer Res Treat. 2016;159 (3):553-563
- 206 Cheung S, Booth ME, Kearins O, et al. Risk of subsequent invasive breast cancer after a diagnosis of ductal carcinoma in situ (DCIS). The Breast. 2014;23 (6):807-811
- 207 Zhang X, Dai H, Liu B, et al. Predictors for local invasive recurrence of ductal carcinoma in situ of the breast: a meta-analysis. Eur J Cancer Prev. 2016;25 (1):19
- Liu Y, Schloemann DT, Lian M, et al. Accelerated partial breast irradiation through brachytherapy for ductal carcinoma in situ: factors influencing utilization and risks of second breast tumors. Breast Cancer Res Treat. 2015;151 (1):199-208
- 209 Yi M, Meric-Bernstam F, Kuerer HM, et al. Evaluation of a breast cancer nomogram for predicting risk of ipsilateral breast tumor recurrences in patients with ductal carcinoma in situ after local excision. J Clin Oncol. 2012;30 (6):600
- 210 Youlden DR and Baade PD. The relative risk of second primary cancers in Queensland, Australia: a retrospective cohort study. BMC Cancer. 2011;11 (1):83
- 211 Bazire L, De Rycke Y, Asselain B, et al. Risks of second malignancies after breast cancer treatment: long-term results. Cancer Radiother. 2017;21 (1):10-15
- 212 Ricceri F, Fasanelli F, Giraudo MT, et al. Risk of second primary malignancies in women with breast cancer: results from the European prospective investigation into cancer and nutrition (EPIC). Int J Cancer. 2015;137 (4):940-948
- 213 Rusner C, Wolf K, Bandemer-Greulich U, et al. Risk of contralateral second primary breast cancer according to hormone receptor status in Germany. Breast Cancer Res. 2014;16 (5):452

- 214 Cluze C, Delafosse P, Seigneurin A, et al. Incidence of second cancer within 5 years of diagnosis of a breast, prostate or colorectal cancer: a population-based study. Eur J Cancer Prev. 2009;18 (5):343-348
- 215 Kurian AW, McClure LA, John EM, et al. Second primary breast cancer occurrence according to hormone receptor status. J Natl Cancer Inst. 2009;101 (15):1058-1065
- 216 Schaapveld M, Visser O, Louwman W, et al. The impact of adjuvant therapy on contralateral breast cancer risk and the prognostic significance of contralateral breast cancer: a population based study in the Netherlands. Breast Cancer Res Treat. 2008;110 (1):189-197
- 217 Soerjomataram I, Louwman W, de Vries E, et al. Primary malignancy after primary female breast cancer in the South of the Netherlands, 1972–2001. Breast Cancer Res Treat. 2005;93 (1):91-95
- 218 Vichapat V, Garmo H, Holmqvist M, et al. Tumor stage affects risk and prognosis of contralateral breast cancer: results from a large Swedish-population–based study. J Clin Oncol. 2012;30 (28):3478-3485
- 219 Bouchardy C, Benhamou S, Fioretta G, et al. Risk of second breast cancer according to estrogen receptor status and family history. Breast Cancer Res Treat. 2011;127 (1):233-241
- 220 Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012;13 (11):1141-1151
- 221 Chang-Claude J, Andrieu N, Rookus M, et al. Age at menarche and menopause and breast cancer risk in the International BRCA1/2 Carrier Cohort Study. Cancer Epidemiol Biomarkers Prev. 2007;16 (4):740-6
- 222 Endogenous Hormones and Breast Cancer Collaborative Group, Key T, Appleby P, et al. Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. Br J Cancer. 2011;105 (5):709
- 223 Bodicoat DH, Schoemaker MJ, Jones ME, et al. Timing of pubertal stages and breast cancer risk: the Breakthrough Generations Study. Breast Cancer Res. 2014;16 (1):R18
- 224 Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50 302 women with breast cancer and 96 973 women without the disease. Lancet. 2002;360 (9328):187-195
- 225 Russo J, Moral R, Balogh GA, et al. The protective role of pregnancy in breast cancer. Breast Cancer Res. 2005;7 (3):131
- 226 Nelson HD, Zakher B, Cantor A, et al. Risk factors for breast cancer for women aged 40 to 49 years: a systematic review and meta-analysis. Ann Intern Med. 2012;156 (9):635-648
- 227 Lambertini M, Santoro L, Del Mastro L, et al. Reproductive behaviors and risk of developing breast cancer according to tumor subtype: A systematic review and meta-analysis of epidemiological studies. Cancer Treat Rev. 2016;49 65-76
- 228 Ritte R, Tikk K, Lukanova A, et al. Reproductive factors and risk of hormone receptor positive and negative breast cancer: a cohort study. BMC Cancer. 2013;13 (1):584
- 229 Sisti JS, Collins LC, Beck AH, et al. Reproductive risk factors in relation to molecular subtypes of breast cancer: results from the nurses' health studies. Int J Cancer. 2016;138 (10):2346-2356
- 230 Lambe M, Hsieh C-c, Chan H-w, et al. Parity, age at first and last birth, and risk of breast cancer: a population-based study in Sweden. Breast Cancer Res Treat. 1996;38 (3):305-311
- 231 World Health Organization. Indicators for assessing infant and young child feeding practices: conclusions of a consensus meeting held 6-8 November 2007 in Washington DC, USA. World Health Organization (WHO),, Geneva, Switzerland, 2008
- 232 World Cancer Research Fund and American Institute for Cancer Research. Food, Nutrition, Physical activity, and the Prevention of Cancer: A Global Perspective. Washington, DC, USA, 2007

- 233 Zhou Y, Chen J, Li Q, et al. Association between breastfeeding and breast cancer risk: evidence from a meta-analysis. Breastfeed Med. 2015;10 (3):175-182
- 234 Islami F, Liu Y, Jemal A, et al. Breastfeeding and breast cancer risk by receptor status—a systematic review and meta-analysis. Ann Oncol. 2015;26 (12):2398-2407
- 235 Ma H, Ursin G, Xu X, et al. Reproductive factors and the risk of triple-negative breast cancer in white women and African-American women: a pooled analysis. Breast Cancer Res. 2017;19 (1):6
- 236 Do K-A, Treloar SA, Pandeya N, et al. Predictive factors of age at menopause in a large Australian twin study. Hum Biol. 1998;1073-1091
- Li H, Sun X, Miller E, et al. BMI, reproductive factors, and breast cancer molecular subtypes: a case-control study and meta-analysis. J Epidemiol. 2017;27 (4):143-151
- 238 Endogenous Hormones and Breast Cancer Collaborative Group. Steroid hormone measurements from different types of assays in relation to body mass index and breast cancer risk in postmenopausal women: reanalysis of eighteen prospective studies. Steroids. 2015;99 49-55
- 239 Endogenous Hormones and Breast Cancer Collaborative Group. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol. 2010;11 (6):530
- 240 Endogenous Hormones and Breast Cancer Collaborative Group. Sex hormones and risk of breast cancer in premenopausal women: a collaborative reanalysis of individual participant data from seven prospective studies. Lancet Oncology. 2013;14 (10):1009-1019
- 241 Fortner RT, Eliassen AH, Spiegelman D, et al. Premenopausal endogenous steroid hormones and breast cancer risk: results from the Nurses' Health Study II. Breast Cancer Res. 2013;15 (2):R19
- 242 Schernhammer ES, Sperati F, Razavi P, et al. Endogenous sex steroids in premenopausal women and risk of breast cancer: the ORDET cohort. Breast Cancer Res. 2013;15 (3):R46
- 243 Kaaks R, Tikk K, Sookthai D, et al. Premenopausal serum sex hormone levels in relation to breast cancer risk, overall and by hormone receptor status—results from the EPIC cohort. Int J Cancer. 2014;134 (8):1947-1957
- 244 Endogenous Hormones and Breast Cancer Collaborative Group. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst. 2002;94 (8):606-616
- 245 James RE, Lukanova A, Dossus L, et al. Postmenopausal serum sex steroids and risk of hormone receptor-positive and -negative breast cancer: a nested case-control study. Cancer Prev Res. 2011;4 (10):1626-35
- 246 Sieri S, Krogh V, Bolelli G, et al. Sex hormone levels, breast cancer risk, and cancer receptor status in postmenopausal women: the ORDET cohort. Cancer Epidemiol Biomarkers Prev. 2009;18 (1):169-176
- 247 Farhat GN, Cummings SR, Chlebowski RT, et al. Sex hormone levels and risks of estrogen receptor–negative and estrogen receptor–positive breast cancers. J Natl Cancer Inst. 2011;103 (7):562-570
- 248 Kaaks R, Johnson T, Tikk K, et al. Insulin-like growth factor I and risk of breast cancer by age and hormone receptor status—A prospective study within the EPIC cohort. Int J Cancer. 2014;134 (11):2683-2690
- 249 National Cancer Institute (NCI). Breast Cancer Prevention (PDQ®)–Health Professional Version. https://www.cancer.gov/types/breast/hp/breast-preventionpdq. Accessed: June 2018
- 250 Bernichtein S, Touraine P and Goffin V. New concepts in prolactin biology. J Endocrinol. 2010;206 (1):1-11
- 251 Tworoger SS, Eliassen AH, Zhang X, et al. A 20-year prospective study of plasma prolactin as a risk marker of breast cancer development. Cancer Res. 2013;73 (15):4810-9

- 252 Tikk K, Sookthai D, Johnson T, et al. Circulating prolactin and breast cancer risk among pre-and postmenopausal women in the EPIC cohort. Ann Oncol. 2014;25 (7):1422-1428
- 253 Teede HJ, Misso ML, Boyle JA, et al. Translation and implementation of the Australian-led PCOS guideline: clinical summary and translation resources from the International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. Med J Aust. 2018;209 (7):S3-S8
- 254 Harris HR and Terry KL. Polycystic ovary syndrome and risk of endometrial, ovarian, and breast cancer: a systematic review. Fertil Res Pract. 2016;2 14
- 255 Shobeiri F and Jenabi E. The association between polycystic ovary syndrome and breast cancer: a meta-analysis. Obstet Gynecol Sci. 2016;59 (5):367-372
- 256 Chittenden BG, Fullerton G, Maheshwari A, et al. Polycystic ovary syndrome and the risk of gynaecological cancer: a systematic review. Reprod Biomed Online. 2009;19 (3):398-405
- 257 Zhu H, Lei X, Feng J, et al. Oral contraceptive use and risk of breast cancer: a metaanalysis of prospective cohort studies. Eur J Contracept Reprod Health Care. 2012;17 (6):402-414
- 258 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer. Combined estrogen-progestogen contraceptives and combined estrogen-progestogen menopausal therapy. Lyon, France, 2007
- 259 Pike MC, Spicer DV, Dahmoush L, et al. Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev. 1993;15 (1):17-30
- 260 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer.
- Pharmaceuticals. International Agency for Research on Cancer, Lyon, France, 2012
 Vessey M and Painter R. Oral contraceptive use and cancer. Findings in a large cohort study, 1968–2004. Br J Cancer. 2006;95 385
- 262 Hannaford PC, Selvaraj S, Elliott AM, et al. Cancer risk among users of oral contraceptives: cohort data from the Royal College of General Practitioner's oral contraception study. BMJ. 2007;335 (7621):651
- 263 Rosenblatt KA, Gao DL, Ray RM, et al. Oral contraceptives and the risk of all cancers combined and site-specific cancers in Shanghai. Cancer Causes Control. 2008;20 (1):27-34
- 264 Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 53 297 women with breast cancer and 100 239 women without breast cancer from 54 epidemiological studies. Lancet. 1996;347 (9017):1713-27
- 265 Iversen L, Sivasubramaniam S, Lee AJ, et al. Lifetime cancer risk and combined oral contraceptives: the Royal College of General Practitioners' Oral Contraception Study. Am J Obstet Gynecol. 2017;216 (6):580. e1-580. e9
- 266 Gierisch JM, Coeytaux RR, Urrutia RP, et al. Oral contraceptive use and risk of breast, cervical, colorectal, and endometrial cancers: a systematic review. Cancer Epidemiol Biomarkers Prev. 2013;22 (11):1931-1943
- 267 Anothaisintawee T, Wiratkapun C, Lerdsitthichai P, et al. Risk factors of breast cancer: a systematic review and meta-analysis. Asia Pac J Public Health. 2013;25 (5):368-387
- 268 Hunter DJ, Colditz GA, Hankinson SE, et al. Oral contraceptive use and breast cancer: a prospective study of young women. Cancer Epidemiol Biomarkers Prev. 2010;19 (10):2496-2502
- 269 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer. Hormonal contraception and post-menopausal hormonal therapy. Lyon, France, 1999
- 270 Fabre A, Fournier A, Mesrine S, et al. Oral progestagens before menopause and breast cancer risk. Br J Cancer. 2007;96 (5):841

- 271 Kumle M, Weiderpass E, Braaten T, et al. Use of oral contraceptives and breast cancer risk: The Norwegian-Swedish Women's Lifestyle and Health Cohort Study. Cancer Epidemiol Biomarkers Prev. 2002;11 (11):1375-1381
- 272 Marchbanks PA, McDonald JA, Wilson HG, et al. Oral contraceptives and the risk of breast cancer. N Engl J Med. 2002;346 (26):2025-2032
- 273 Backman T, Rauramo I, Jaakkola K, et al. Use of the levonorgestrel-releasing intrauterine system and breast cancer. Obstet Gynecol. 2005;106 (4):813-817
- 274 Shapiro S, Rosenberg L, Hoffman M, et al. Risk of breast cancer in relation to the use of injectable progestogen contraceptives and combined estrogen/progestogen contraceptives. Am J Epidemiol. 2000;151 (4):396-403
- 275 Strom BL, Berlin JA, Weber AL, et al. Absence of an effect of injectable and implantable progestin-only contraceptives on subsequent risk of breast cancer. Contraception. 2004;69 (5):353-360
- 276 Munsell MF, Sprague BL, Berry DA, et al. Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol Rev. 2014;36 (1):114-136
- 277 Beral V, Reeves G, Bull D, et al. Breast cancer risk in relation to the interval between menopause and starting hormone therapy. J Natl Cancer Inst. 2011;103 (4):296-305
- 278 Manson JE, Chlebowski RT, Stefanick ML, et al. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women's Health Initiative randomized trials. JAMA. 2013;310 (13):1353-1368
- 279 Chlebowski RT, Rohan TE, Manson JE, et al. Breast cancer after use of estrogen plus progestin and estrogen alone: analyses of data from 2 women's health initiative randomized clinical trials. JAMA Oncol. 2015;1 (3):296-305
- 280 Jones ME, Schoemaker MJ, Wright L, et al. Menopausal hormone therapy and breast cancer: what is the true size of the increased risk? Br J Cancer. 2016;115 (5):607
- 281 Román M, Sakshaug S, Graff-Iversen S, et al. Postmenopausal hormone therapy and the risk of breast cancer in Norway. Int J Cancer. 2015;138 (3):584-593
- 282 Chlebowski RT, Kuller LH, Prentice RL, et al. Breast cancer after use of estrogen plus progestin in postmenopausal women. N Engl J Med. 2009;360 (6):573-87
- Fournier A, Mesrine S, Dossus L, et al. Risk of breast cancer after stopping menopausal hormone therapy in the E3N cohort. Breast Cancer Res Treat. 2014;145 (2):535-543
- 284 Collins JA, Blake JM and Crosignani PG. Breast cancer risk with postmenopausal hormonal treatment. Hum Reprod Update. 2005;11 (6):545-560
- 285 Shah NR, Borenstein J and Dubois RW. Postmenopausal hormone therapy and breast cancer: a systematic review and meta-analysis. Menopause. 2005;12 (6):668-78
- 286 Lee S, Kolonel L, Wilkens L, et al. Postmenopausal hormone therapy and breast cancer risk: the Multiethnic Cohort. Int J Cancer. 2006;118 (5):1285-91
- 287 Bakken K, Fournier A, Lund E, et al. Menopausal hormone therapy and breast cancer risk: impact of different treatments. The European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2011;128 (1):144-156
- 288 Prentice RL, Chlebowski RT, Stefanick ML, et al. Estrogen plus progestin therapy and breast cancer in recently postmenopausal women. Am J Epidemiol. 2008;167 (10):1207-16
- 289 Prentice RL, Manson JE, Langer RD, et al. Benefits and risks of postmenopausal hormone therapy when it is initiated soon after menopause. Am J Epidemiol. 2009;170 (1):12-23
- 290 Fournier A, Mesrine S, Boutron-Ruault MC, et al. Estrogen-progestagen menopausal hormone therapy and breast cancer: does delay from menopause onset to treatment initiation influence risks? J Clin Oncol. 2009;27 (31):5138-43
- 291 Porch JV, Lee I-M, Cook NR, et al. Estrogen–progestin replacement therapy and breast cancer risk: the Women's Health Study (United States). Cancer Causes Control. 2002;13 (9):847-854

- 292 Greiser CM, Greiser EM and Dören M. Menopausal hormone therapy and risk of breast cancer: a meta-analysis of epidemiological studies and randomized controlled trials. Hum Reprod Update. 2005;11 (6):561-573
- 293 Sergentanis TN, Diamantaras A-A, Perlepe C, et al. IVF and breast cancer: a systematic review and meta-analysis. Hum Reprod Update. 2014;20 (1):106-123
- 294 van den Belt-Dusebout AW, Spaan M, Lambalk CB, et al. Ovarian stimulation for in vitro fertilization and long-term risk of breast cancer. JAMA. 2016;316 (3):300-312
- 295 Gennari A, Costa M, Puntoni M, et al. Breast cancer incidence after hormonal treatments for infertility: systematic review and meta-analysis of population-based studies. Breast Cancer Res Treat. 2015;150 (2):405-413
- 296 Lundberg FE, Iliadou AN, Rodriguez-Wallberg K, et al. Ovarian stimulation and risk of breast cancer in Swedish women. Fertil Steril. 2017;108 (1):137-144
- 297 Luke B, Brown MB, Spector LG, et al. Cancer in women after assisted reproductive technology. Fertil Steril. 2015;104 (5):1218-1226
- 298 Reigstad MM, Storeng R, Myklebust TÅ, et al. Cancer risk in women treated with fertility drugs according to parity status—a registry-based cohort study. Cancer Epidemiol Biomarkers Prev. 2017;
- 299 Troisi R, Hatch EE, Titus L, et al. Prenatal diethylstilbestrol exposure and cancer risk in women. Environ Mol Mutagen. 2017;0 (0):
- 300 Verloop J, van Leeuwen FE, Helmerhorst TJ, et al. Cancer risk in DES daughters. Cancer Causes Control. 2010;21 (7):999-1007
- 301 Professional and Public Relations Committee of the DESAD (Diethylstilbestrol and Adenosis) Project of the Division of Cancer Control and Rehabilitation. Exposure in utero to diethylstilbestrol and related synthetic hormones: association with vaginal and cervical cancers and other abnormalities. JAMA. 1976;236 (10):1107-1109
- Herbst AL, Ulfelder H and Poskanzer DC. Adenocarcinoma of the vagina.
 Association of maternal stilbestrol therapy with tumor appearance in young women.
 N Engl J Med. 1971;284 (15):878-81
- 303 Fickling D. Australia recognises cancer risk for "DES daughters". Lancet. 2004;363 (9426):2059
- 304 National Cancer Institute (NCI). Diethylstilbestrol (DES) and cancer. https://www.cancer.gov/about-cancer/causes-prevention/risk/hormones/des-factsheet. Accessed:
- 305 Hilakivi-Clarke L and De Assis S. Fetal origins of breast cancer. Trends Endocrinol Metab. 2006;17 (9):340-348
- 306 Hatch EE, Palmer JR, Titus-Ernstoff L, et al. Cancer risk in women exposed to diethylstilbestrol in utero. JAMA. 1998;280 (7):630-4
- 307 Troisi R, Hatch EE, Titus-Ernstoff L, et al. Cancer risk in women prenatally exposed to diethylstilbestrol. Int J Cancer. 2007;121 (2):356-360
- 308 Palmer JR, Wise LA, Hatch EE, et al. Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2006;15 (8):1509-1514
- 309 Hoover RN, Hyer M, Pfeiffer RM, et al. Adverse health outcomes in women exposed in utero to diethylstilbestrol. N Engl J Med. 2011;365 (14):1304-1314
- 310 Titus-Ernstoff L, Hatch EE, Hoover RN, et al. Long-term cancer risk in women given diethylstilbestrol (DES) during pregnancy. Br J Cancer. 2001;84 (1):126
- 311 Bibbo M, Haenszel WM, Wied GL, et al. A twenty-five-year follow-up study of women exposed to diethylstilbestrol during pregnancy. N Engl J Med. 1978;298 (14):763-767
- 312 Greenberg E, Barnes A, Resseguie L, et al. Breast cancer in mothers given diethylstilbestrol in pregnancy. N Engl J Med. 1984;311 (22):1393-1398
- 313 Colton T, Greenberg ER, Noller K, et al. Breast cancer in mothers prescribed diethylstilbestrol in pregnancy: further follow-up. JAMA. 1993;269 (16):2096-2100
- 314 World Health Organization. Physical status: the use and interpretation of anthropometry. Geneva, Switzerland, 1995
- 315 Lauby-Secretan B, Scoccianti C, Loomis D, et al. Body fatness and cancerviewpoint of the IARC Working Group. N Engl J Med. 2016;375 (8):794-798

- International Agency for Research on Cancer (IARC) and World Health Organization (WHO). IARC Handbooks Volume 16 – Questions and Answers. http://www.iarc.fr/en/media-centre/iarcnews/pdf/Q&AHandbook16.pdf. Accessed: April 2018
- 317 Renehan AG, Tyson M, Egger M, et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371 (9612):569-578
- 318 The Premenopausal Breast Cancer Collaborative Group. Association of body mass index and age with subsequent breast cancer risk in premenopausal women. JAMA Oncol. 2018;e181771
- 319 Freisling H, Arnold M, Soerjomataram I, et al. Comparison of general obesity and measures of body fat distribution in older adults in relation to cancer risk: metaanalysis of individual participant data of seven prospective cohorts in Europe. Br J Cancer. 2017;116 (11):1486
- 320 Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52 705 women with breast cancer and 108 411 women without breast cancer. Lancet. 1997;350 (9084):1047-1059
- 321 Neuhouser ML, Aragaki AK, Prentice RL, et al. Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the women's health initiative randomized clinical trials. JAMA Oncol. 2015;1 (5):611-621
- 322 Endogenous Hormones Breast Cancer Collaborative Group. Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer Inst. 2003;95 (16):1218-1226
- 323 International Agency for Research on Cancer and World Health Organization. Weight control and physical activity. International Agency for Research on Cancer, Lyon, France, 2002
- 324 Campbell KL, Foster-Schubert KE, Alfano CM, et al. Reduced-calorie dietary weight loss, exercise, and sex hormones in postmenopausal women: randomized controlled trial. J Clin Oncol. 2012;30 (19):2314
- 325 Byers T and Sedjo R. Does intentional weight loss reduce cancer risk? Diabetes Obes Metab. 2011;13 (12):1063-1072
- 326 Birks S, Peeters A, Backholer K, et al. A systematic review of the impact of weight loss on cancer incidence and mortality. Obes Rev. 2012;13 (10):868-891
- 327 Winder AA, Kularatna M and MacCormick AD. Does bariatric surgery affect the incidence of breast cancer development? A systematic review. Obes Surg. 2017;27 (11):3014-3020
- 328 Chlebowski R, Luo J, Anderson G, et al. Abstract GS5-07: Weight change in postmenopausal women and breast cancer risk in the women's health initiative observational study. Cancer Res. 2018;78 (4 Supplement):GS5-07-GS5-07
- 329 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer. Alcohol consumption and ethyl carbamate. Lyon, France, 2010
- 330 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer. Personal habits and indoor combustions. Lyon, France, 2012
- 331 Wu D and Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol Res Health. 2003;27 277-284
- 332 Seitz HK, Pelucchi C, Bagnardi V, et al. Epidemiology and pathophysiology of alcohol and breast cancer: update 2012. Alcohol Alcohol. 2012;47 (3):204-212
- 333 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. A review of human carcinogens: personal habits and indoor combustions. Part E. International Agency for Research on Cancer, Lyon, France, 2012
- Allen NE, Beral V, Casabonne D, et al. Moderate alcohol intake and cancer incidence in women. J Natl Cancer Inst. 2009;101 (5):296-305

- 335 Hamajima N, Sanjosé Llongueras S, Hirose K, et al. Alcohol, tobacco and breast cancer-collaborative reanalysis of individual data from 53 epidemiological studies, including 58 515 women with breast cancer and 95 067 women without the disease. Br J Cancer. 2002;87 1234-1245
- 336 Chen J-Y, Zhu H-C, Guo Q, et al. Dose-Dependent Associations between Wine Drinking and Breast Cancer Risk-Meta-Analysis Findings. Asian Pac J Cancer Prev. 2016;17 (3):1221-1233
- 337 Jayasekara H, MacInnis RJ, Room R, et al. Long-term alcohol consumption and breast, upper aero-digestive tract and colorectal cancer risk: a systematic review and meta-analysis. Alcohol Alcohol. 2016;51 (3):315-330
- 338 Bagnardi V, Rota M, Botteri E, et al. Light alcohol drinking and cancer: a metaanalysis. Ann Oncol. 2013;24 (2):301-8
- 339 Jung S, Wang M, Anderson K, et al. Alcohol consumption and breast cancer risk by estrogen receptor status: in a pooled analysis of 20 studies. Int J Epidemiol. 2016;45 (3):916-28
- 340 Hirko KA, Chen WY, Willett WC, et al. Alcohol consumption and risk of breast cancer by molecular subtype: Prospective analysis of the nurses' health study after 26 years of follow-up. Int J Cancer. 2016;138 (5):1094-1101
- 341 Fagherazzi G, Vilier A, Boutron-Ruault M-C, et al. Alcohol consumption and breast cancer risk subtypes in the E3N-EPIC cohort. Eur J Cancer Prev. 2015;24 (3):209-214
- 342 Romieu I, Scoccianti C, Chajes V, et al. Alcohol intake and breast cancer in the European Prospective investigation into Cancer and Nutrition (EPIC) study. Cancer Causes Control. 2015;18 (4):361-73
- 343 Chhim A-S, Fassier P, Latino-Martel P, et al. Prospective association between alcohol intake and hormone-dependent cancer risk: modulation by dietary fiber intake. Am J Clin Nutr. 2015;102 (1):182-189
- 344 Gansler T and Jemal A. Axillary lymphatic disruption does not increase risk of breast carcinoma. Breast J. 2009;15 (4):438-439
- 345 So WK, Chan DN, Lou Y, et al. Brassiere wearing and breast cancer risk: a systematic review and meta-analysis. World J Metaanal. 2015;
- 346 Hsieh CC and Trichopoulos D. Breast size, handedness and breast cancer risk. Eur J Cancer. 1991;27 (2):131-5
- 347 Lafranconi A, Micek A, De Paoli P, et al. Coffee intake decreases risk of postmenopausal breast cancer: a dose-response meta-analysis on prospective cohort studies. Nutrients. 2018;10 (2):112
- 348 Food Standards Australia & New Zealand (FSANZ). Caffeine. http://www.foodstandards.gov.au/consumer/generalissues/Pages/Caffeine.aspx. Accessed: May 2018
- 349 Grosso G, Godos J, Galvano F, et al. Coffee, caffeine, and health outcomes: an umbrella review. Annu Rev Nutr. 2017;37 131-156
- 350 Hashibe M, Galeone C, Buys SS, et al. Coffee, tea, caffeine intake, and the risk of cancer in the PLCO cohort. Br J Cancer. 2015;113 (5):809
- 351 Oh JK, Sandin S, Strom P, et al. Prospective study of breast cancer in relation to coffee, tea and caffeine in Sweden. Int J Cancer. 2015;137 (8):1979-89
- 352 Bhoo-Pathy N, Peeters PH, Uiterwaal CS, et al. Coffee and tea consumption and risk of pre- and postmenopausal breast cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort study. Breast Cancer Res. 2015;17 15
- Lukic M, Licaj I, Lund E, et al. Coffee consumption and the risk of cancer in the
 Norwegian Women and Cancer (NOWAC) Study. Eur J Epidemiol. 2016;31 (9):905 916
- 354 Jiang W, Wu Y and Jiang X. Coffee and caffeine intake and breast cancer risk: an updated dose-response meta-analysis of 37 published studies. Gynecol Oncol. 2013;129 (3):620-629
- Li XJ, Ren ZJ, Qin JW, et al. Coffee consumption and risk of breast cancer: an up-todate meta-analysis. PLoS One. 2013;8 (1):e52681

- 356 Hidayat K, Chen G-C, Zhang R, et al. Calcium intake and breast cancer risk: metaanalysis of prospective cohort studies. Br J Nutr. 2016;116 (1):158-166
- 357 National Institutes of Health (NIH). Calcium.
- https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/. Accessed: July 2018
 Zang J, Shen M, Du S, et al. The association between dairy intake and breast cancer in western and Asian populations: a systematic review and meta-analysis. J Breast Cancer. 2015;18 (4):313-322
- 359 Missmer SA, Smith-Warner SA, Spiegelman D, et al. Meat and dairy food consumption and breast cancer: a pooled analysis of cohort studies. Int J Epidemiol. 2002;31 (1):78-85
- 360 Wu J, Zeng R, Huang J, et al. Dietary protein sources and incidence of breast cancer: a dose-response meta-analysis of prospective studies. Nutrients. 2016;8 (11):730
- Lunn J and Buttriss JL. Carbohydrates and dietary fibre. Nutr Bull. 2007;32 (1):21-64
- Aune D, Chan D, Greenwood D, et al. Dietary fiber and breast cancer risk: a systematic review and meta-analysis of prospective studies. Ann Oncol. 2012;23 (6):1394-1402
- 363 Chen S, Chen Y, Ma S, et al. Dietary fibre intake and risk of breast cancer: a systematic review and meta-analysis of epidemiological studies. Oncotarget. 2016;7 (49):80980
- 364 Narita S, Inoue M, Saito E, et al. Dietary fiber intake and risk of breast cancer defined by estrogen and progesterone receptor status: the Japan Public Health Centerbased Prospective Study. Cancer Causes Control. 2017;28 (6):569-578
- 365 Emaus MJ, Peeters PH, Bakker MF, et al. Vegetable and fruit consumption and the risk of hormone receptor–defined breast cancer in the EPIC cohort, 2. Am J Clin Nutr. 2016;103 (1):168-177
- 366 Farvid MS, Chen WY, Michels KB, et al. Fruit and vegetable consumption in adolescence and early adulthood and risk of breast cancer: population based cohort study. BMJ. 2016;353 i2343
- 367 Steinmetz KA and Potter JD. Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc. 1996;96 (10):1027-1039
- 368 World Cancer Research Fund and American Institute for Cancer Research. Continuous Update Project Report. Food, Nutrition, Physical Activity, and the Prevention of Breast Cancer. Washington, DC, USA, 2010
- 369 Jung S, Spiegelman D, Baglietto L, et al. Fruit and vegetable intake and risk of breast cancer by hormone receptor status. J Natl Cancer Inst. 2013;105 (3):219-236
- 370 Fabiani R, Minelli L and Rosignoli P. Apple intake and cancer risk: a systematic review and meta-analysis of observational studies. Public Health Nutr. 2016;19 (14):2603-2617
- Farvid MS, Chen WY, Rosner BA, et al. Fruit and vegetable consumption and breast cancer incidence: Repeated measures over 30 years of follow-up. Int J Cancer.
 2018;[Epub ahead of print]
- 372 Zhang X, Spiegelman D, Baglietto L, et al. Carotenoid intakes and risk of breast cancer defined by estrogen receptor and progesterone receptor status: a pooled analysis of 18 prospective cohort studies. Am J Clin Nutr. 2012;95 (3):713-25
- 373 Elliott R. Mechanisms of genomic and non-genomic actions of carotenoids. Biochim Biophys Acta Mol Basis Dis. 2005;1740 (2):147-154
- 374 Gong X, Smith JR, Swanson HM, et al. Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic agents through ROS-mediated mechanisms. Molecules. 2018;23 (4):
- 375 Bakker MF, Peeters PH, Klaasen VM, et al. Plasma carotenoids, vitamin C, tocopherols, and retinol and the risk of breast cancer in the European Prospective Investigation into Cancer and Nutrition cohort, 2. Am J Clin Nutr. 2016;103 (2):454-464
- 376 Wang Y, Gapstur SM, Gaudet MM, et al. Plasma carotenoids and breast cancer risk in the Cancer Prevention Study II Nutrition Cohort. Cancer Causes Control. 2015;26 (9):1233-1244

- 377 Schwingshackl L, Schwedhelm C, Galbete C, et al. Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis. Nutrients. 2017;9 (10):1063
- 378 van den Brandt PA and Schulpen M. Mediterranean diet adherence and risk of postmenopausal breast cancer: results of a cohort study and meta-analysis. Int J Cancer. 2017;140 (10):2220-2231
- 379 Bloomfield HE, Koeller E, Greer N, et al. Effects on health outcomes of a Mediterranean diet with no restriction on fat intake: a systematic review and metaanalysis. Ann Intern Med. 2016;165 (7):491-500
- 380 Toledo E, Salas-Salvadó J, Donat-Vargas C, et al. Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial: a randomized clinical trial. JAMA Intern Med. 2015;175 (11):1752-1760
- 381 Bilal I, Chowdhury A, Davidson J, et al. Phytoestrogens and prevention of breast cancer: the contentious debate. World J Clin Oncol. 2014;5 (4):705
- 382 Dagdemir A, Durif J, Ngollo M, et al. Breast cancer: mechanisms involved in action of phytoestrogens and epigenetic changes. In Vivo. 2013;27 (1):1-9
- 383 Grosso G, Godos J, Lamuela-Raventos R, et al. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: level of evidence and limitations. Mol Nutr Food Res. 2017;61 (4):1600930
- 384 Rietjens I, Louisse J and Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharmacol. 2017;174 (11):1263-1280
- 385 Baglia ML, Zheng W, Li H, et al. The association of soy food consumption with the risk of subtype of breast cancers defined by hormone receptor and HER2 status. Int J Cancer. 2016;139 (4):742-748
- 386 Sieri S, Agnoli C, Pala V, et al. Dietary glycemic index, glycemic load, and cancer risk: results from the EPIC-Italy study. Sci Rep. 2017;7 (1):9757
- 387 Schlesinger S, Chan DSM, Vingeliene S, et al. Carbohydrates, glycemic index, glycemic load, and breast cancer risk: a systematic review and dose–response meta-analysis of prospective studies. Nutr Rev. 2017;75 (6):420-441
- 388 Makarem N, Bandera EV, Lin Y, et al. Carbohydrate nutrition and risk of adiposityrelated cancers: results from the Framingham Offspring cohort (1991–2013). Br J Nutr. 2017;117 (11):1603-1614
- 389 Sue LY, Schairer C, Ma X, et al. Energy intake and risk of postmenopausal breast cancer: an expanded analysis in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) cohort. Cancer Epidemiol Biomarkers Prev. 2009;1055-9965
- 390 Hartman TJ, Gapstur SM, Gaudet MM, et al. Dietary energy density and postmenopausal breast cancer incidence in the Cancer Prevention Study II Nutrition Cohort, 2. J Nutr. 2016;146 (10):2045-2050
- 391 Thomson CA, Crane TE, Garcia DO, et al. Association between dietary energy density and obesity-associated cancer: results from the Women's Health Initiative. J Acad Nutr Diet. 2018;118 (4):617-626
- 392 Hodge AM, Bassett JK, Milne RL, et al. Consumption of sugar-sweetened and artificially sweetened soft drinks and risk of obesity-related cancers. Public Health Nutr. 2018;21 (9):1618-1626
- 393 Boyle P, Koechlin A and Autier P. Sweetened carbonated beverage consumption and cancer risk: meta-analysis and review. Eur J Cancer Prev. 2014;23 (5):481-490
- 394 Khodarahmi M and Azadbakht L. The association between different kinds of fat intake and breast cancer risk in women. Int J Prev Med. 2014;5 (1):6
- 395 Cao Y, Hou L and Wang W. Dietary total fat and fatty acids intake, serum fatty acids and risk of breast cancer: A meta-analysis of prospective cohort studies. Int J Cancer. 2016;138 (8):1894-1904
- 396 Chlebowski RT, Aragaki AK, Anderson GL, et al. Low-fat dietary pattern and breast cancer mortality in the Women's Health Initiative randomized controlled trial. J Clin Oncol. 2017;35 (25):2919-2926

- 397 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Red meat and processed meat. Lyon, France, 2015
- 398 World Health Organization. Q&A on the carcinogenicity of the consumption of red meat and processed meat. http://www.who.int/features/qa/cancer-red-meat/en/. Accessed: April 2018
- 399 Bouvard V, Loomis D, Guyton KZ, et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16 (16):1599-1600
- 400 Guo J, Wei W and Zhan L. Red and processed meat intake and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat. 2015;151 (1):191-198
- 401 Farvid MS, Stern MC, Norat T, et al. Consumption of red and processed meat and breast cancer incidence: A systematic review and meta-analysis of prospective studies. Int J Cancer. 2018;
- 402 Anderson JJ, Darwis NDM, Mackay DF, et al. Red and processed meat consumption and breast cancer: UK Biobank cohort study and meta-analysis. Eur J Cancer. 2018;90 73-82
- 403 Diallo A, Deschasaux M, Latino-Martel P, et al. Red and processed meat intake and cancer risk: results from the prospective NutriNet-Santé cohort study. Int J Cancer. 2017;142 (2):230-237
- 404 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Tobacco smoke and involuntary smoking. International Agency for Research on Cancer, Lyon, France, 2004
- 405 Lee PN and Hamling JS. Environmental tobacco smoke exposure and risk of breast cancer in nonsmoking women. An updated review and meta-analysis. Inhal Toxicol. 2016;28 (10):431-454
- 406 Macacu A, Autier P, Boniol M, et al. Active and passive smoking and risk of breast cancer: a meta-analysis. Breast Cancer Res Treat. 2015;154 (2):213-224
- 407 Chen C, Huang YB, Liu XO, et al. Active and passive smoking with breast cancer risk for Chinese females: a systematic review and meta-analysis. Chin J Cancer. 2014;33 (6):306-16
- 408 Yang Y, Zhang F, Skrip L, et al. Lack of an association between passive smoking and incidence of female breast cancer in non-smokers: evidence from 10 prospective cohort studies. PLoS One. 2013;8 (10):e77029
- 409 Phillips DH, Martin FL, Grover PL, et al. Toxicological basis for a possible association of breast cancer with smoking and other sources of environmental carcinogens. J Womens Cancer. 2001;3 9-16
- 410 Thompson PA, DeMarini DM, Kadlubar FF, et al. Evidence for the presence of mutagenic arylamines in human breast milk and DNA adducts in exfoliated breast ductal epithelial cells. Environ Mol Mutagen. 2002;39 (2-3):134-142
- 411 Chen C, Wang X, Wang L, et al. Effect of environmental tobacco smoke on levels of urinary hormone markers. Environ Health Perspect. 2005;113 (4):412
- 412 Michnovicz JJ, Hershcopf RJ, Naganuma H, et al. Increased 2-hydroxylation of estradiol as a possible mechanism for the anti-estrogenic effect of cigarette smoking. N Engl J Med. 1986;315 (21):1305-1309
- 413 Albanes D, Jones DY, Micozzi MS, et al. Associations between smoking and body weight in the US population: analysis of NHANES II. Am J Public Health. 1987;77 (4):439-444
- 414 Gaudet MM, Carter BD, Brinton LA, et al. Pooled analysis of active cigarette smoking and invasive breast cancer risk in 14 cohort studies. Int J Epidemiol. 2017;46 (3):881-893
- 415 Jones ME, Schoemaker MJ, Wright LB, et al. Smoking and risk of breast cancer in the Generations Study cohort. Breast Cancer Res. 2017;19 (1):118
- 416 World Health Organization. Global recommendations on physical activity for health. GENEVA, 2010

- 417 Tremblay MS, Aubert S, Barnes JD, et al. Sedentary behavior research network (SBRN)-terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14 (1):75
- 418 de Boer MC, Wörner EA, Verlaan D, et al. The mechanisms and effects of physical activity on breast cancer. Clin Breast Cancer. 2017;17 (4):272-278
- 419 McTiernan A, Tworoger SS, Rajan KB, et al. Effect of exercise on serum androgens in postmenopausal women: a 12-month randomized clinical trial. Cancer Epidemiol Biomarkers Prev. 2004;13 (7):1099-1105
- 420 Mitsuzono R and Ube M. Effects of endurance training on blood lipid profiles in adolescent female distance runners. Kurume Med J. 2006;53 (1+2):29-35
- 421 Wu Y, Zhang D and Kang S. Physical activity and risk of breast cancer: a metaanalysis of prospective studies. Breast Cancer Res Treat. 2013;137 (3):869-882
- 422 Neilson HK, Farris MS, Stone CR, et al. Moderate-vigorous recreational physical activity and breast cancer risk, stratified by menopause status: a systematic review and meta-analysis. Menopause. 2017;24 (3):322-344
- 423 Kyu HH, Bachman VF, Alexander LT, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ. 2016;354 i3857
- 424 Pizot C, Boniol M, Mullie P, et al. Physical activity, hormone replacement therapy and breast cancer risk: a meta-analysis of prospective studies. Eur J Cancer. 2016;52 138-154
- 425 Moore SC, Lee I-M, Weiderpass E, et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med. 2016;176 (6):816-825
- 426 Johnsson A, Broberg P, Johnsson A, et al. Occupational sedentariness and breast cancer risk. Acta Oncol. 2017;56 (1):75-80
- 427 Harris HR, Bergkvist L and Wolk A. Adherence to the World Cancer Research Fund/American Institute for Cancer Research recommendations and breast cancer risk. Int J Cancer. 2016;138 (11):2657-2664
- 428 Hansen J. Night shift work and risk of breast cancer. Curr Environ Health Rep. 2017;4 (3):325-339
- 429 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Painting, firefighting, and shiftwork. Lyon, France, 2010
- 430 Straif K, Baan R, Grosse Y, et al. Carcinogenicity of shift-work, painting, and firefighting. Lancet Oncol. 2007;8 (12):1065-1066
- 431 Stevens RG, Blask DE, Brainard GC, et al. Meeting report: the role of environmental lighting and circadian disruption in cancer and other diseases. Environ Health Perspect. 2007;115 (9):1357
- 432 González-González A, Mediavilla MD and Sánchez-Barceló EJ. Melatonin: a molecule for reducing breast cancer risk. Molecules. 2018;23 (2):336
- 433 International Agency for Research on Cancer. Internal report 14/002. Report on the Advisory group to Recommend Priorities for IARC monographs during 2015-2019. Lyon, France, 2014
- 434 Travis RC, Balkwill A, Fensom GK, et al. Night shift work and breast cancer incidence: three prospective studies and meta-analysis of published studies. J Natl Cancer Inst. 2016;108 (12):djw169
- Lin X, Chen W, Wei F, et al. Night-shift work increases morbidity of breast cancer and all-cause mortality: a meta-analysis of 16 prospective cohort studies. Sleep Med. 2015;16 (11):1381-1387
- 436 He C, Anand ST, Ebell MH, et al. Circadian disrupting exposures and breast cancer risk: a meta-analysis. Int Arch Occup Environ Health. 2015;88 (5):533-547
- 437 Jia Y, Lu Y, Wu K, et al. Does night work increase the risk of breast cancer? A systematic review and meta-analysis of epidemiological studies. Cancer Epidemiol. 2013;37 (3):197-206

- 438 Wang F, Yeung K, Chan W, et al. A meta-analysis on dose-response relationship between night shift work and the risk of breast cancer. Ann Oncol. 2013;24 (11):2724-2732
- 439 Kamdar BB, Tergas AI, Mateen FJ, et al. Night-shift work and risk of breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat. 2013;138 (1):291-301
- 440 Wegrzyn LR, Tamimi RM, Rosner BA, et al. Rotating night-Shift work and the risk of breast cancer in the nurses' health studies. Am J Epidemiol. 2017;186 (5):532-540
- 441 James P, Bertrand KA, Hart JE, et al. Outdoor light at night and breast cancer incidence in the Nurses' Health Study II. Environ Health Perspect. 2017;125 (8):087010
- 442 Coccheri S. Use and misuse of aspirin in primary cardiovascular prevention. Clin Med Insights Cardiol. 2017;11 1179546817702149
- 443 Thun MJ, Jacobs EJ and Patrono C. The role of aspirin in cancer prevention. Nat Rev Clin Oncol. 2012;9 (5):259-67
- 444 Bosetti C, Rosato V, Gallus S, et al. Aspirin and cancer risk: a quantitative review to 2011. Ann Oncol. 2012;23 (6):1403-1415
- 445 Harris RE, Casto BC and Harris ZM. Cyclooxygenase-2 and the inflammogenesis of breast cancer. World J Clin Oncol. 2014;5 (4):677
- 446 U.S. Preventive Services Task Force. Final update summary: aspirin use to prevent cardiovascular disease and colorectal cancer: preventive medication. https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFi nal/aspirin-to-prevent-cardiovascular-disease-and-cancer. Accessed: May 2018
- 447 Cook NR, Lee I-M, Zhang SM, et al. Alternate-day, low-dose aspirin and cancer risk: long-term observational follow-up of a randomized trial. Ann Intern Med. 2013;159 (2):77-85
- 448 Luo T, Yan HM, He P, et al. Aspirin use and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2012;131 (2):581-7
- 449 Algra AM and Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 2012;13 (5):518-527
- 450 de Pedro M, Baeza S, Escudero M-T, et al. Effect of COX-2 inhibitors and other nonsteroidal inflammatory drugs on breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2015;149 (2):525-536
- 451 Zhong S, Chen L, Zhang X, et al. Aspirin use and risk of breast cancer: systematic review and meta-analysis of observational studies. Cancer Epidemiol Biomarkers Prev. 2015;24 (11):1645-55
- 452 Zhao Y-s, Zhu S, Li X-w, et al. Association between NSAIDs use and breast cancer risk: a systematic review and meta-analysis. Breast Cancer Res Treat. 2009;117 (1):141-150
- 453 Takkouche B, Regueira-Méndez C and Etminan M. Breast cancer and use of nonsteroidal anti-inflammatory drugs: a meta-analysis. J Natl Cancer Inst. 2008;100 (20):1439-1447
- 454 Lu L, Shi L, Zeng J, et al. Aspirin as a potential modality for the chemoprevention of breast cancer: a dose-response meta-analysis of cohort studies from 857,831 participants. Oncotarget. 2017;8 (25):40389
- 455 Clarke CA, Canchola AJ, Moy LM, et al. Regular and low-dose aspirin, other nonsteroidal anti-inflammatory medications and prospective risk of HER2-defined breast cancer: the California Teachers Study. Breast Cancer Res. 2017;19 (1):52
- 456 Bardia A, Keenan TE, Ebbert JO, et al. Personalizing aspirin use for targeted breast cancer chemoprevention in postmenopausal women. Mayo Clin Proc. 2016;91 (1):71-80
- 457 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer. Some drugs and herbal products. Lyon, France, 2016
- 458 Karasneh RA, Murray LJ and Cardwell CR. Cardiac glycosides and breast cancer risk: a systematic review and meta-analysis of observational studies. Int J Cancer. 2017;140 (5):1035-1041

- 459 Osman MH, Farrag E, Selim M, et al. Cardiac glycosides use and the risk and mortality of cancer; systematic review and meta-analysis of observational studies. PLoS One. 2017;12 (6):e0178611
- 460 Zhang C, Xie S-H, Xu B, et al. Digitalis use and the risk of breast cancer: a systematic review and meta-analysis. Drug Saf. 2017;40 (4):285-292
- 461 Chung M-H, Wang Y-W, Chang Y-L, et al. Risk of cancer in patients with heart failure who use digoxin: a 10-year follow-up study and cell-based verification. Oncotarget. 2017;8 (27):44203
- 462 Ahern TP, Tamimi RM, Rosner BA, et al. Digoxin use and risk of invasive breast cancer: evidence from the Nurses' Health Study and meta-analysis. Breast Cancer Res Treat. 2014;144 (2):427-435
- 463 Biggar RJ, Wohlfahrt J, Oudin A, et al. Digoxin use and the risk of breast cancer in women. J Clin Oncol. 2011;29 (16):2165-2170
- 464 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer. Human papillomaviruses. Lyon, France, 2007
- 465 Lawson JS, Glenn WK and Whitaker NJ. Human papilloma viruses and breast cancer–assessment of causality. Front Oncol. 2016;6 207
- 466 Grulich AE and Vajdic CM. The epidemiology of cancers in human immunodeficiency virus infection and after organ transplantation. Semin Oncol. 2015;42 (2):247-257
- 467 Lawson JS, Glenn WK, Salyakina D, et al. Human papilloma viruses and breast cancer. Front Oncol. 2015;5 277
- 468 Bae JM and Kim EH. Human papillomavirus infection and risk of breast cancer: a meta-analysis of case-control studies. Infect Agent Cancer. 2016;11 (1):14
- 469 Zhou Y, Li J, Ji Y, et al. Inconclusive role of human papillomavirus infection in breast cancer. Infect Agent Cancer. 2015;10 (1):36
- 470 Simões PW, Medeiros LR, Pires PDS, et al. Prevalence of human papillomavirus in breast cancer: a systematic review. Int J Gynecol Cancer. 2011;22 (3):343-347
- 471 Li N, Bi X, Zhang Y, et al. Human papillomavirus infection and sporadic breast carcinoma risk: a meta-analysis. Breast Cancer Res Treat. 2011;126 (2):515-520
- 472 Gannon O, Antonsson A, Bennett I, et al. Viral infections and breast cancer-a current perspective. Cancer Lett. 2018;420 182-189
- 473 Salman NA, Davies G, Majidy F, et al. Association of high risk human papillomavirus and breast cancer: A UK based Study. Sci Rep. 2017;7 43591
- 474 Altman D, Yin L and Falconer H. Long term cancer risk after hysterectomy on benign indications: Population based cohort study. Int J Cancer. 2016;138 (11):2631-2638
- 475 Gaudet MM, Gapstur SM, Sun J, et al. Oophorectomy and hysterectomy and cancer incidence in the Cancer Prevention Study-II Nutrition Cohort. Obstet Gynecol. 2014;123 (6):1247-1255
- 476 Woolcott CG, Maskarinec G, Pike MC, et al. Breast cancer risk and hysterectomy status: the Multiethnic Cohort study. Cancer Causes Control. 2009;20 (5):539-547
- 477 Henderson KD, Sullivan-Halley J, Reynolds P, et al. Incomplete pregnancy is not associated with breast cancer risk: the California Teachers Study. Contraception. 2008;77 (6):391-396
- 478 Guo J, Huang Y, Yang L, et al. Association between abortion and breast cancer: an updated systematic review and meta-analysis based on prospective studies. Cancer Causes Control. 2015;26 (6):811-819
- 479 Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and abortion: collaborative reanalysis of data from 53 epidemiological studies, including 83 000 women with breast cancer from 16 countries. Lancet. 2004;363 (9414):1007-16
- 480 Michels KB, Xue F, Colditz GA, et al. Induced and spontaneous abortion and incidence of breast cancer among young women: a prospective cohort study. Arch Intern Med. 2007;167 (8):814-820
- 481 Reeves GK, Kan SW, Key T, et al. Breast cancer risk in relation to abortion: Results from the EPIC study. Int J Cancer. 2006;119 (7):1741-5

- 482 Brewster DH, Stockton DL, Dobbie R, et al. Risk of breast cancer after miscarriage or induced abortion: a Scottish record linkage case-control study. J Epidemiol Community Health. 2005;59 (4):283-7
- 483 Travis LB, Gospodarowicz M, Curtis RE, et al. Lung cancer following chemotherapy and radiotherapy for Hodgkin's disease. J Natl Cancer Inst. 2002;94 (3):182-192
- 484 Donin N, Filson C, Drakaki A, et al. Risk of second primary malignancies among cancer survivors in the United States, 1992 through 2008. Cancer. 2016;122 (19):3075-3086
- 485 Corkum M, Hayden JA, Kephart G, et al. Screening for new primary cancers in cancer survivors compared to non-cancer controls: a systematic review and metaanalysis. J Cancer Surviv. 2013;7 (3):455-463
- 486 Lee Y-T, Liu C-J, Hu Y-W, et al. Incidence of second primary malignancies following colorectal cancer: a distinct pattern of occurrence between colon and rectal cancers and association of co-morbidity with second primary malignancies in a population-based cohort of 98,876 patients in Taiwan. Medicine (Baltimore). 2015;94 (26):
- 487 Guan X, Jin Y, Chen Y, et al. The Incidence characteristics of second primary malignancy after diagnosis of primary colon and rectal cancer: a population based study. PLoS One. 2015;10 (11):e0143067
- 488 Tabuchi T, Ito Y, Ioka A, et al. Incidence of metachronous second primary cancers in Osaka, Japan: update of analyses using population-based cancer registry data. Cancer Sci. 2012;103 (6):1111-1120
- 489 Chen S-C, Liu C-J, Hu Y-W, et al. Second primary malignancy risk among patients with gastric cancer: a nationwide population-based study in Taiwan. Gastric Cancer. 2016;19 (2):490-497
- 490 Morais S, Antunes L, Bento MJ, et al. Risk of second primary cancers among patients with a first primary gastric cancer: a population-based study in North Portugal. Cancer Epidemiol. 2017;50 85-91
- 491 Ibrahim EM, Abouelkhair KM, Kazkaz GA, et al. Risk of second breast cancer in female Hodgkin's lymphoma survivors: a meta-analysis. BMC Cancer. 2012;12 (1):197
- 492 Schaapveld M, Aleman BM, van Eggermond AM, et al. Second cancer risk up to 40 years after treatment for Hodgkin's lymphoma. N Engl J Med. 2015;373 (26):2499-2511
- 493 Veit-Rubin N, Rapiti E, Usel M, et al. Risk, characteristics, and prognosis of breast cancer after Hodgkin's lymphoma. Oncologist. 2012;17 (6):783-91
- 494 Baras N, Dahm S, Haberland J, et al. Subsequent malignancies among long-term survivors of Hodgkin lymphoma and non-Hodgkin lymphoma: a pooled analysis of German cancer registry data (1990–2012). Br J Haematol. 2017;177 (2):226-242
- 495 Dörffel W, Riepenhausen M, Lüders H, et al. Secondary malignancies following treatment for hodgkin's lymphoma in childhood and adolescence: a cohort study with more than 30 years' follow-up. Dtsch Arztebl Int. 2015;112 (18):320
- 496 Royle JS, Baade P, Joske D, et al. Risk of second cancer after lymphohematopoietic neoplasm. Int J Cancer. 2011;129 (4):910-919
- 497 Pirani M, Marcheselli R, Marcheselli L, et al. Risk for second malignancies in non-Hodgkin's lymphoma survivors: a meta-analysis. Ann Oncol. 2011;22 (8):1845-1858
- 498 Chen S-C, Teng C-J, Hu Y-W, et al. Secondary primary malignancy risk among patients with esophageal cancer in Taiwan: a nationwide population-based study. PLoS One. 2015;10 (1):e0116384
- 499 Chuang S-C, Hashibe M, Scelo G, et al. Risk of second primary cancer among esophageal cancer patients: a pooled analysis of 13 cancer registries. Cancer Epidemiol Biomarkers Prev. 2008;17 (6):1543-1549
- 500 Levi F, Randimbison L, Blanc-Moya R, et al. Second neoplasms after invasive and borderline ovarian cancer. Eur J Cancer Prev. 2009;18 (3):216-219
- 501 Spanogle JP, Clarke CA, Aroner S, et al. Risk of second primary malignancies following cutaneous melanoma diagnosis: a population-based study. J Am Acad Dermatol. 2010;62 (5):757-767

- 502 Levi F, Randimbison L, Te VC, et al. Risk of prostate, breast and colorectal cancer after skin cancer diagnosis. Int J Cancer. 2008;123 (12):2899-2901
- 503 Lin C-Y, Lin C-L, Huang W-S, et al. Risk of breast cancer in patients with thyroid cancer receiving or not receiving 1311 treatment: a nationwide population-based cohort study. J Nucl Med. 2016;57 685-690
- 504 Cho YY, Lim J, Oh CM, et al. Elevated risks of subsequent primary malignancies in patients with thyroid cancer: A nationwide, population-based study in Korea. Cancer. 2015;121 (2):259-268
- 505 Kim C, Bi X, Pan D, et al. The risk of second cancers after diagnosis of primary thyroid cancer is elevated in thyroid microcarcinomas. Thyroid. 2013;23 (5):575-582
- 506 Lu C-H, Lee K-D, Chen P-T, et al. Second primary malignancies following thyroid cancer: a population-based study in Taiwan. Eur J Endocrinol. 2013;EJE-13-0309
- 507 Balk EM, Earley A, Avendano EA, et al. Long-term health outcomes in women with silicone gel breast implants: a systematic review. Ann Intern Med. 2016;164 (3):164-175
- 508 Noels EC, Lapid O, Lindeman JH, et al. Breast implants and the risk of breast cancer: a meta-analysis of cohort studies. Aesthet Surg J. 2015;35 (1):55-62
- 509 Hopper I, Ahern S, McNeil JJ, et al. Improving the safety of breast implants: implantassociated lymphoma. Med J Aust. 2017;207 (5):185-186
- 510 Therapeutic Goods Administration (TGA). Breast implants and anaplastic large cell lymphoma. https://www.tga.gov.au/node/733565. Accessed: July 2018
- 511 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer. Surgical implants and other foreign bodies. Lyon, France, 1999
- 512 Doren EL, Miranda RN, Selber JC, et al. US epidemiology of breast implant– associated anaplastic large cell lymphoma. Plast Reconstr Surg. 2017;139 (5):1042-1050
- 513 Leberfinger AN, Behar BJ, Williams NC, et al. Breast implant–associated anaplastic large cell lymphoma: a systematic review. JAMA Surg. 2017;152 (12):1161-1168
- 514 de Boer M, van Leeuwen FE, Hauptmann M, et al. Breast implants and the risk of anaplastic large-cell lymphoma in the breast. JAMA Oncol. 2018;4 (3):335-341
- 515 Schliep KC, Mumford SL, Vladutiu CJ, et al. Perceived stress, reproductive hormones, and ovulatory function: a prospective cohort study. Epidemiology. 2015;26 (2):177
- 516 Dhabhar FS, Saul AN, Daugherty C, et al. Short-term stress enhances cellular immunity and increases early resistance to squamous cell carcinoma. Brain Behav Immun. 2010;24 (1):127-137
- 517 Lin Y, Wang C, Zhong Y, et al. Striking life events associated with primary breast cancer susceptibility in women: a meta-analysis study. J Exp Clin Cancer Res. 2013;32 (1):53
- 518 Santos MCL, Horta BL, Amaral JJFd, et al. Association between stress and breast cancer in women: a meta-analysis. Cad Saude Publica. 2009;25 S453-S463
- 519 Duijts SF, Zeegers MP and Borne BV. The association between stressful life events and breast cancer risk: a meta-analysis. Int J Cancer. 2003;107 (6):1023-1029
- 520 Schoemaker MJ, Jones ME, Wright LB, et al. Psychological stress, adverse life events and breast cancer incidence: a cohort investigation in 106,000 women in the United Kingdom. Breast Cancer Res. 2016;18 (1):72
- 521 Sawada T, Nishiyama T, Kikuchi N, et al. The influence of personality and perceived stress on the development of breast cancer: 20-year follow-up of 29,098 Japanese women. Sci Rep. 2016;6 32559
- 522 Surtees PG, Wainwright NW, Luben RN, et al. No evidence that social stress is associated with breast cancer incidence. Breast Cancer Res Treat. 2010;120 (1):169-174
- 523 Heikkilä K, Nyberg ST, Theorell T, et al. Work stress and risk of cancer: meta-analysis of 5700 incident cancer events in 116 000 European men and women. BMJ. 2013;346 f165

- 524 Van Netten J, Mogentale T, Smith MA, et al. Physical trauma and breast cancer. Lancet. 1994;343 (8903):978-979
- 525 Kopans D, Van Netten J, Mogentale T, et al. Physical trauma and breast cancer. Lancet. 1994;343 (8909):1364-1365
- 526 Song CT, Teo I and Song C. Systematic review of seat-belt trauma to the female breast: a new diagnosis and management classification. J Plast Reconstr Aesthet Surg. 2015;68 (3):382-389
- 527 Rigby J, Morris J, Lavelle J, et al. Can physical trauma cause breast cancer? Eur J Cancer Prev. 2002;11 (3):307-311
- 528 Gatta G, Di Grezia G, Lieto R, et al. No evidence for an association between trauma and breast carcinoma: A retrospective cohort study. GARJMMS. 2012;1
- 529 World Health Organization (WHO). Diabetes. Fact Sheet No. 312. http://www.who.int/en/news-room/fact-sheets/detail/diabetes. Accessed: March 2018
- 530 Boyle P, Boniol M, Koechlin A, et al. Diabetes and breast cancer risk: a metaanalysis. Br J Cancer. 2012;107 (9):1608
- 531 Ferroni P, Riondino S, Buonomo O, et al. Type 2 diabetes and breast cancer: the interplay between impaired glucose metabolism and oxidant stress. Oxid Med Cell Longev. 2015;2015
- 532 Xue F and Michels KB. Diabetes, metabolic syndrome, and breast cancer: a review of the current evidence. Am J Clin Nutr. 2007;86 (3):823S-835S
- La Vecchia C, Giordano SH, Hortobagyi GN, et al. Overweight, obesity, diabetes, and risk of breast cancer: interlocking pieces of the puzzle. Oncologist. 2011;16 (6):726-729
- 534 De Bruijn K, Arends L, Hansen B, et al. Systematic review and meta-analysis of the association between diabetes mellitus and incidence and mortality in breast and colorectal cancer. Br J Surg. 2013;100 (11):1421-1429
- 535 Hardefeldt PJ, Edirimanne S and Eslick GD. Diabetes increases the risk of breast cancer: a meta-analysis. Endocr Relat Cancer. 2012;ERC-12-0242
- 536 Liao S, Li J, Wei W, et al. Association between diabetes mellitus and breast cancer risk: a meta-analysis of the literature. Asian Pac J Cancer Prev. 2011;12 (4):1061-5
- 537 Bowker SL, Richardson K, Marra CA, et al. Risk of breast cancer after onset of type 2 diabetes: evidence of detection bias in postmenopausal women. Diabetes Care. 2011;34 (12):2542-4
- 538 Gini A, Bidoli E, Zanier L, et al. Cancer among patients with type 2 diabetes mellitus: a population-based cohort study in northeastern Italy. Cancer Epidemiol. 2016;41 80-87
- 539 Xu H-L, Fang H, Xu W-H, et al. Cancer incidence in patients with type 2 diabetes mellitus: a population-based cohort study in Shanghai. BMC Cancer. 2015;15 (1):852
- 540 World Health Organization (WHO) & Food and Agriculture Organization of the United Nations (FAO). BISPHENOL A (BPA) - Current state of knowledge and future actions by WHO and FAO. http://www.who.int/foodsafety/publications/fs_management/No_05_Bisphenol_A_N

http://www.who.int/foodsafety/publications/fs_management/No_05_Bisphenol_A_N ov09_en.pdf. Accessed: April 2018

- 541 Del Pup L, Mantovani A, Cavaliere C, et al. Carcinogenetic mechanisms of endocrine disruptors in female cancers (Review). Oncol Rep. 2016;36 (2):603-12
- 542 Rodgers KM, Udesky JO, Rudel RA, et al. Environmental chemicals and breast cancer: an updated review of epidemiological literature informed by biological mechanisms. Environ Res. 2018;160 152-182
- 543 Trabert B, Falk RT, Figueroa JD, et al. Urinary bisphenol A-glucuronide and postmenopausal breast cancer in Poland. Cancer Causes Control. 2014;25 (12):1587-1593
- 544 Yang M, Ryu J-H, Jeon R, et al. Effects of bisphenol A on breast cancer and its risk factors. Arch Toxicol. 2009;83 (3):281-285

- 545 Brophy JT, Keith MM, Watterson A, et al. Breast cancer risk in relation to occupations with exposure to carcinogens and endocrine disruptors: a Canadian case–control study. Environ Health. 2012;11 (1):87
- 546 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer. Occupational exposures in insecticide application, and some pesticides. Lyon, France, 1991
- 547 World Health Organization (WHO). The use of DDT in malaria vector control. http://apps.who.int/iris/handle/10665/69945. Accessed: April 2018
- 548 International Agency for Research on Cancer (IARC) and World Health Organization (WHO). DDT, lindane and 2,4-D. Volume 113. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. IARC, Lyon, France, 2018
- 549 Park J-H, Cha ES, Ko Y, et al. Exposure to dichlorodiphenyltrichloroethane and the risk of breast cancer: a systematic review and meta-analysis. Osong Public Health Res Perspect. 2014;5 (2):77-84
- 550 Loomis D, Guyton K, Grosse Y, et al. Carcinogenicity of lindane, DDT, and 2, 4dichlorophenoxyacetic acid. Lancet Oncol. 2015;16 (8):891
- 551 Ingber SZ, Buser MC, Pohl HR, et al. DDT/DDE and breast cancer: A meta-analysis. Regul Toxicol Pharmacol. 2013;67 (3):421-433
- Adami HO, Lipworth L, Titus-Ernstoff L, et al. Organochlorine compounds and estrogen-related cancers in women. Cancer Causes Control. 1995;6 (6):551-66
 López-Cervantes M, Torres-Sánchez L, Tobías A, et al.
- Dichlorodiphenyldichloroethane burden and breast cancer risk: a meta-analysis of the epidemiologic evidence. Environ Health Perspect. 2004;112 (2):207
- 554 Wilke K, Martin A, Terstegen L, et al. A short history of sweat gland biology. Int J Cosmet Sci. 2007;29 (3):169-179
- 555 Darbre PD. Recorded quadrant incidence of female breast cancer in Great Britain suggests a disproportionate increase in the upper outer quadrant of the breast. Anticancer Res. 2005;25 (3C):2543-2550
- 556 Giulivo M, de Alda ML, Capri E, et al. Human exposure to endocrine disrupting compounds: their role in reproductive systems, metabolic syndrome and breast cancer. a review. Environ Res. 2016;151 251-264
- 557 Golden R, Gandy J and Vollmer G. A review of the endocrine activity of parabens and implications for potential risks to human health. Crit Rev Toxicol. 2005;35 (5):435-458
- 558 Namer M, Luporsi E, Gligorov J, et al. The use of deodorants/antiperspirants does not constitute a risk factor for breast cancer. Bull Cancer (Paris). 2008;95 (9):871-80
- 559 Willhite CC, Karyakina NA, Yokel RA, et al. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit Rev Toxicol. 2014;44 (sup4):1-80
- 560 Harvey PW and Darbre P. Endocrine disrupters and human health: could oestrogenic chemicals in body care cosmetics adversely affect breast cancer incidence in women? A review of evidence and call for further research. J Appl Toxicol. 2004;24 (3):167-176
- 561 Harvey PW. Parabens, oestrogenicity, underarm cosmetics and breast cancer: a perspective on a hypothesis. J Appl Toxicol. 2003;23 (5):285-288
- 562 Fakri S, Al Azzawi A and Al Tawil N. Antiperspirant use as a risk factor for breast cancer in Iraq. East Mediterr Health J. 2006;12 (3-4):478-82
- 563 Mirick DK, Davis S and Thomas DB. Antiperspirant use and the risk of breast cancer. J Natl Cancer Inst. 2002;94 (20):1578-1580
- 564 Hardefeldt PJ, Edirimanne S and Eslick GD. Deodorant use and breast cancer risk. Epidemiology. 2013;24 (1):172
- 565 Allam MF. Breast cancer and deodorants/antiperspirants: a systematic review. Cent Eur J Public Health. 2016;24 (3):245

- 566 Linhart C, Talasz H, Morandi EM, et al. Use of underarm cosmetic products in relation to risk of breast cancer: a case-control study. EBioMedicine. 2017;21 79-85
- 567 Birnbaum LS. The mechanism of dioxin toxicity: relationship to risk assessment. Environ Health Perspect. 1994;102 (Suppl 9):157
- 568 Kulkarni PS, Crespo JG and Afonso CA. Dioxins sources and current remediation technologies--a review. Environ Int. 2008;34 (1):139-53
- 569 Fries GF. A review of the significance of animal food products as potential pathways of human exposures to dioxins. J Anim Sci. 1995;73 (6):1639-1650
- 570 US Environmental Protection Agency (EPA). Exposure and human health reassessment of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. US Environmental Protection Agency, Washington DC, 2000
- 571 World Health Organization. Dioxins and their effects on human health. http://www.who.int/news-room/fact-sheets/detail/dioxins-and-their-effects-onhuman-health. Accessed: July 2018
- 572 Matthews J and Gustafsson J-Å. Estrogen receptor and aryl hydrocarbon receptor signaling pathways. Nucl Recept Signal. 2006;4
- 573 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofuran. Lyon, France, 1997
- 574 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer. Chemical agents and related occupations. Lyon, France, 2012
- 575 Bekki K, Vogel H, Li W, et al. The aryl hydrocarbon receptor (AhR) mediates resistance to apoptosis induced in breast cancer cells. Pestic Biochem Physiol. 2015;120 5-13
- 576 Xu J, Ye Y, Huang F, et al. Association between dioxin and cancer incidence and mortality: a meta-analysis. Sci Rep. 2016;6 38012
- 577 Warner M, Eskenazi B, Mocarelli P, et al. Serum dioxin concentrations and breast cancer risk in the Seveso Women's Health Study. Environ Health Perspect. 2002;110 (7):625-8
- 578 Reynolds P, Hurley SE, Petreas M, et al. Adipose levels of dioxins and risk of breast cancer. Cancer Causes Control. 2005;16 (5):525-35
- 579 Viel JF, Clement MC, Hagi M, et al. Dioxin emissions from a municipal solid waste incinerator and risk of invasive breast cancer: a population-based case-control study with GIS-derived exposure. Int J Health Geogr. 2008;7 4
- 580 Dai D and Oyana TJ. Spatial variations in the incidence of breast cancer and potential risks associated with soil dioxin contamination in Midland, Saginaw, and Bay Counties, Michigan, USA. Environ Health. 2008;7 (1):49
- 581 Danjou AM, Fervers B, Boutron-Ruault M-C, et al. Estimated dietary dioxin exposure and breast cancer risk among women from the French E3N prospective cohort. Breast Cancer Res. 2015;17 (1):39
- 582 Grosse Y, Baan R, Straif K, et al. Carcinogenicity of 1, 3-butadiene, ethylene oxide, vinyl chloride, vinyl fluoride, and vinyl bromide. Lancet Oncol. 2007;8 (8):679-680
- 583 Tates A, Grummt T, Törnqvist M, et al. Biological and chemical monitoring of occupational exposure to ethylene oxide. Mutat Res. 1991;250 (1):483-497
- 584 Boffetta P, van der Hel O, Norppa H, et al. Chromosomal aberrations and cancer risk: results of a cohort study from Central Europe. Am J Epidemiol. 2007;165 (1):36-43
- 585 Steenland K, Whelan E, Deddens J, et al. Ethylene oxide and breast cancer incidence in a cohort study of 7576 women (United States). Cancer Causes Control. 2003;14 (6):531-539
- Hagmar L, Welinder H, Lindén K, et al. An epidemiological study of cancer risk among workers exposed to ethylene oxide using hemoglobin adducts to validate environmental exposure assessments. Int Arch Occup Environ Health. 1991;63 (4):271-277
- 587 Norman SA, Berlin JA, Soper KA, et al. Cancer incidence in a group of workers potentially exposed to ethylene oxide. Int J Epidemiol. 1995;24 (2):276-284

- 588 Mikoczy Z, Tinnerberg H, Björk J, et al. Cancer incidence and mortality in Swedish Sterilant workers exposed to ethylene oxide: updated cohort study findings 1972– 2006. Int J Environ Res Public Health. 2011;8 (6):2009-2019
- 589 Benedetti M, Zona A, Beccaloni E, et al. Incidence of Breast, Prostate, Testicular, and Thyroid Cancer in Italian Contaminated Sites with Presence of Substances with Endocrine Disrupting Properties. Int J Environ Res Public Health. 2017;14 (4):355
- 590 Pirastu R, Comba P, Iavarone I, et al. Environment and health in contaminated sites: the case of Taranto, Italy. J Environ Public Health. 2013;2013
- 591 Guajardo OA and Oyana TJ. A critical assessment of geographic clusters of breast and lung cancer incidences among residents living near the Tittabawassee and Saginaw Rivers, Michigan, USA. J Environ Public Health. 2009;2009
- 592 Pesatori AC, Consonni D, Rubagotti M, et al. Cancer incidence in the population exposed to dioxin after the "Seveso accident": twenty years of follow-up. Environ Health. 2009;8 (1):39
- 593 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer. Outdoor air pollution. Lyon, France, 2015
- 594 Goldberg MS, Labrèche F, Weichenthal S, et al. The association between the incidence of postmenopausal breast cancer and concentrations at street-level of nitrogen dioxide and ultrafine particles. Environ Res. 2017;158 7-15
- 595 Hart JE, Bertrand KA, DuPre N, et al. Exposure to hazardous air pollutants and risk of incident breast cancer in the nurses' health study II. Environ Health. 2018;17 (1):28
- 596 Keramatinia A, Hassanipour S, Nazarzadeh M, et al. Correlation between nitrogen dioxide as an air pollution indicator and breast cancer: a systematic review and meta-analysis. Asian Pac J Cancer Prev. 2016;17 (1):419-24
- 597 Andersen ZJ, Ravnskjær L, Andersen KK, et al. Long-term exposure to fine particulate matter and breast cancer incidence in the Danish Nurse Cohort Study. Cancer Epidemiol Biomarkers Prev. 2016;26 (3):428-430
- 598 Shmuel S, White AJ and Sandler DP. Residential exposure to vehicular traffic-related air pollution during childhood and breast cancer risk. Environ Res. 2017;159 257-263
- 599 Reding KW, Young MT, Szpiro AA, et al. Breast cancer risk in relation to ambient air pollution exposure at residences in the Sister Study Cohort. Cancer Epidemiol Biomarkers Prev. 2015;24 (12):1907-9
- 600 Hart JE, Bertrand KA, DuPre N, et al. Long-term particulate matter exposures during adulthood and risk of breast cancer incidence in the Nurses' Health Study II Prospective Cohort. Cancer Epidemiol Biomarkers Prev. 2016;cebp. 0246.2016
- 601 Garcia E, Hurley S, Nelson DO, et al. Hazardous air pollutants and breast cancer risk in California teachers: a cohort study. Environ Health. 2015;14 (1):14
- 602 Xue X, Xue J, Liu W, et al. Trophic magnification of parabens and their metabolites in a subtropical marine food web. Environ Sci Technol. 2017;51 (2):780-789
- 603 Towers CV, Terry PD, Lewis D, et al. Transplacental passage of antimicrobial paraben preservatives. J Expo Sci Environ Epidemiol. 2015;25 (6):604
- 604 Barr L, Metaxas G, Harbach C, et al. Measurement of paraben concentrations in human breast tissue at serial locations across the breast from axilla to sternum. J Appl Toxicol. 2012;32 (3):219-232
- 605 Darbre P, Aljarrah A, Miller W, et al. Concentrations of parabens in human breast tumours. J Appl Toxicol. 2004;24 (1):5-13
- 606 Pugazhendhi D, Pope G and Darbre P. Oestrogenic activity of p-hydroxybenzoic acid (common metabolite of paraben esters) and methylparaben in human breast cancer cell lines. J Appl Toxicol. 2005;25 (4):301-309
- 607 Darbre PD and Harvey PW. Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J Appl Toxicol. 2008;28 (5):561-578
- Reeves KW, Diaz SM, Hankinson SE, et al. Phthalate metabolites and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2018;27 (3):355

- 609 Lopez-Carrillo L, Hernandez-Ramirez RU, Calafat AM, et al. Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect. 2010;118 (4):539-44
- 610 Holmes AK, Koller KR, Kieszak SM, et al. Case-control study of breast cancer and exposure to synthetic environmental chemicals among Alaska Native women. Int J Circumpolar Health. 2014;73 25760
- 611 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer. Polychlorinated biphenyls and Polybrominated biphenyls Lyon, France, 2016
- 612 Zhang J, Huang Y, Wang X, et al. Environmental polychlorinated biphenyl exposure and breast cancer risk: a meta-analysis of observational studies. PLoS One. 2015;10 (11):e0142513
- 613 World Cancer Research Fund and American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Breast Cancer. London, UK, 2017
- 614 Leng L, Li J, Luo X-m, et al. Polychlorinated biphenyls and breast cancer: A congener-specific meta-analysis. Environ Int. 2016;88 133-141
- 615 Donat-Vargas C, Åkesson A, Berglund M, et al. Dietary exposure to polychlorinated biphenyls and risk of breast, endometrial and ovarian cancer in a prospective cohort. Br J Cancer. 2016;115 (9):1113
- 616 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer. Some aromatic amines, organic dyes, and related exposures. Lyon, France, 2010
- 617 Johansson GM, Jönsson BAG, Axmon A, et al. Exposure of hairdressers to ortho- and meta-toluidine in hair dyes. Occup Environ Med. 2015;72 (1):57
- 618 Takkouche B, Regueira-Méndez C and Montes-Martínez A. Risk of cancer among hairdressers and related workers: a meta-analysis. Int J Epidemiol. 2009;38 (6):1512-1531
- 619 Pukkala E, Martinsen JI, Lynge E, et al. Occupation and cancer–follow-up of 15 million people in five Nordic countries. Acta Oncol. 2009;48 (5):646-790
- 620 Ekenga CC, Parks CG and Sandler DP. Chemical exposures in the workplace and breast cancer risk: a prospective cohort study. Int J Cancer. 2015;137 (7):1765-1774
- 621 Rosenberg L, Boggs DA, Adams-Campbell LL, et al. Hair relaxers not associated with breast cancer risk: evidence from the black women's health study. Cancer Epidemiol Biomarkers Prev. 2007;16 (5):1035-1037
- Takkouche B, Etminan M and Montes-Martínez A. Personal use of hair dyes and risk of cancer: a meta-analysis. JAMA. 2005;293 (20):2516-2525
- 623 Gera R, Mokbel R, Igor I, et al. Does the use of hair dyes increase the risk of developing breast cancer? a meta-analysis and review of the literature. Anticancer Res. 2018;38 (2):707-716
- 624 Mendelsohn JB, Li Q-Z, Ji B-T, et al. Personal use of hair dye and cancer risk in a prospective cohort of Chinese women. Cancer Sci. 2009;100 (6):1088-1091
- 625 Brinton LA, Figueroa JD, Ansong D, et al. Skin lighteners and hair relaxers as risk factors for breast cancer: results from the Ghana breast health study. Carcinogenesis. 2018;39 (4):571-579
- 626 Llanos AAM, Rabkin A, Bandera EV, et al. Hair product use and breast cancer risk among African American and White women. Carcinogenesis. 2017;38 (9):883-892
- 627 Zamanian A and Hardiman C. Electromagnetic radiation and human health: A review of sources and effects. HFE. 2005;4 (3):16-26
- 628 McColl N, Auvinen A, Kesminiene A, et al. European Code against Cancer 4th Edition: ionising and non-ionising radiation and cancer. Cancer Epidemiol. 2015;39 \$93-\$100
- 629 Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Extremely low frequency electric and magnetic fields. www.arpansa.gov.au/understandingradiation/what-is-radiation/non-ionising-radiation/low-frequency-electric-magneticfields. Accessed: October 2018

- 630 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer. Non-ionizing radiation: static and extremely low-frequency (ELF) electric and magnetic fields. World Health Organization, Lyon, France, 2002
- 631 Zhang Y, Lai J, Ruan G, et al. Meta-analysis of extremely low frequency electromagnetic fields and cancer risk: a pooled analysis of epidemiologic studies. Environ Int. 2016;88 36-43
- 632 Zhao G, Lin X, Zhou M, et al. Relationship between exposure to extremely lowfrequency electromagnetic fields and breast cancer risk: a meta-analysis. Eur J Gynaecol Oncol. 2014;35 (3):264-269
- 633 Chen Q, Lang L, Wu W, et al. A meta-analysis on the relationship between exposure to ELF-EMFs and the risk of female breast cancer. PLoS One. 2013;8 (7):e69272
- 634 Chen C, Ma X, Zhong M, et al. Extremely low-frequency electromagnetic fields exposure and female breast cancer risk: a meta-analysis based on 24,338 cases and 60,628 controls. Breast Cancer Res Treat. 2010;123 (2):569-576
- 635 Koeman T, Van Den Brandt PA, Slottje P, et al. Occupational extremely lowfrequency magnetic field exposure and selected cancer outcomes in a prospective Dutch cohort. Cancer Causes Control. 2014;25 (2):203-214
- 636 Li W, Ray RM, Thomas DB, et al. Occupational exposure to magnetic fields and breast cancer among women textile workers in Shanghai, China. Am J Epidemiol. 2013;178 (7):1038-1045
- 637 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer. Non-ionizing radiation, Part 2: Radiofrequency electromagnetic fields. Lyon, France, 2013
- 638 National Cancer Institute (NCI). Radiation. https://www.cancer.gov/aboutcancer/causes-prevention/risk/radiation. Accessed: October 2018
- 639 Baan R, Grosse Y, Lauby-Secretan B, et al. Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 2011;12 (7):624-626
- 640 Schüz J, Jacobsen R, Olsen JH, et al. Cellular telephone use and cancer risk: update of a nationwide Danish cohort. J Natl Cancer Inst. 2006;98 (23):1707-1713
- 641 Benson VS, Pirie K, Schuz J, et al. Mobile phone use and risk of brain neoplasms and other cancers: prospective study. Int J Epidemiol. 2013;42 (3):792-802
- 642 Hallberg Ö. Cancer incidence vs. FM radio transmitter density. Electromagn Biol Med. 2016;35 (4):343-347
- 643 Davis S, Mirick DK and Stevens RG. Residential magnetic fields and the risk of breast cancer. Am J Epidemiol. 2002;155 (5):446-454
- 644 Grajewski B, Waters MA, Yong LC, et al. Airline pilot cosmic radiation and circadian disruption exposure assessment from logbooks and company records. Ann Occup Hyg. 2011;55 (5):465-475
- Zeeb H, Hammer GP and Blettner M. Epidemiological investigations of aircrew: an occupational group with low-level cosmic radiation exposure. J Radiol Prot. 2012;32 (1):N15-9
- Liu T, Zhang C and Liu C. The incidence of breast cancer among female flight attendants: an updated meta-analysis. J Travel Med. 2016;23 (6):taw055
- 647 Tokumaru O, Haruki K, Bacal K, et al. Incidence of cancer among female flight attendants: a meta-analysis. J Travel Med. 2006;13 (3):127-132
- 648 Buja A, Mastrangelo G, Perissinotto E, et al. Cancer incidence among female flight attendants: a meta-analysis of published data. J Womens Health. 2006;15 (1):98-105
- 649 Rafnsson V. The incidence of breast cancer among female flight attendants: an updated meta-analysis. J Travel Med. 2017;24 (5):
- 650 Pinkerton LE, Hein MJ, Anderson JL, et al. Breast cancer incidence among female flight attendants: exposure-response analyses. Scand J Work Environ Health. 2016;42 (6):538-546
- 651 Schubauer-Berigan MK, Anderson JL, Hein MJ, et al. Breast cancer incidence in a cohort of US flight attendants. Am J Ind Med. 2015;58 (3):252-266

- 652 Pukkala E, Helminen M, Haldorsen T, et al. Cancer incidence among Nordic airline cabin crew. Int J Cancer. 2012;131 (12):2886-2897
- 653 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer. Radiation. Lyon, France, 2012
- 654 Holick MF. Vitamin D and sunlight: strategies for cancer prevention and other health benefits. Clin J Am Soc Nephrol. 2008;3 (5):1548-54
- 655 Van der Rhee H, de Vries E and Coebergh JW. Regular sun exposure benefits health. Med Hypotheses. 2016;97 34-37
- 656 Welsh J. Vitamin D and breast cancer: insights from animal models. Am J Clin Nutr. 2004;80 (6):1721S-1724S
- 657 Freedman DM, Dosemeci M and McGlynn K. Sunlight and mortality from breast, ovarian, colon, prostate, and non-melanoma skin cancer: a composite death certificate based case-control study. Occup Environ Med. 2002;59 (4):257-62
- 658 John EM, Schwartz GG, Dreon DM, et al. Vitamin D and breast cancer risk: the NHANES I epidemiologic follow-up study, 1971–1975 to 1992. Cancer Epidemiol Biomarkers Prev. 1999;8 (5):399-406
- 659 Zamoiski RD, Freedman DM, Linet MS, et al. Prospective study of ultraviolet radiation exposure and risk of breast cancer in the United States. Environ Res. 2016;151 419-427
- Lin SW, Wheeler DC, Park Y, et al. Prospective study of ultraviolet radiation exposure and risk of cancer in the United States. Int J Cancer. 2012;131 (6):E1015-E1023
- 661 Yang L, Veierød MB, Löf M, et al. Prospective study of UV exposure and cancer incidence among Swedish women. Cancer Epidemiol Biomarkers Prev. 2011;
- 662 Estébanez N, Gómez-Acebo I, Palazuelos C, et al. Vitamin D exposure and Risk of Breast Cancer: a meta-analysis. Sci Rep. 2018;8 (1):9039
- 663 Gandini S, Boniol M, Haukka J, et al. Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma. Int J Cancer. 2011;128 (6):1414-1424
- 664 Friis S, Kesminiene A, Espina C, et al. European Code against Cancer 4th Edition: medical exposures, including hormone therapy, and cancer. Cancer Epidemiol. 2015;39 \$107-\$119
- 665 Ronckers CM, Doody MM, Lonstein JE, et al. Multiple diagnostic X-rays for spine deformities and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2008;17 (3):605-613
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Fact Sheet -Ionising Radiation and Health. Australian Government. https://www.arpansa.gov.au/sites/g/files/net3086/f/legacy/pubs/factsheets/Ionising RadiationandHealth.pdf. Accessed: November 2018
- 667 Abdullah KA, McEntee MF, Reed W, et al. Radiation dose and diagnostic image quality associated with iterative reconstruction in coronary CT angiography: A systematic review. J Med Imaging Radiat Oncol. 2016;60 (4):459-68
- 668 den Harder AM, Willemink MJ, de Ruiter QM, et al. Achievable dose reduction using iterative reconstruction for chest computed tomography: A systematic review. Eur J Radiol. 2015;84 (11):2307-13
- 669 Brenner AV, Preston DL, Sakata R, et al. Incidence of Breast Cancer in the Life Span Study of Atomic Bomb Survivors: 1958-2009. Radiat Res. 2018;190 (4):433-444
- 670 Obdeijn IM, Heijnsdijk EA, Hunink MG, et al. Mammographic screening in BRCA1 mutation carriers postponed until age 40: Evaluation of benefits, costs and radiation risks using models. Eur J Cancer. 2016;63 135-42
- 671 Berrington de Gonzalez A, Gilbert E, Curtis R, et al. Second solid cancers after radiation therapy: a systematic review of the epidemiologic studies of the radiation dose-response relationship. Int J Radiat Oncol Biol Phys. 2013;86 (2):224-33
- 672 Phillips WT and Blumhardt R. Radiation-Induced Breast Cancer. Ann Intern Med. 2016;165 (6):451-452

- 673 Mathews JD, Forsythe AV, Brady Z, et al. Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346 f2360
- 674 Preston DL, Cullings H, Suyama A, et al. Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J Natl Cancer Inst. 2008;100 (6):428-36
- 675 Miglioretti DL, Lange J, van den Broek JJ, et al. Radiation-Induced Breast Cancer Incidence and Mortality From Digital Mammography Screening: A Modeling Study. Ann Intern Med. 2016;164 (4):205-14
- 676 Berrington de Gonzalez A, Curtis RE, Kry SF, et al. Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. Lancet Oncol. 2011;12 (4):353-60
- 677 Nelson HD, Fu R, Cantor A, et al. Effectiveness of Breast Cancer Screening: Systematic Review and Meta-analysis to Update the 2009 U.S. Preventive Services Task Force Recommendation. Ann Intern Med. 2016;164 (4):244-55
- 678 Morrell S, Taylor R, Roder D, et al. Mammography screening and breast cancer mortality in Australia: an aggregate cohort study. J Med Screen. 2012;19 (1):26-34
- 679 Morrell S, Taylor R, Roder D, et al. Mammography service screening and breast cancer mortality in New Zealand: a National Cohort Study 1999-2011. Br J Cancer. 2017;116 (6):828-839
- 680 Pijpe A, Andrieu N, Easton DF, et al. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK). BMJ. 2012;6 (345):
- 681 Colin C, Foray N, Di Leo G, et al. Radiation induced breast cancer risk in BRCA mutation carriers from low-dose radiological exposures: a systematic review. Radioprotection. 2017;52 (4):231-240
- 682 Pauwels EK, Foray N and Bourguignon MH. Breast Cancer Induced by X-Ray Mammography Screening? A Review Based on Recent Understanding of Low-Dose Radiobiology. Med Princ Pract. 2016;25 (2):101-9
- 683 Doi K, Mieno MN, Shimada Y, et al. Methodological extensions of meta-analysis with excess relative risk estimates: application to risk of second malignant neoplasms among childhood cancer survivors treated with radiotherapy. J Radiat Res (Tokyo). 2014;55 (5):885-901
- Wakeford R. The cancer epidemiology of radiation. Oncogene. 2004;23 (38):6404
- 685 De Bruin ML, Sparidans J, van't Veer MB, et al. Breast cancer risk in female survivors of Hodgkin's lymphoma: lower risk after smaller radiation volumes. J Clin Oncol. 2009;27 (26):4239-46
- 686 Elkin EB, Klem ML, Gonzales AM, et al. Characteristics and outcomes of breast cancer in women with and without a history of radiation for Hodgkin's lymphoma: a multi-institutional, matched cohort study. J Clin Oncol. 2011;29 (18):2466-2473
- 687 Moskowitz CS, Chou JF, Wolden SL, et al. Breast cancer after chest radiation therapy for childhood cancer. J Clin Oncol. 2014;32 (21):2217
- 688 Cancer Australia. Position Statement Lifestyle risk factors and the primary prevention of cancer. https://canceraustralia.gov.au/publications-andresources/position-statements/lifestyle-risk-factors-and-primary-prevention-cancer. Accessed: August 2018
- 689 Morton LM, Sampson JN, Armstrong GT, et al. Genome-Wide Association Study to Identify Susceptibility Loci That Modify Radiation-Related Risk for Breast Cancer After Childhood Cancer. J Natl Cancer Inst. 2017;109 (11):
- 690 Sud A, Thomsen H, Sundquist K, et al. Risk of second cancer in Hodgkin lymphoma survivors and influence of family history. J Clin Oncol. 2017;35 (14):1584-1590
- 691 Cooke R, Jones M, Cunningham D, et al. Breast cancer risk following Hodgkin lymphoma radiotherapy in relation to menstrual and reproductive factors. Br J Cancer. 2013;108 (11):2399

- 692 Teepen JC, van Leeuwen FE, Tissing WJ, et al. Long-term risk of subsequent malignant neoplasms after treatment of childhood cancer in the DCOG LATER Study cohort: role of chemotherapy. J Clin Oncol. 2017;35 (20):2288-2298
- 693 Adams MJ, Dozier A, Shore RE, et al. Breast cancer risk 55+ years after irradiation for an enlarged thymus and its implications for early childhood medical irradiation today. Cancer Epidemiol Biomarkers Prev. 2010;19 (1):48-58
- 694 Moskowitz CS, Chou JF, Sklar CA, et al. Radiation-associated breast cancer and gonadal hormone exposure: a report from the Childhood Cancer Survivor Study. Br J Cancer. 2017;117 (2):290
- 695 Moskowitz CS, Malhotra J, Chou JF, et al. Breast cancer following spinal irradiation for a childhood cancer: A report from the Childhood Cancer Survivor Study. Radiother Oncol. 2015;117 (2):213-216
- 696 Inskip PD, Robison LL, Stovall M, et al. Radiation dose and breast cancer risk in the childhood cancer survivor study. J Clin Oncol. 2009;27 (24):3901-7
- 697 Ahn HY, Min HS, Yeo Y, et al. Radioactive iodine therapy did not significantly increase the incidence and recurrence of subsequent breast cancer. J Clin Endocrinol Metab. 2015;100 (9):3486-3493
- 698 Sawka AM, Thabane L, Parlea L, et al. Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and metaanalysis. Thyroid. 2009;19 (5):451-457
- 699 Zhang Y, Liang J, Li H, et al. Risk of second primary breast cancer after radioactive iodine treatment in thyroid cancer: a systematic review and meta-analysis. Nucl Med Commun. 2016;37 (2):110-115
- 700 International Agency for Research on Cancer/World Health Organisation. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Preamble. Lyon, France, 2015
- 701 Cairns B, Reeves G, Yang T, et al. OP25 Having been breastfed as an infant and risk of cancer in adult women: cohort study. J Epidemiol Community Health. 2014;68 (Suppl 1):A15-A15
- 702 Elshof LE, Schaapveld M, Rutgers EJ, et al. The method of detection of ductal carcinoma in situ has no therapeutic implications: results of a population-based cohort study. Breast Cancer Res. 2017;19 (1):26
- 703 Rakovitch E, Nofech-Mozes S, Hanna W, et al. A population-based validation study of the DCIS Score predicting recurrence risk in individuals treated by breastconserving surgery alone. Breast Cancer Res Treat. 2015;152 (2):389-398
- 704 Rakovitch E, Nofech-Mozes S, Narod SA, et al. Can we select individuals with low risk ductal carcinoma in situ (DCIS)? A population-based outcomes analysis. Breast Cancer Res Treat. 2013;138 (2):581-590
- 705 Chen Z, Shao J, Gao X, et al. Effect of passive smoking on female breast cancer in China: a meta-analysis. Asia Pac J Public Health. 2015;27 (2):NP58-NP64
- 706 Gaudet MM, Gapstur SM, Sun J, et al. Active smoking and breast cancer risk: original cohort data and meta-analysis. J Natl Cancer Inst. 2013;105 (8):515-25
- 707 Cook NR, Lee I, Gaziano J, et al. Low-dose aspirin in the primary prevention of cancer: The women's health study: a randomized controlled trial. JAMA. 2005;294 (1):47-55
- 708 Warner M, Mocarelli P, Samuels S, et al. Dioxin exposure and cancer risk in the Seveso Women's Health Study. Environ Health Perspect. 2011;119 (12):1700
- 709 Bruin MLD, Sparidans J, Veer MBvt, et al. Breast Cancer Risk in Female Survivors of Hodgkin's Lymphoma: Lower Risk After Smaller Radiation Volumes. J Clin Oncol. 2009;27 (26):4239-4246